'I
-44 Tori Large
I
-
1.
Designed and illustrated by Adam Constarkine
1
W ~ d Troy y
(Gddsmith s College, London)
I
g~llu:mLarQa
#tub
: fll~m7~ndr"Enfi~~ qaU *f!a
i
3
I
@M@~k?W'r&h h (Shape, Space and Measure) n I j i a m m u ~ q u ? ~ wnn'i.ao~~diidunnpii~~uuinuiu B aar du Aaiuuia uaw LLWLR~IN?
)
n ~ s % n h % y p(Handling data) oluiul'Slni3drq ~unmawauaaz31~3ir6 Cua uarniii~la~~fi~sin~o~a~~Iji8uui~~uun~ipl~ bbsrugauarPrll3lN
M
ni%~diSoudoniadu~n~5bdm (Internet linking)
4
6
1
kflfiitl (Algebra)
1 (Number) ~ ~
75
6 $ 1 ~ (Numbers) 3 ~
76
12
b%m (Sets)
~ w w f i w(Arithmetic) 17 ~PRtdau(Fractions) 19 wPTh.l (Decimals) 14
~a~#61a~lnar~duuuuiw~~iu
21
85
~%w&fies(Algebra) fi%wfla#u31u (Basic alge Sun?%(Equations) n%i%m i sl +%wfm i (Algebraic graphs Sunl%dl~si3~9 (Quadratic equations)
87
Su~15~~1~ (Simultaneous #¶4 equati
90
QSUM% (Inequalities)
79 80
fls6gu (Functions) 24 8m%ld?ubbar$mdau (Ratio adn propolrtion) 94 %Bv~~91nn%ld (Information from graphs) 27 ~ a u a r(Percentages) (Indices and standard form)
92
US@ II~:M& (Shape, Space rn&nsfiiiqm .96 4agw (Data) and Measures)
@&D 30
~ s ~ i a f i(Geometry) m 32 ~u (Angles)
100
34 ~ ~ M B I U L M ~ U U (Polygons)
105 ~ l % h ~ S ~ i S o % 0(Representing 9?1 data)
40
ms&u (Solids)
d lL Q ~ U (Averages) 102 ni%%nl5n%r8iu(Measures of spread)
112 ~ ~ l ~ l ¶ . i l 9(Probability) rbfl~
42 SZJUIm3 (Symmetry)
116 %EIR?IN~~?~~~~u~I~LJU (money terms)
m%bbdas(Transformation) 45 ran~moj(vectors)
118
43
$ ~ ~ n 9 3 d r n ~ f l @ f (Maths f i ~ m fsymbols)
119
47 m%S%"rn~wi~fim (Geometric constructions)
l a k l (Loci) . . 52 ~ l % 6 l M ~ B ~ (Drawing i ~ % l dto ~scale) ~ 55 i ~ m ~ u ~ d u a r $(Perimeter ud and area) 51
58 d%1(95 (Volume)
m%swftft (Trigonometry) 65 asnau (Circles) (Calculations involving circles) 66 nisdiuasw~i?uan'u~nau 70 ~ u ~ a l u ~ ~ (Angles ~ ~ uin ~a circle) ~ a a n ~ ~
60
72 ~ 3 % (Measurement) I
(Handling data)
74
Lani (Time)
(Index)
I
ms1iioucionl~~u1no~1ii~1 (Internet links) a s i a z ~ f o d l u ~ d l ~ c~mlfikAon~4uldi iua (website)ui~~iodrdiaul~u::R"u~fiudqa ~ ~ W D ~ W ~ & U M I ~ I J $ ~ & M ~nioilnn13l~udo~diiuldi~'imli~bfia ~~&$E) dngl~4uladi dlJy l j / ~ d Usborne Quicklinks Websae d w w w . u s ~ u i d d h l a r c o mu ~ z f b d
I I
61% "maths dictionary" ~ ~ ~ ~ ~ ~ R ~ ~ ~ ~ O ~ ~ B ~ ~ D M I J ~ U L M
LTI
~auo ku: (internet safety) ~1d3~ui~dm~iam~~rndrno1aouku~ L L W ~ L ~ ~ ~de%dfih~v103~dm ~~du~~ii'Yii~~(4i.ii1~37uder ~ s ~ ~ a o u h ~ : u a : d ~ d ~ ~ ~ a i u ~ m~ aa uu i iou~ ~ u r i e l d piild~ni.rrim~ilua~~n3n1qinoani~ suE9 dnq ~ a ~ n i u i i m u 1 . r t l 1 ~ ~ e l ~ ~ u o ~ ~ 1 ~ d a u d o ~ ~ ~ u q @ % ~ ~ o : ~ o u ~ ~ ~ d ~ d m f i@h~ao~rinu iam~ tiouh~~bouio d~~~~fflafid%::~:m&n~id~n~d~z~~uw 8u~rno~bdm i~~dh
~~'~~I~L~uu%~~~Iu~UW~~~ ~~euu~iu~~:nifi~ifu~irfl~%ul"~~& eeiiwb4as hu8aTmq ~tiudo~fiudad ~uofln3Rd rnu@rjrioubius:T4$~dnwiiwa (email) ~IL~IIIY~~MI~ log in ~%e~~rnt~Gii~Odqmu fla~~modlu ~ oaddress ae email O~QIAPI~~~M~~OU
fi~'Yi~ul#ifud~ua (ernail) ~I~YI\~~RU$~~IU
do~'1uw~r'~%olsjuw%11d Usborne Quicklinks Website 4 www.usbome-quicklinks.com ~rezlddkeywords "maths dictiorrary" sbh ~mwiuf a~nodo~~uzdwu~~u h.. r
,
m ~ u 1 ~ 6 4 r ~ (me a e~ w . m~~!odnn'uUsbome Quicklinks ~z~ilmYna , -.
