Intergration Formulas

Page 1

TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui. 0345-3093759

INTEGRATION FORMULAE 1.

 u  vdx   udx   vdx

2.

 ax dx  a  x dx ,

3.

n  x dx 

4.

ax  b n  ax  b dx  an  1

5.

 x dx  ln x  c

6.

x  a dx 

7.

nx  a dx 

1 a nx  c , where n is any constant n ln a

8.

e

1 ax e c a

9.

 x  a   ln x  a  c

10.

11.

 a 2  x 2  a tan

12.

x

13.

 x 2  a 2  2a ln x  a

14.

 a 2  x 2  2a ln a  x

15.

 ln  x  x 2  a 2   c   x a

16.

 ln  x  x 2  a 2   c   x a

17.

a 2  x 2 dx 

1 1 x x a 2  x 2  a 2 sin 1  c 2 2 a

18.

x 2  a 2 dx 

1 1 x x 2  a 2  a 2 ln  x  x 2  a 2   c   2 2

19.

x 2  a 2 dx 

1 1 x x 2  a 2  a 2 ln  x  x 2  a 2   c   2 2

where a is any constant.

x n 1 c n 1 n 1

c

1

ax

dx 

ax c ln a

dx

dx a x 2

2

 sin 1

x c a

1

x c a

dx

dx a x 2

2

1

1 x sec1  c a a

dx

1

xa

dx

1

ax

c

c

dx

2

2

dx

2

2


TALHA SIDDIQUI’s ACADEMY OF COMMERCE & SCIENCES 021-35248855

Sir. Talha Siddiqui. 0345-3093759

20.

 cos x dx  sin x  c

21.

 cos nx dx  n sin nx  c

22.

 sin x dx   cos x  c

23.

 sin nx dx   n cos nx  c

24.

 tan x dx  ln sec x  c

25.

 cot x dx  ln sin x  c

26.

 secx dx  ln secx  tan x  c

27.

 cosecx dx  ln cosecx  cot x  c

28.

 sec

29.

 cosec x dx   cot x  c

30.

 sec x tanx dx  sec x  c

31.

 cos ecx cotx dx   cos ecx  c

1

1

2

x dx  tan x  c 2

Integration By Trigonometric Substitution An integrand which contains one of the forms a 2  x 2 , a 2  x 2 , x 2  a 2 but no other irrational factor, may be transformed into another involving trigonometric substitution of a new variable as follows: For

use

to obtain

a2  x2

x = a sinθ

a 1  sin 2   a cos 

a2  x2

x = a tanθ

a 1  tan2   a sec 

x2  a2

x = a sec θ

a sec2   1  a tan 

Integration By Parts Integral of product of two functions = 1st function × Integral of the 2nd −  Derivative of the 1st function × Integral of 2nd function.

 du

 u  v dx  u  v dx    dx  v dxdx


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.