Memorized equations Below are a series of equations from the lecture notes that you should memorize. It is important to recognise that this does not define all the material you need to know for your exam: that is defined by the complete set of notes. The other equations within the notes you will be expected to understand, but not memorize. Note that no explanation for the equations is given below. You will need to refer to your lecture notes for that.
Crystal Structure V c =∣a1⋅ a2× a3 ∣
E n ≃exp − V N kBT
c =G
a 2d
Diffraction methods and structure determination 2 d sin =n r n r =∑ nG exp i G⋅ G
⋅r n G=V cell −1 ∫ d V n r exp i G V cell
T =2 n G⋅
bi⋅ a j=2 ij
a × a a ×a a ×a b1=2 2 3 ; b2 =2 3 1 ; b3=2 1 2 V cell V cell V cell
k =G d 3 r f G =∫ natom r exp i G⋅r rj S G =∑ f j expi G⋅ j
Cohesion U R=4
[ ] R
12
− R
6
=
A B − 6 12 R R
Vibrations d 2 us F s= M =C u s−1−u s C u s 1−u s=C u s1u s−1−2u s d t2
u s t = u s 0 e i K s a e−i t= u s 0 ei K s a −t
K ZB =±
v p=
v g=
a
K
d dK
= n
1 ℏ 2
pK =ℏ K
2
ℏ 1 m v 2= kK2 E2' =E±ℏ 2m
K k '=k G±
Thermal Properties U =U lattice =∑ ∑ 〈 n K , p 〉 ℏ p K K
〈n〉=
U=
p
1 exp ℏ /k B T −1
ℏ ∑ ∫ D p exp ℏ / k
p all bands
CV =
B
T −1
d
∂U ∂T
C V =3N k B K=
m m = N a L
3
dN L V K2 D K = =4 K 2 = dK 2 2 2 2
D=
2
dN dK VK dK VK 1 = D K = = 2 2 d d 2 d 2 vg
3
4 L K 3D =N cells =N DOF 3 2 V k−sphere
1 /V state
C V =constant ×N k B
T D
3
1 = C V v s l 3
Free Electron Gas k =
ℏ2 2 ℏ2 2 2 k = k k k 2 2m 2m x y z 4 V sphere = k 3F 3
2 V state= L
f =
3
1 exp [−/ k B T ]1 ∞
U =∫ D f d 0
C V =constant ×T
=q F E v × B
= d p =m d v =ℏ d k F dt dt dt 2
j=n q v = n e E m 2
=
ne m
1 1 1 = i p
j V =
dT dx
=L T
Electron Bands x=u x e i k x
k = 〈 k ∣H∣ k 〉=−− ∑ exp− k⋅m m
Semiconductors v g=
1 d ℏdk
=ℏ d k F dt 2
1 1 d = 2 * m ℏ d k2 2
k = E c
ℏ k2 2 me
3
kBT E n p=n i =4 me mh3 /2 exp − g 2 kBT 2ℏ 2
Semiconductor Devices n p= n i 2
=n e
e e e h pe =n e e p e h me mh
=
vg E
1 1 1 = L i
−∇ 2 =
r 0
n D wn =n A w p
j = j e
e kB T
s
I D =I DSS
−1
V 1− GS Vp
=
IC IE
=
IC IB
2
Magnetic Materials E =−m⋅ B
M =0 r H B =0 H
= H M
〈 〉=
B e e
B
B/ k B T
B B/ k B T
− B e− e
B
B /k B T
−B B /k B T
=
C T
Beff = M =
C T −T C
= B tanh
B B kBT