vailability)
I
'
~ ~ R ~ I ~ ? I ' L ~ ~ I J , , ~ o L ~ Doj;'u~h~judaw ~~~~~"II~~ a 8 d
Oauh L~IQ:L~IL~~~~P~%~TuL~YI'PIw ~wimq:~fluldl&
' I ~ B I R( &h ~~ *dm-)
< ~~w~m%~esa$~hTr~~~~m&~hh(s
fif&~h1~&mn'%l3f51hdd019b&\flld
nm~~mo%adiudohid dawnload ~ a ~ r n u w - i
h~nd~dd09'1d~1~TiildQfl~~d~mx119 (email) u9.mo~srouwui1~1Aihwad~ anti-virus LFfM 1-(
software ~&flo~k~ou%~md~~~p17~~~~1znaq~z
"irad6~ba~uao~u ~%~"irApy~s~%~"diBi~~~m~~d~unq~~a~z~~u~cilu di~~joo~duah'b~~"Id'Id u-8
i d ~ q u n j plug-ins, i to play sounds, or to show
videos, animations or 3-D Images. fild~l%~?Jgd QuicWjnks ~wfl8n'Ld"MHelp"
~%l"di6uwzuirtdl~andi$uhzptug-in Ti11&915 G d t n d r n ~ r n ~ ~ : z ~ m kisn6ii7ih~sin~~11uunu"i~o iin?sna~up~u~~~]~"didi b%'ber&u Usbome Quicklinks Wiadnh:~ download the plug-in Pddd mmunnruezrm~~ouriasz~w~uod~auo w.usborns-quicWinks.com UZIA&~& "Net udocii~flm$1~uuidrn~db~awi~~db%d%~ois HEAP"h f j Q m n i q ~ dto ~0 download ~ ptug-in
~zbddmbbazUsborne Publishing 3tbi%ijprplau ifiS4omunimas plug-in 6~dr~ms~z&mni~did~~d~wmrw~%lp~$iPm~ uonsirmo~mao~am ~ ~ & d d d(Red r m One) h*rsz~Siu%flduaz aauuo~~uzi7~8inq w~~lBifinwuuzuuamirp1~z d vnmriWfia"dT~n~u~o1~~ 3drb#udL~alL~cdaÂśd (Ouick Time) ~ 1 ~ 1 4 ~ TB8u~moSiii~ ~ 1 ~ ~ ~ 7o ~~ 8utnole3'~dmh$urhduviiu~:P4'110~i~~a5~e%l~ V~LLUS(WQI~%AM'B[~ ' I ~ w ~ z ~ u ~ ~ & ~ ~ ~ ~ r n ~ r ~ ' p ~ Flash - ~ ~ i u ~ i p m ~ m (animation) d~d~rn $I~.IP~IU~IUU,~~LQUU~%UH~I~~I~~
~ h o d c ~ a v e- @ "I~mrd~nivc~rnioulwa~~az~wM
~m+smwiudumn~dtd ' ~ e ttte~p*i;
Td7bbn481
Usborne Quicklinks Website
"Ium~Tsi~~ma5~dmlfl~d www.usbome"Net Help" B ~ ~ U ~ & ' ~ ~ L ~ W ~ L L L . W ' I M % " ~ % Uqcdcklinks.com L ~ ~ L ~ ~ R rb~~~fion
ri'dPl (Help)
Usbome Quicklinks at
k
links.com uaza~nlh"Net Help" siw:mnrrbaanl$
d~od~don7~~IonT.iibIu ~~1a don " b ~ o m ~ (Contents u z ~ and Index) vilu~zw L ~ D ~ Ia5nldd U
~ 1 y n s d ~ a ~ ~ ' t . r ~ z ~ 3 a ~ ~ ~ ~ ~ 9 z ~ ~ ~ ~ a 4 ~ d ( ~ atiisl=i
I ~ w ~ (Numbers) n r
d 1 ~ 2 ~ ~ ( i l M " f i D ~ r r~du h q ~ -3, 6 -21.8. -40
hd'wqfirn~(Directed numbers) Q M ~ ~ ? ~ L ~ : ~ W " ~ W N R L L I (Number ~ ~ ~ Aline) ~ 8d2dRIC(~~d%~ddid ? ~ ~
d~iunii4iu?u3:~fianltr~ m : : i i ~ ~ ? i u ~ 1 ~ q ~ u n i d ~ : ~ i ~ ~ n i ~ ~ i ' b ~ ~ u n i ~ a ' m ~ i n q u 6
uafi~$?y?us:q$an?j uurJujiro?u?u
h i (Even number) <iu-~u~Wd~T(ilq dnidaiaer 2 LLQ~'~~LWGOLFII~
& w d (Odd number) ~ l ~ ~ b ~ RIC(~75bi7f.J ~ l ( i l27 L L ~ ? M ~ D L H W L h -1, 1, 3, 5
&
MM www.u&omicklink.mn
Internet links ~ W ~ I U ~ U
h m : :(Plime number) ~19dauAw1 i ~uatcA'aiiu~a~ ~~~ ~?ernii
#D&FY~M"R?~GAI
1 ~~Lfi¶d~l¶d?¶dLQWl~
2 L ~ l ~ ~ R I C ( L f i ¶ d ~ l l d ? ¶ dk~E~ lr~1 .b ~ ~ 9 ' 1 ~ 3 l d d
#
I
+
-
a
.L
I
.
hmo7n'- (Cube number) < i u a u u a n ~ ~ ~ ~ ~ n ~ i n n i ~ ~ b u < i u a u ~huauu?&1flu~n~inni~~~<iuau~8u ~u
+ ~ W J I ~ (Square ~ B J number)
u d a : < i u a u i f u k u ~ ~ ~&od~u n i i ~fiunis 14iu
4x4
4 x
4
=16
7 x
7
=49
~ ~ u ~ ' ~ & E ~49DUCJM @ D J
udardiuauw"ubiau~a~u~o~~~f\~~w"~ ~~fia~bubiau & a ~ u ~ o ~ 5 n n f iGl ~~dYqu n i i d unisunt-h k m u "~~~~<iurnJu <iuapdfii~~aiui3u~a~~sn I&iuri 1 8 27 64 125 216 343 512 729 1000
I
Tnuuuu~a~fld~~kiu~4~~ ~~nUI7uf@7X7
&um@'wrvldw(Tiangular number) 4iuauuan&ijw~am~~<iuau~flu~Yw eion"u1d Ih
I
I
WQU%~'LU (pdirome)
Ad47Aq (SigniRcant figure) 4iuau~u?~ddadiuvin~1imailrkndiu L Q " ~ ~ ~ @ A ~ ~ ~ I U ~ ~ ~ I ~ ~ ~ H ~ ~ M
a#l u a ~ n r a mm n u m u ~ v m ~
+*Aas I*YnouAau~~tlTnm o, I.
