UBC Civil Engineering

Page 1

Vo l. 14 – su mm er 20 12

Faculty of Applied Science Engineering News

Structural Materials Group Addresses Infrastructure Concerns by Nemkumar Banthia, Ph.D., P.Eng.

Nemy Banthia shown here with the environmental chamber that simulates the combined effects of global warming and increases in atmospheric CO2 on reinforced concrete elements

Throughout North America and in many parts of the world, the state of the infrastructure is poor. Not surprisingly, Statistics Canada reports that the average lifespan of a structure in Canada is only 37 years. Decades of negligence have created an infrastructure crisis or ‘backlog’ of unprecedented proportions in Canada and around the world. The Federation of Canadian Municipalities estimates that major Canadian cities face an infrastructure deficit of approximately $44 billion just to maintain current infrastructure, and worldwide the problem is pegged at nearly $900 billion. Canada has nearly 60,000 bridges

and 10,000 parking garages that require repair and/or strengthening and over 20% of these are in need of major rehabilitation or outright replacement. Professor Nemy Banthia of the Department of Civil Engineering at the University of British Columbia is dedicated to finding ways of remedying our infrastructure-related problems and developing materials and methods to increase the lifespans of our structures. He is taking a three-pronged approach to dealing with this pressing issue: (1) DEVELOP: developing new low carbon footprint construction materials that are not only strong and durable but are also damagetolerant; (2) SUSTAIN: monitoring current structures to ensure their safety so that they can be sustained for a longer lifespan; and (3) EXTEND: using innovative repair materials and techniques to extend the lifespan of infrastructure currently in place. DEVELOP: Concrete is the world’s most used construction material. The exponential growth of infrastructure, especially in developing countries, further increases the demand for concrete materials such that the worldwide production and use of concrete will soon surpass 10 billion tons per year. Humanity’s use of concrete is surpassed only by its use of water. However, the production of concrete is not an environmentally friendly process. Production of one tonne of cement powder releases approximately one tonne of CO2 into the atmosphere. Therefore, in the interest of mitigating climate change by lowering greenhouse gas emissions, it is absolutely imperative that we look at ways of lowering the carbon footprint of concrete. Supplementary Cementitious Materials (SCMs) such as blast furnace slag, silica fume

Continued on page 10


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
UBC Civil Engineering by UBC Applied Science - Issuu