XI MATHEMATICS FORMULAE

Page 1

TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui 0345-3093759

r

XI – MATHEMATICS FORMULAE De Morgan’s Laws:(a) (AUB)/ = A/ ∩ B/ (b) (A ∩ B)/ = A/ U B/ Note:- A/ = U – A, B/ = U – B. System of Complex Number:(a , b) = a + ιb For (a , b) , (c , d) CC We define (1)

Equality:(a , b) = (c , d) if and only if a = c , b = d

(2)

Addition:(a , b) + (c , d) = (a + c , b + d) CC

(3)

Multiplication:(a , b) . (c , d) = (ac + bd , ad + bc) CC  The additive inverse of (a , b) CC is (−a , −b)  The Multiplicative inverse of (a , b) CC is b   a , 2  2  2  a  b a  b2   The Complex Conjugate of z = a + ιb is z = a – ιb 

Let z = a + ιb then z  a 2  b 2

Quadratic Formula: b  b2  4ac 2a The Cube Roots of Unity:The cube roots of unity are:1, ω, ω2 where,  1  3  1  3  and 2  are the complex cube roots of unity. 2 2 Note: 1 + ω + ω2 = 0  ω3 = 1 Nature of Roots :For the nature of roots, we have the following formula. Discriminate: D = b2 – 4ac. Note: If D = 0, the roots are real equal  If D > 0, the roots are real and unequal  If D < 0, the roots are complex and unequal  If D is a perfect square, the roots are rational and unequal; otherwise they are irrational. Sum of Roots b Coefficient of x      a Coefficient of x2 Product of Roots c Cons tan t    a Coefficient of x2  To form a quadratic equation whose roots are given, we have the following formula: x2 – (sum of roots)x + product of roots = 0 x

-1-


TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui 0345-3093759

Determinant For 2 × 2 order matrix a a a  a If A   11 12  , then A  11 12 a 21 a 22 a 21 a 22  For 3 × 3 order matrix a11  a11 a12 a13    If A  a 21 a 22 a 23  , then A  a 21 a 31 a 32 a 33  a 31 The Adjoint Matrix  a11 a12 Let A  a 21 a 22 a 31 a 32  A11 A12 Adj A  A 21 A 22  A31 A32 The Inverse Matrix Adj A A 1  . A

Note:-

 a11a 22  a12a 21 a12 a 22 a 32

a13

a a 23 = a11 22 a 32 a 33

a 23 a a a a  a12 21 23  a13 21 22 a 33 a 31 a 33 a 31 a 32

a13  a 23  then, a 33  A13  A 23  A33 

If A  0, then A1 does not exist.

Arithmetic Progression(A.P.):The standard form of an A.P is: a , a + d , a + 2d , a + 3d , . . . , a + (n – 1)d General Term of an A.P:Tn  a  n  1d where, a = 1st term, d = common difference, n = no. of terms Sum of Arithmetic Series:n Sn  2a  n  1d 2 where, a = 1st term, d = common difference, n = no. of terms Arithmetic Mean:ab A.M.  2 Note:- To find more than one A.M.’s we need to find the Common difference ‘d’ which is given by the following formula: ba d n 1 where, a = 1st term, b = last term, n = no. of A.M’s

Geometric Progression(G.P.):The standard form of an G.P is: a , ar , ar2 , ar3 , . . . , arn – 1

-2-


TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui 0345-3093759

General Term of G.P:-

Tn  ar n 1 where, a = 1st term,

r = common ratio,

n = no. of terms

Sum of Geometric Series:a 1  rn Sn  , when r < 1 1 r a rn 1 Sn  , when r < 1 r 1 where, a = 1st term, r = common ratio, n = no. of terms Sum of Infinite Geometric Series:a S  1 r Geometric Mean G   ab Note:- To find more than one G.M.’s we need to find the Common ratio ‘r’ which is given by the following formula:

1

 b  n 1 r  a where, a = 1st term,

b = last term,

n = no. of G.M’s

Harmonic Progression(H.P.):The standard form of an G.P is: 1 1 1 1 , , ,......, a a  d a  2d a  (n  1)d Harmonic Mean 2ab a, H, b H ab where, a = 1st term, b = last term Permutation n! n Pr  ( n  r )! Combination n! n Cr  (n  r )! r! Sum of First n Natural Numbers n (n  1) n  2 Sum of Squares of First n Natural Numbers n (n  1)(2n  1)  n2  6 Sum of Cubes of First n Natural Numbers

 n (n  1)   n3     2 

2

-3-


TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui 0345-3093759

Binomial Formula

a  bn  a n  na n 1b  n(n  1) a n 2b2  n(n  1)(n  2) a n 3b3  ...... n(n  1)...(n  r  1) a n r br  ...... bn 1  x n

2! 3! n (n  1) 2 n (n  1)...(n  r  1) r  1  nx  x  ...... x  ...... 2! r!