i u ~ d a d~vi7Ju a L l l l d LY I m 4 1 U
4 LNTI:~ an~sii11'1uau~u~ftud~u~~a:~ ~ 6 u9 ~ftu~ml~n~ijw'iuinn"~Au~~~mu 9 ~Piau
~vii~u~a~~~uri?~~uw"udi6qn"u"oud~moa4iu . hummmtz (Rational number) ~~avinfiai?rmu'udiKqw'a~~~n (iiaii?ba"~~~"lldud~? +iuaub~q#aiuno~~uu~u$~awdau do n"Uuii~~uriT3~m~udiA"qdiau ~~vua:8ai7huaftu<iuau~iu ddtu8a4iuau 6i~lou~6iuaf~~~~nv:~~uu~daa~~u~do uan~~r4iuau~un1z~iv~ftun~Quu ~h 50.856 i?.~'iuauJ~o&~ftu(iia~~uii~q (sig. fig or s.f.) ~ ~ a r w ~ r i i u d d~th j v u0.i dam~dau~flu4iuau (iiaoliia~iu1 st, 2 sx or 3 s.f., Twuttaldm%ilm~~wij wsanu: (fi14ium~ufiounii5 apiin'y#omnnii 5 L%U
50.856 = lo00 0.3 = 3 = 1
V~~~RLHMI
w'?aeiiadu fii 328000 L%IU~I 2 s.f.. L~IA~~V: h a m (Irrational number) duu 3 aa a~a:KniIuh 2 ~a%v:qnfl~raw~?al.d bnr?uonnnur ao < i ~ ? u ~ ~ ~ m i s ' i ~ a ~ ~ ~hm'uafiu ~ 3 n u : 8 'Lnd lo wnn* 0 2 9:gnilw~Hw ;Sjlzjaiui~nduu~ftu~avdau~3onwiiuu di'L21~h330000 <7~auamsnurvru'~i~au'~rmii~~~9~~fiiu~~i~ 8 i'n&fi 10 wi~m'i,d~KiK7f i j 2 Onhrm m u (T)~hBiuauaessqnurI$i~~n' 3.141L ~ G ~ L . 9
3
h u & ( M I numbers) L ' I ~ ~ ~ ~ ~ I u ~ u R ~ ~ ~ ~ : L L ~ z ~ I w ~ u ~ ~ ~ ~ ~ ~ ~
1 .
(Sequences) 4iuauwaioq 4iuaud~o;~usiunis~3uan"u Sr~uu$rirwi::~3oq Gun41 h f (sequence) Gonuin::
4 i u a h h L i i rrw' (m) ~~iimn~~~aiunoh::'~11~i~in4iuauao~aiu4iuau~~snd0~
thah6-d (Fibonacci sequence)
~lhrs%& (Linear d sequence)
13 16 21
(2x1)- 1 = 1 (2x2)- 1 = 3
diKulmq idi~ir~~1un~d'i~::bQuiiK~l3Tudn
12 x 3) - 1 = 5 ... ~~ario'bfl
bdu 7, 10. 17.27 i i K u i P l u-uun ~p b2n ~ u I nLeonardo u
& h d i k ~ m(Quadraticsequence)
Fibonacci
~~u~fl;~diiiiK~lfs~u~d~us3su.11
kCddsau4iuauiibaoaQ~~~41 Z+1 b h 2, 5, 10, 17, 26
~uui9nsGng(rule) oie~ruams~wioubflu
$m (formula) diwa"'~1aui~n~bhuuuduan"u'11od
-
- -
47~7u~nuoenros$~aiu~niu~hani1~h 1 ue~iar~na~~uhuu~::adiu&artl~ .
: :I
$iu~udu* tyrl~uwL~hwrnnrn:
r ~ r a o ~ d i u ~ ~iiu C l3o+~3 = ~ 6~ 1
1
~ ~ ~ ~ U L W ~ U U ~ T K!QU~LL?I%I! ~ ~ I ~ I ~ ~ G ~- U I T
L, A.H. .I300 ~
X
W -A
~
'
iw&mn&n~riiehaiafl3"~3 d4dL?.t4 Blake Pascal (R,fl. 1B23-62) ~ ~ p i l l t 0 d i l ,
; --ltlaaurri@M~~~aftPrm::%~p~ ihfi'1Bi
hu0111~d~~$aiu~n~up~1i~~u~~m ~ n y l i i s r ~ ,b u
I
I
I
I
-
'
ms@u(Multiples) ~agnrao~4iuau~iuau~d~~~u~1a~~~nis~m ~ I M ~ u & ~ ~ ~ ~ ~ I Uu~ M L W Lhd 3 X 2 = 6 3 X 4 =12 3 X 6 =18 ~afu 6.12 LLB: 18 ~ i ~ u n i s g m ~ i u a u ~ i u a u d ~ &El 3
hnnth~ (Common multiple)
~iuau4iuau~td~um~m"11odiuauk~~~oi 4.4-
Uo
am4iuaudoolinn41aodiuau hd WqgMlOilWO\r I6bri 2.4,6,8.10.12 wygm"uo;la?u 'LAasri 3, 6. 9, 12. 15 wvjqmia8~vos2 ua: 3 a; 6 ua: 12 %W4~m$dnlo~dqm~aa~ 2 &a: 3 % 6 rSun 6 -ii&liaqmim~u (a.s.u.1 and 2 2ua: 3
I
I%~~&NJ&JEI m e lowest or least common multiple (LCM)] a.3.u. ~1~~4iwu1~~4iuau~f ~uinn1i~a4iuau
-
dn~ou~qm~~~iim~innis~m"~~~~~iuau~~~w:tiuaudu ~~SI-
(Factors)
nis~~unKads:nou~o&iuau~mq E~O~~:LUAM~LI~S ~i3d~~l~g~'21~9&~d~:n~~db~~-3"i~~~lawi: L $ U12 B I, 2,3,4, 6, 12 ~fluKads:nau nisuun~ads:nou'210~12 ~::'Lhi~isd 12=2X2X3
hn-u (Common factpr) 4iuau~~nuwnms9'7uauK~u~01'aa~4iuau~3a ~innjiaa~4iuau udu rii?ds::namoi 15 I6ut-i 1.3.5. 15 Kadxnamod 40 16iuri I, 2,4,5,8.10,20,40 w'?ds:nou$amia\r 15 ua: 40~ku-i1 uua: 5
Fe highest common factor (HCF)] m.u,ao9~~uau~~9~luaunfouinnji 'Lsiuri knls:nrm~au~~in~qm'210~~iuaubnditd"u uhd t%MWhWm
$ads:nau$aumuin~gm"11~9 15 b~a: 40 5 q 9 2 f l ~H.7.U. 2 ' 109 15 bLl2 40
ZD 5
h n w r m r (Prime factor) w'?darnau~awi:\b6i~~ri$a~~::noud~~u4iuau~mi:: rhd 8ads:nomas di?da:nau~am:
12 InYuari 1,2,3,4, 6 u~a: 12 I6iuri 2,3 uwsi: 2,3 ~~u-3"iuau
Lami: (perfect nurnty) 4 i u a ~ ~ ~ s 4iumm~viirTu~auanmo~ r ~ ~ u r i Kads::nouYoah unb5uKa<u~os~ipu6 QKadsrnau L~IU 1.2.3.6 ~ipdaeda~~91~6 6I&iLLi 6 = 1 + 2 + 3 lntmet links tfo\l<llu?u'IdId4 www.usborne-quicklinks.com
---=+
P
- rn
I
7
IW (Set) J F
r~uu~~~nv~~~~wni 7~lrSyu"
--,.---------- ,--: notation)
