2B24 Atomic and Molecular Physics - Born Oppenheimer approximation

Page 1

BORN-OPPENHEIMER APPROXIMATION

Diagram of Diatomic molecule R = RB − RA

1. Internuclear coordinate, R, a constant value: 2. Schr¨odinger Equation for electronic motion: ˆ el(ri; R)ψ(ri; R) = Eel(R)ψ(ri; R) (1) H where 2 −¯ h ˆ el(ri; R) = H ∇2i + V (r{zi; R)} | i 2m | {z } P.E. with K.E. of electrons clamped nuclei 3. Assume the total solution has the form: X

Ψ(R, ri) = ν(R)ψ(ri; R) 

h ¯2

−¯ h2

(2)

(3)

 X 2 2 − ∇R + ∇i + V (R, ri) ν(R)ψ(ri; R) i 2m 2µ

     

= Eν(R)ψ(ri; R) (4)


4. Kinetic energy operator of the nuclei: −¯ h2 2 h ¯2 2 ∇RΨ(R, ri) = − ∇Rν(R)ψ(ri; R) 2µ 2µ  h ¯ 2  =− ψ∇2Rν + 2∇Rψ · ∇Rν + ν∇2Rψ  . 2µ −¯ h2 2 h ¯2 ∇RΨ(R, ri) = − ψ(ri; R)∇2Rν(R) 2µ 2µ (5) 5. ’Simplified’ Schr¨odinger Equation: 

     

     

ψ −

h ¯2 2µ

  2 ∇Rν(R) + 

  X    

−¯ h2

i 2m

  2 ∇i + V  ψ ν(R) = Eν(R)ψ 

|

{z

}

our clamped solutions from 1 = Eelψ(ri; R) Re-arranging (note we can now cancel out the ψ(ri; R), as we do not operate on them):       

h ¯2 2µ

  2 ∇R + Eel(R) ν(R) = Eν(R) . 

(6)

One dim. eq. for nuclear motion, Eel(R) acts like a potential.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.