Relation Between Arc-Length, Radius And General Angle s = rθ Where, s = arc length, r = radius, θ = central angle(in radians) Signs of the Trigonometric Functions in the Four Quadrants II sin, cosec +ve all other –ve tan, cot +ve all other –ve III

I All +ve

cos, sec +ve all other −ve IV

Trigonometric Identities  sin2θ + cos2θ = 1  sin2θ = 1 − cos2θ  cos2θ = 1 – sin2θ  1 + tan2θ = sec2θ  1 + cot2θ = cosec2θ The Distance Formula AB 

x 2  x1 2  y 2  y1 2

Deductions From The Fundanmental Law  cos(−β) = cosβ   cos     sin   2   sin(−β) = −sinβ  tan(−β) = −tanβ  cot(−β) = −cotβ   sin      cos   2    tan     cot   2    cot     tan   2  Sum And Difference Formula  cos(α − β) = cosα cosβ + sinα sinβ  cos(α + β) = cosα cosβ − sinα sinβ  sin(α + β) = sinα sinβ + cosα cosβ  sin(α − β) = sinα sinβ − cosα cosβ tan   tan  tan     1  tan  tan 

-4-

r!


TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855    

Sir. Talha Siddiqui 0345-3093759

tan   tan  1  tan  tan  cot   cot   1 cot    cot   cot  cot  cot   1 cot    cot   cot  cot  cot   1 cot    cot   cot  tan   

Double Angle Identity 

cos2θ = cos2θ – sin2θ = 2cos2θ – 1 = 1 – 2sin2θ =

sin2θ = 2sinθcosθ =

tan 2 

2 tan 

2 tan 

1  tan 2  1  tan 2 

1  tan 2 

1  tan 2  Half Angle Identity  1  cos  sin    2 2  1  cos   2 2  sin  1  cos  tan   2 1  cos sin  Sum And Product Formulae For Trigonometric Functions 1  sin  cos  sin     sin    2 1  cos  sin  sin     sin    2 1  sin  sin   cos    cos   2 1  cos  cos  cos    cos   2 uv uv  sin u  sin v  2 sin cos 2 2 uv uv  sin u  sin v  2 cos sin 2 2 uv uv  cos u  cos v  2 cos cos 2 2 uv uv  sin u  cosv  2 sin sin 2 2 Periodic Function:A function y = f(x) is called a periodic function of periodic p if f(x + p) = f(x). The Law of Sine a b c   sin  sin  sin  The Law of Cosine  a2 = b2 + c2 − 2bc cosα  b2 = a2 + c2 − 2ac cosβ  c2 = a2 + b2 − 2ab cosγ

cos

-5-


TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui 0345-3093759

The Law of Tangents   tan 2  ab   a  b tan 2  tan 2  bc   bc tan 2  tan 2  ca   ca tan 2 Half Angle Formulae in terms of Lengths of Sides  (s  b)(s  c) sin   2 bc 

sin

  2

(s  a )(s  c) ac

sin

  2

(s  a )(s  b) ab

cos

  2

s(s  a ) bc

cos

 s(s  b)  2 ac

cos

  2

tan

 (s  b)(s  c)  2 s(s  a )

tan

 (s  a )(s  c)  2 s(s  b)

tan

 (s  a )(s  b)  2 s(s  c)

cot

 s(s  a )  2 (s  b)(s  c)

cot

 s(s  b)  2 (s  a )(s  c)

cot

 s(s  c)  2 (s  a )(s  b)

s(s  c) ab

Area of Triangle Case 1:- When measures of two sides and the measure of the included angle are given: 1   ab sin   2 1    ac sin  2 1   bc sin   2 -6-


TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui 0345-3093759

Case 2:- When measures of two angles and the measure of one side are known: 1 sin  sin     a2 2 sin  1 2 sin  sin   b  2 sin  1 sin  sin    c2  2 sin  Case 3:- When measures of three sides are known: abc where, s    ss  a s  bs  c 2 Case 4:- When measures of base and the measure of height is known 1    base  height  2

-7-


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.