d g d i ~ q$o@anvrii~~!o~~rnu?wni~ku st~iig~~eir~tdg~~dild"' r i u LTI~TJD~WS:: {a e, i, 0, U) %nisu"~?unii& g - d a (roster notation) r n ~ ~ ? u ~ h r i u d~i g o qf i u w a IUT%~DJ~IK~ r i u {a, e, i, o, u) OIVQ~L!UU {u, 0, a, e, i) W ? B L ~ U ~ ~ W iinn%&i U &bi41~9u ~ C(9z~ndL~uurln~4~ubBB9 01v9LLiJUULh (g3g..u n i ~ $ g n q v )n~duurhid"vrl4irdo L~ULI~R$M@I~
torn-a"
(universal set)
~~l&saur.anBu~ 8 d ~ u a~oeiismiuci?r%ol i fhlw un16oL Musi zg ~onnw&uw"nfir~~nu6aug~1n~su' % ~iu % = {rii?$n'i~q = (wu"wr)
bwm'hn'~(Finite set)
~~n&416~41um"uo~1u4nrii? LIlR A
L f h l l % ~ ~ ~ ~ l ~ 0? ~ d S ~ n h ~
A = {l, 3, 5) A ~fhd~~"116~ LYU~IZ~I
n (A) = 3 d o n r ~ u ~ i u a u ~ ~ a ~ n ~dld {~iuauvin1 1,000) ~ ~ w ~ dr!uu~~~u&auWu?O'n~sK~ri~a igy ~'~1maih6 (infinite set) rmiu A = {$iu?ud) ~"rr~~Ilj~i~~iuau~~o~au+n Iau~aIn~~~ld&~8nvs~~wi::~!uu~o~am ~h ~~mm~iuaud~9u~'11~mr"uA~wmr% z ~~nu~~maair4iuau~~u he mvvrua~u~~nmr"ufiau~Buu~A N rrnu~~n~o~1"7uauils5miii aa~mui~~~~nw Aauyarh ~urniu Q ~~wu~1ln~~oil9'7uau~ssnur B = (13.5, 7,...) B ~ h r ~ ~ l m R ~~nu~1leseogs"iu?uv3g d o n LLW~~I~?UIP~I~~O~ ~~muo$ufi (infinity) &3arriho~r%m(Element or member)
l d 8 ~ 8 n ~E d b~nunis~fiifu~ui~nuodb"~~n~ % h (Empty 9 set or null set) M 4 ~rnunisIljr~uaui$n~~o\~~~"iln ~1l~i1~~8~~1l~wd~ddlja ~41.4x = {?'U'~U&RI~G~ ~mhd 1 ~8uau1$rno;r~mrw r1lnii~duu~rnu6?u } N = { 1 , 2 , 3 , 4 , 5 ,...} v~duur~nuAai-ru x = { w3o x = 0 r!uu~gid" 1 E N -1 ~ljr~u1ui$n~~o9 N r%mLioda&~'~~m (Subset) ~ ~ n ~ ~ a ~ i ~ n ~ 8 u &?iaotii~~iu %o~dnb%n~~ h A = { w ~ ~ mLU: r ) B = {t, r, y} ndi?ii B ~9u&aqmo~~%n A 8 ~ 1 n ~ scu '
.
~ 8 uB c A L L c~ = {a, e, i} \M"I$~uLI~~~J & 8 ~ 1 n v qd! n u i u ~ ? i u i6%i i ~9u&~~~
B
v -
ng sets) 4ouinnii
a~s:8n'1~1~~huq~au~n%od~b6~:~~09~ba: 'jdiba09mdi8u~audn~auhw?o~d (Comp~emmtof a set) ~anl;auirin$~wurinuo~Tu~~(~~awi:b"~~m . H&I i a o e i i ~ ~ d61u A A3znou6au$iuau~aw1::
PIB~&I.PIW
A' s:e~s:nou~au$~uau$9~u~~u"Imi$iuau1awi: iiuo~duan"ad$s:ndial6ii A'=%-A d o % tls:nouc;i3u$iuauyn$iuau a ~ u w n " ~ u u h o s ~A~ c~%iuubfIu w A' ~ d f n d m d ~ w(Union m of
sets)
w~dn~oiranil~~09n4ouinniiaoil~~~uio~ &~uijidU L ~ ~ ~ ~ " U ~ ~ ~ % ( A L $ U ~ L L M u U~"~U~~~~'IJ~ ~oeildL&
~
A B AUB
= = =
(2, 4, 6) {1,3,5,6} {I, 2, 3, 4, 5, 6)
u (Intersection of~sets) m n~~mo~r.nrwdsingo~~uaoil~~109~4ouinnii
nowm ~u~mo~~~n~u~o~~~cw~$uu~b~luWau
I
iaundfl (Arithmetic)
1
'
)
wu~uu7n uur~~aj
fns"m ( W i t k n ) nisoi7riiunisnuwfimaia~uni~
m ~ ~ a ~ n u m m(Long m u multiplication)
I
nng'~hnim~:~iur~u3uianimd~"ll~ani~~m
r&+iuaudri1vnr~11~dia~.~'iu7u~n a n I a n ~3adiimm~rn~~mn9'7~70~d~~fiu9"iuau~~ DU
d ~ ~ i ~ t h *17U61~7fl
a+bmh 6 + 3 = 9
ni~uan~hnisn~:w"m"&n"unis~3~ d ngmu~wus:pa6
~iu?u~iu%.~ tta:~waurfiunuau ~h 143 = (I x 100) + (4 x 10) + (3 x I)
rw;tu (Subtraction)
I
megu (Multiplication)
a"awu7u
n~s~i~iiuniani~~riim~iam.Sifau'~ 4iu~aa~~iuauu74~nsrn'i~~~auKu
finlam*rn
~finh~~~m
UrJON
L ~ u 6 X 8 = 48
nruurrt$m
~
didu~i;o~~biumnda~au~n9'iuaunda 7"~~h w"1umr~uaflui~:gm~wau rrsnbi7~41uau~diu3au
fMnS
(Division)
n i s h ~ ~ u n i s n i g ~ d r n ~ i a f i 4 ~ri-mmm ~a (Long division) Tg6nt8dy7u wiaa~,6armnimis4iuauwd~~au n i m i s h ~ u ~ f i d i 1 f i n T m u h ~ d ~ ~~~' s' 1a1~ 6 m WiJuuLRJad ;fi6,,ia<iwuiin<iuamd~ ~JMIT 5996 ~ a 22 u WUIUIU~~:WI~L~Y~~~~LB~~: 4iuauhu 22 ~ ~ u ~ u q i n~ddiauu T u s ~ ~ w i ~ ~ 8 a d o n?mn?s bthd 40 i8 = 5 lig&ohJbi~#ju m m q : ~ 8 u u l u ~ d ~m~mm~a~i59'1ua~"bwJ~~m~da~d a ib udfia1~13~1~8wrlu~~ a/t~n3a (R"?adig~iu 40 wi.rdi?er 8 a i ~ ~ ~ ~ ~ ~ & w a i u ~ ~
6
ligi~h~ii
40 40 + 8 - 4018 - 8
1-WJFK&I
( b w s of arithmetic)
n g m u l d q (A!mciati"e
law)
~~niauanua:mre6u~~uI~mungd wimsau ru:nidli~i5u~drni~ngn~s~d~mw J t q m d m ~ m r n n (a b$U
+
b ) + c = a+(b+c)
(12+7)
+ 6 = 12 + (7 + 6)
q ~ ~ (Commutative i i d laws)
ngnisa~ud~9ung&~a~s~fi~~u4idi6u"~a~ <iuau~~a~~'d*~~a:8~~nw~~~Q~~o ~i~lhruada~aGw8 dM N & ~lQ b3% kt~& Âś% Jl fiiungfi q m ~ m r n m a n ndiadi a + b = b + a bipd
6+3=3+6
qm61&hgru ndia41 a x b = b x a
Internet links ~ D U L ~ Z I W $ B111dd I www.usbome-quicklinks.com
1~~
7
m h r m (Mixed operations) niaA"iuaruir~ua~a~~~nia~i~iiun~uinnii !
I
,
I
~fiwkju(Fractions)
k d r m i i i s (Equivalent fractions)
~w'issjaud~~iKuaiui~o~iuam1~aun1~~6~n7o
Qouniirwwhu~Auda$unii m i ~ a a n d a or simplifying)
lntemet links L~DJIIIJ~~Utta:n~[u'u~'Ifid www.usbornequicklinkswm
rdo8aia~~ara:w'7dau~os~w~d?u
I
)
$ 7 ~ 7 ~
d m h d m (Common or simple or vulgar
hdf&
(Reciprocal)
daun5u~'~lansii~r?uiiu?td~~~i5unimi~ 1 r~~d?td~~i+iuaurizJr9uiar~~~ra:Kadau~9u Aau4iuauQu
fraction)
~ ~ ~ d a u $ w u ~ ~ urdu dnuy
7
f
kohsrdu daun5innd 3 flu
rda~isf3un5u~'~laasra~dau 3~ni-iiiu$wx?i'u ~ ~ ~ ~ ~ ~ ~ ~ ~ M M M ~ ~ ~ ' ~ r~vdau ~ ~ U (n8uliarav~fluKahurra:nn"~1riiadau W ? ~ M " J I D ~ Q " I M ~ ~ b~u~a~damnsliau'u~as rfIuw"am+) liandisrdu daun5mns i n rdu -1 1 1 t 3 ~~-jq:jq 1 + 3 = 1x 4 = 4 3 4 2 4 1 4 1 3 3 -3 2 -7 SM*~
(complex fraction)
4
q
5
I
8
?&R~RJWN?~&UL~~~PIJ~I~~~N~~J
~nu7a7~~4i~mihun~11~a~~
I . I ,
M~~uu (Proper * fraction)
~hubra:5oua: r~~daud~li8w".lra~~nunjira"?dau~9u~~[~dau~rfi
I
I.
I
I
' I
(Fractions and percentages)
b ~ b b (Improper * or top heavy fraction)
~wwdaudsidiaJinn%I LU:I~~ULB~M~~?U~~ iTara~zJinn-diKadawWunii r w u h u ~ i r ~ f i
1
hwwmt ( ~ i e number) d
d i k & ~ ~ ~ # (Mthmetic b u
~~~~~
with fractions) n m n b h (To add a fracth)
&fiarq~fiau#a~av~r~~i#ad~uq6u&*ae Kadau
(To ~
U Wa fra&on) Y
~1~~1vd?td~bEQia:sj7U~'14~8adau~aa~Ku~~a: du 2 x 1 = 3 4 2 4 x 2
iihhqmu~7uandi1~~~4i~au&
$+6
- $ + : = Z -6
1 61
ni-icolh-
dmdu~dbiuu$iua
~hdrnbi~4dur-i~~
rn%m&&u (To suwract a fraction) dir~l3Qia~uda:4iuau'1~liad7~4aa~Kur~~: + ~ f l l t ( ~1 ~8 9 d l h ~ ~ ~ l h r 2 8 2
Irh 34
3 8
(To d i i a fraction)
I 1X 8
8
3 - m = 5 m 1 % =
- 1 ~ 9 - s . B 3
12
12
12
ni'lWmaan I~(LW~?U~LY~I~U); (#7d?u 17; BU I ?ULWU 6; ~ ? d - ~ u d i i ~ i i o i i17 A q(~flnd?ud~ri78u); ~ dididqm~vii 17 (L~%B~?u~L~I~u); n17qru 11; &LRY 17: $OUR~Z.27: WIfI 66; ~ a a u n h k21
nflUau (Decimals)
h u M m & u (Decimal place) gm&u (Decimal point) d i ~ ~ ~ i ~ ~ o ~ d i u a u 4 i u a u d ~ ~ d n ig~B~'Idun.J'iuau~Wumiamin.J'iurU~i~~ndau~ ~"~ai~o~ n&u~~~nriuunn~do~nimamodgn~fl~er~~~u ~:aidgma~.a:ndi~.J'iuauoi7ilq ( ~ d u1.2) YIJ~SELWR ~ ~ Q ~ U ~ I L L ~ J A ~ J L L ~ E ~ I L L M ~ ~ PI+,i~~~ornu. ~ ~ ~ ~ L ~ ~unugn M H G( LU~NUI, 2 ) donbindu~rnr ~ I L L M ~ ~ ~ ~ w o s uI d ~ ~ : ~ ~ ~W~n"~~&L~~%Lh8~~~d~d
~~
n & u w (Intinii w non-terminating n&d'briri7wu(iloi7u~mdw~a~na&m diuaubq Siaundi 1 WIUI~~LLWRJ~A&~?U n&u K a o d i ~ ~ i0.375 U ~9~~~1'13daun~fler~ n & u G i u w : w d i
u-r
(Decimal fraction)
&LLEJB~AK~
3+ o + -10
7 100
5 +-1000
d
n
o
M H ~ ~ ~ U ~ ~ ~ ~ U W N ~ I ~ ~ ~ ~ ~ ~ L ~ Iri$in'pr ~ a o d i d ~ dMW~~UUYDS~IU u ( 7 ~&L$OJ(R"U ) L W M ~ ~ ~ W ~ Q U U U I J R ~ G ~ ~ ~ U ~ ~ & ~ L ~ 3.1 U 41592653...
w & u m (Mixed decimal) ~iu?u~iua~s~dddd~:nau(iiauii~d?u~i~~~a: n d (Retuning decimal) d n m d u h~o d i d ~ j o d15.76 L ~ W ~ ~ ~ N W ~~ Jw U ~ j d i ~ ~ a ~ ~ m T . n m "" f &ua~~l~~m hshom~lo~orihWin"&aIri&~n
... w "n & d ~ ~ i u a u " ~ ~ ~ ~ f i u ~ ~ MWQ~N$I ~ ~ i~~:' %L~~DJMNI u ~ uU r,
LiU
w
(Finite decimal 1 = 0.5 2
l7 = 0.0272 625
terminating decimal)
0.125125125
.~ufi~rn~i~ioll~
si7~cnri?~~snua:iia~mfiimo~~~~u~ddinisdi Kaodi.jhs6u9:duu~Bi~~u
Internet links rjo~~flldku uarnfliiuu 'In'kIn'www.usborne-quicklinks.com
-
qsuherw&or
(Arithmetic with
decimals)
nram~~eifm&a(To add or subtract a decimal)
(To multiply by a decimal)
'brjfi~d6i~$$g?mmwiiuu l~g6uLnjjaun"u~1uauQu
I
~biSa9'g'IdmmnwQu~lmu4iuauAbbslraiswwQuu~iiCu
b~unia\riiud~ruanw~a@unwQuuTmuni~~~uu &uaumuuuak &ksmn~iiuu0ila~~u
w
- -. '
I
'L
I nduun7uw'7uMiJ
-, auiliui~u~n'uni~au9'iu~uiBfu rfu#u Q ? ~ W I ~ ~ $ . ~ ~ ~ $ D
nmhm&or
(TO
IrjdlriJEgqnnnQuu
divide by a decimal) ld41u2uLdu(fioJuilq.jl
d
m
~ (To round a a decimal)
~da~i~"~~~~ifuanu~lwwQuuui~~f~fi9" ~a~~diin~sruini[muni~m~w&w4a~~ di~du~zua r-~uniai~m~w~4iuau~iu ~~e~'il~~w~iu~u'1ntidqm~ 33 iIu 3au i" bmrDi~qI d nYSmuo~n"Yiifia~n7s di~~~~~u~~~~~~hm~udiA'
nohdLdu 63.5378 alQQrflmLFIB~~Walu~~ ~~~+gwi4iuaumiiZ ~a"~r~i5u~PiPd~~ua~unimia u 63.538 (WH~UUHIU~ILL~~~~~)
4 i u a u h q L~;$u6audiuauLiuan"u~rmhunhk nwQuuAaun~[Quu
bPiPd
3 2 + 0.4
63.54 64
(n~[Quuaa~di~~WPiS) ( 8 a ~ a " l l u i A '2 IRua)
M S ~ ] A ~ ~ ~ A Y Y $ I (Rounding A error)
aa1u~~n~m~unia67ua~dn7~n~~ 8aaeii~~du th 0.69473 i j m ~ ~ ~ 0.69 , f h nia Id
$nuid 8 (~IU~U~I~~EJIU): n~ciiuu.humciinrriluu,gmndiiuu 19: ~rinhu17: 41u?udu 6; h u n b 18: n?$hflw 16; WY')~rn!hdiA'q 9: ~ L V ~ U U ~8 % (biu?ufi?&~od): ~$N ~ ~ J u ~ Y u I w s ~ ?23~
(INDICES AND STANDARD FORM)
Yo
Y
smmw (Index (plural is indices) or exponent)
raaun~* (Power)
4 i ~ ~ ~ d d w o ~ u ~ t l 0 ~ 4 i i m ~ i " 1divm4lu?u41uaud~~~nu&&aumm 1~~~n~i~a~d~ Y O ..
&-
(Fmcthal index or fractiond
Internet links ~ ~ o d r d fuia~z ~~wda u n h k151'L~ldw.usbome-quicklinkS.com
-
l o "
ty~l~uu'n'lk (Laws of indices) t
o
"
6.msundi$ma~1mundi&~Mi~miailxn~~, ( a n ) m ,a n x m
do a, n wr m ~~m.&u2dslq
4
ng~~:G.iuil.iiria"td~a"u~nia~~~unii "rylae~ 3. m m n a w~ 4 % tun41 "ypmrsrauni~k'~ U
56
b b (5213 = 52 3 =
brn51~j7( 5 9 3 = 52 X 52 X 5 2 = 52+2+2 ~s~.llunn'7adwuqiudu2n"u1fiJi~a"u~diGd = 56
+ a -
I
uinudnn"u I
7. ni%unniad'p10dm~uwa~ bupniagt-ub~unniadI "u09~~66~~ 41~2~
a n x am = a m ~ d aa, n uar m ~~wu4iuaurLhq
42 x 44 = 42* (a x b)"= a n x b n = 46 bUda a b, n ~r~lu4iuaulfiq b w j i ~ ' f i 4 ~ ~ 4 ~ = ( 4 ~ 4 ) ~ ( h4( ~5 x4 3~) 24 =~ 542 X 3 2 = 46 anrii (5 x 3 ) 2 = 1 5 =~225 %,?Becu~mpn h$diqiuvii~n"u'Lri~fl LLa: 52 x 3 2 = 25 x 9 =225
i
--
bit4
I
I
2. n i ~ m n a " u u n ~ i ~ ~ i i ~ i u ~ ~ u ~ ~ u ' 1n fl iri n ~ ~m~Bm~~i % ~ ~~~~l ~ u ~ n ~ 5 W I l ' b ~ ~ p n
uiatlnuM
"uairumar4iuau
a"+#'=
a"-"' rn ~~wu4iuaulslq
LBOa b ua::
= 34 LWTIZ~I
m
(b)%
~ d aa , n: : IL i,%u 36 i 32 = 36-2
m uwu4iuaulslq
(BY-
3 6 i 3 2 = ( 3 ~ 3 ~ ~33 ~~ 33 ) + ( 3 ~ 3 ) = 34
~~h~~a"uunh&di~iu61iln"u1i~1
b
2 33
~wn:ii
3
3
4 x 7 x 7
3
LLEJ::
S3 -
27 a
= 22 64
43 = 3. ~iuaulslqdundi~gm~~w~&w.~~::~hfitl4iu?uu"u ar = a 9. ~ m u n i i 1 d ~ i ? ~ a ~ d d i $ 9 ~ ~ u ~ ~ ~ d 2 u 6 5 i u i
~ d aa ~~wu41wulm7
L
3'
niarnilb~.dsndu~n"u~~l~m~din'~du~ 1 1 b.dsn 6T x 67 = 6 ~ + =$ 61
=3
4. <IU~U 1 Uftfil~d~slq DI(I~"w~'L&~ 1 LHNO 1" = 1 ~ d an ~rnu9"1~13u'Im7
. v - l u - r w b m - ~U I I ~ IIM V ~ U U [UI
~ V I I I I U I UIYTIII
~ u n inpnnsnfiskgud i (zero index rule)
=6
1
a i ~ n ~ i ? ~ b6; i l X~ 6i = 6 ~4.62 6: b f h ,b ~ J J ~ L ~
I
I(
Lh3
.
- . .
@nUUSgw (Standard form) ~uuuuim~~i~~SuiBni'~nu*~Iuni~ ~?i~~Iiuau~ ~ L I a x 10" do a u l n n i m i o d i h I u~gaurrj~ 10 (1 5 a c 10 ) L ~ 63,000 J = 6.3 x104 r ~ s l i ~ ~ ~ i u o i ~ ~ ~ n ~ d ~
&a @ m r i ' u + a u n M n 3 ~ ~ ~ 1 ' %BMwlnf (index notation, exponential notation or notatii)
r n ~ ~ ~ ~ u ~ i u a u d . i u a 1~ ~ ' I u ~ 1 ) ~ ~ ~
mnqi~hbsawg~m~[iuu5ai1sUa~m u " u r i i ~ ~ i a ~ r . z n ~ ~ ~ z ~ a ~ d u d( i ~ ~ ~ a d 1 5 1 ~ a
Internet links L%J r d i a j uarraaunri~k'lS;bdwww.usbomequicklinks.com
'k
<
huau
I
3
&IS"&UiIFd/nd3U (Ratio and Proportion)1
.
Bm~iau~8uni~ad~w wfiuuln~~uis~wo~d~8]is~"1uo"u&ubawi: i (particular order) l n h ei?odi-j~du fiiilr7~tin~~@daiu~u~~az~in@iu u~ARuov"~~$oo & "Dm~ i~s ~l S l t i ? ~ ~ ~ d d n ~ i u d o 8~ d~~3n ~ ' ~ 1 ~ ~ 8 u ~ n h u ~ i i u u & i ? u ~ f: l~~Jn¶d~n&~W ~~ I8A do~3 duudu 8 : 3 1 - .. %~niw:dtlu'lu~d bfl~sdr~b~¶.l 75nndJ = 5 :4
4
-
s)ambmm . . (Simpling ratios)
iikrxhyk&(unitary d o ) 6 m m h u i d ~ n 1b I,&1 : 3 bbaz 8 : 1
gmh&~&
msv:i16mdau'b~6fiu8~1~1dauou'ia9iu~ufi
~ow'i~$&~dm~~b~~$i~a~ddo~
(Ratios
2
m m
b~~~~~d?~fi~lib~13'l~~~bi6i~~
dauc&au~iuw~Juah&:w"i~ps"d7"11oa6fi~idau~u ~19~5~ ~~~d53nid~iuuwvd~flunr~flw~~iu<iuau~$~u~7 ~dodau$~~~o~.lroa6msidauadidou1a~siiA'~t ~~u~~lkir~a:iiuau~n~i~uibu$iuaudu t7un bdu a : b , b : c b ~ t a : c $ ~ ~ T I I ~ U ~ ~ I L S U L L Y Y ~(simplest " ~ I U ~ ~form) ~
terms) i%-~idauBdmd4u~ bw'uu 3 wvd
than two
idad a :b :c
I
kd~w'ik (E~UM ratios or equal ratios) $mmdauw~d$m"w%7da'lddo~~inhi ~hibvhfiu jiaBei7dbdu 4 : 8 b w 8 : 12 ~ ~ u $ m 3 i d a u i b h h
~ 6 ~ % 7 6 j m o ~ a p d ~ ~ u ~(TO ~~eii&tl simplify a whole number ratio)
5141 ~~ud~:w"i8m~idr~"tps"~~6msidauoii~ ~mz#aao~8mhu~ua1~11~sm"i~hoddi~~A 2 :3 &u wglw"~iu'vi?dauoiii~~ m~$m~idauoeiauwdau d~dRs~d%~b~~n"pdw"~I~fi~%>4l ad* duafiu il~nsi?u~~mfiu$~31dauo~ld91~~~u da'~d"~n~6mishudhu~~r~b~ua~u(~%n~iii~8a) , ~ , ; d a o ~ u ~ a n l ~ ~ a u ~ ~ ~ B J l n ~ q A (n.3u.) I,&~m~idau~~siin"u~~5;9"iuau~~~ 2 :4 (highest m m o n factor) I : 2 n=idaiu 2 Aodid~h 4 : 8 ip(a/au 2 b~a9i76midau40; MI : 2 #aIud %"Sjfiuoiiahu 40 uifl : 2 &'bud = 40 uiq : 120 u i g (2 ialud = nrsnF3au~3auBmhpd(TOcompare ratios) 120 UI~) 40 : 120 rr~~md6m~idau~u$~fidau6audadau~a~~uan"u = I : 3 (m~~d1tGiuau6iau 40) u&?bd4w~Guv fi& 40 uifl : 2 & h a d i f i $ o & d i u $ u 1 : 3 si?~E!'IiIb~u 'JdI,fl~YI,~tl~% 3 :4 nio 5 :6 n " l ~ l U a u ~ d a o ~ o y ~ u ~ ~ 8~sidau~nud~iuinnii (common factor) ~ d 7u : 9 8msida~dfioylupl
-
~ ~ l
a~~~rmduu6ms~hu~u~eI1,a~dau~~1a~~erod OMIBUaa ~w~d~u~ulu~lhfi~daud~8adau~isw8a.iauddd1
hfgm
d~6~~$q?~~pj7&m~bfi9~&
I
3:4=3= 9
(To simplify a ratio that includes a fraction)
k W :
5 : 6 = 5 = 70
~I$IL~U w ~ ~ I , L P ~ ~ v ~ ; o P ~ ~ I # ~ : J B o \ ~ binisinmy'luwdautltnhu ulaarutfi~dau&mii a 12 > 12 9 &$u 5 : 6 r i i i u l n n i i 3 : 4 ~,flu~iu?~~iiu ~~azg~dau~u~rmlsidauhau sj?uau~Juan"u 5i&arn~i?~oa6mmll?u~~wuwpdauni~a'fi a i oa li d lu l9di ~~~y"lu~o aaiuena 6m~~u~vii~fiu~au~4u?n"uImudn4 ~Pdnid p?ruBau2 hwmdiuau $&:~ddadaii~~7nh~fiu~adWhd~unh 1 x 2 =I na: 2 x 2 = 4 2 du 1 1uw7: 47 ~mirsla3= 100 ~"11ufi~ufi3 : 47 kzu : 2 ~ , i l m ~ u ~ d o i i d i 1u :~4h ~.au4wm= l 0 0 : 4 7 * " m d a a w: heiau, rnsttm 76 rnmiimwtum w:nm* dun"" "m.3" 1 ~';nou=i;");
li]
Y2
6
12
;
;
~ami.rAfi61ddtp 17 (rmdaudrri~h).wwgru I4 [niqru): n.n~daun&uM
&&u (Proportion)
(Inverse proportion)
h ~ d a n m d i e r t d l ~ ~ r t d d ~ fdi a i ~ l I ~ r w d i ~ f i i m d &ddmm 19q 9.94 riu L?flfl~5dd~d~od"'tkil$Ad3u M%lbgu8lildasl &bNme~ulm&mzWRM1u~ml~aw ~~h hfi~awz8u $~~sw'k~wwms~h1~dau1d oc imm&a~~dddu16udaammB&imd9
0 1 1 2 3 4 5 b . l'JEJI(T8.) (a)
I
-
- --
'.id.
*
r
-
s
a
--F.
.-.
**
-3
m 0
b
r n s l ~ l h - ~ u
l l i i r n l d
(Solving proportion problems) (Solving ratio problems) n n ~ 1 ~ 1 ~ ~ ~ ~ 5 i~+fi 7 ~ (unitary A ~method) m t d (To divide a quantity in a given ratio) ?3%flasnis~~fi~~~d~nlfuim~d~~SPdb~md I. ~ a & w a u ~ i iid~udu6mmdau ~q W ? ~ ? U ? ~ O J ~nd$uiw~d~munimidwo3ddwsdam~~nl~ui~ daudidq #mumiaozls %naz~imga$a~idi%oddiuau~o~wsdaudidq 2. m~uim~au~iuauM'd~~mo~daudidq dam dbsnls hddd3u Kaohadub~flu$~~m~&~aiuisnw'uw"b6 7. ~m~~d~iaz47td?u~uo"mmd?~4~udmmwl~~ddau mIi yn 5 u i i ~sd~iu&:i~uw~6~~fii~u~awi 3 $mpi~mrrgiwztiau QaTus rhadwrh 61 qyu a b ~ ~ a r cq %ad@@innduu u 1. mj2~mifdlau 1 u i i b 5 u i i q:flua6 da"wndau~9u 4 : 3 : 5 q u r r d n z q u h i ~ ~ s i i ~ s 200 dl 11-41 u i i q:iuw%6 200 AI 4iu?un"9wma~~8maid?~6 4 + 3 + 5 = 12 Ts~flugqrw"u4640 ~ f i$0i 1 H I J Y ? ~ ~ ~ ~ ~ I U ' I ~ ~ ' J M180' ~ ~ ~ ~ 2,E n Jl-IjlnIlJ L3M ~ UL$Ui U fuLi~ ~ U m ~ m m y ~ ~ d a u r33 17 $, u: 3. 1 QaIus = 60 ~d74 qu a %itdlR 4x 15 = :. 3 $aTud = 180 u i i q8l. b jjflw~3x15 = 45. lu I80 u i i (3 3aTus) Tss~udi~ufih" yu c huim 5x15 = 75' 180 x 4 0 = 7,200 dl /
zii
a
a
dhDJb&mO1o i~~~ ( ~ a t i omemad)
?3ni5~~iiil~ifi#g~da~T(il~~~~l~? ~ 7 u ' P I o J L & ~ ~ ~ ~ l ~ ~ J i n L L ~ j B O n n l u ~6m~idaudi?uduaaJ'1~liiuu~ud~~['1~dau~$aKa~~['1 MM~~ DDJLR'~J?U ( x ) ~$u~a'y~%=nuii h a d x m m u u n n m i u l n d a u d d i ~ u 6~ 1l ~3 ~P ed s z ~ i i d ?A ~LLB: ?R B ~ u r & u d ~ ~ d a u ? ~ M ' a o d ~~~ums~011~['1~daun"~~~~~~iaudiuaub~ au . s r m h u ~ a ~ r ~ uAB m s~nutidniu~udiumu~n'Iu ~ h o i i s ~ d ~ssfiuvu'r~i~d~uw'~u'il~o~A u 200 M ~ I AP uwzdiuau$ao~3~b~muiau PB sl"~si~j7ur~mtdr3i3u 514 ~sdfluvu'qdu&~i~~u*i6i~d~a11 (3 + 2) d7u d7~3w~ihfl7g A / P 3% (To divide a line in a given ratio)
~e gn"uj"7uSir h7d7l.l 3 :2
-+.
3
4iuauwu"i"11o~nisfiuu 3 $ a h rfIu~(ildau bum.jsn"119' i uauwu"idirm"Iu 5 uifi 6i?m P o ~ d a u d d a o o n l k l o ~ d ? ~ d " ~ ~ a d b ~ m ~ d 180 U I ~ (3 &) AB (do AB BA) n l ~ ~ ~ d L ~ u ~ L ~ u n ~ l ~ Ifi a uX~~tu<iuaum~iC(iluWau a3 rflums~~n~deisniuuon bi7dau~~srno~6msidauuin 1L = 2 0 0 niid?uflam 9~ P f ti 9~ B u i n n i i 9~ A ~ s z 180 5 9R P V ~ ~ ~ U U ~ ~ U % O JAB L &dd000nIi UAN 1
a h -
j . 8 6 ~ A ,= 1 8 0 ~
w
a
3 dm d~u~wrhw ABs gnu& ~ drnusnvmgm57dy 3 :2 u?nnd7 &uu vuuonr&$m~7rJ'?u3 :2 p P i'nIjp B 1hd?~ddamo~6imd?~dmmn~(il Ph Bpm A mnn ' il B rurahdapd~m~8pdmsd BA d?oaan\i
-
d P
5
180x
x
=
x
=36000 5
x
o rile,%
- 3 dm
-
=
7,200
m"~ Ta~Cu~aiuis~fiu&A h 7,200 di .(u /
3 &aTsw
d3tl%#6&#~ AB gnuhuu~ni'u$~md3u2 :3
*
loon
17 (rfl~si?ud~vhtYu):Y I ~ I Q U ?anfliluu U. 19; ~VIS~-JUAW 25: LW ( ~ ~ ~ ~ u d t17; i vh~nr k ) Wnrlflumrr 25: h w h u 24
In
17:
~IB~~~~RL~~I~~cLBU'LJ~B~
(Percentages)
8
%"oua::~$lu3ddd"11osn75~~amd~~a133dau~!ower~u~~d~9~ dau"~~oir%"au ~daj~"11u6 WBSIU~~IBS~I"%u~~iat5ou" Kaodid b"lj 10 ~E]D'%.%u~ (10%)
fraction or decimal to a percentage)
express one quantity as a pemmtage of another)
!m~w~dauw3owwQuudiau100 rdu 3 = ( 3 XlOO)%
wid3uimd~~aud3~i~dn~j5~1mwd~uargm wa8ridAau loo
4
4
=
%era:
300% = 75% 4
d
r
A x 100% =*ad B
a
i
m (To find an original
q 1-
m~el3uim~wsi~6au50ua:: M (I 1 % nod ~ a ~ i d b b h %r ~) B ~ m f i a100 e (mdhmi'wua) percentage to a fraction) duur9prwwQuu%hid wi$ouarhau 1 00 ~~Bav?i~w'1~daulGdu mnl5uim~~si~fiau3ouar ~w~-sjauoeii~pigi~~i~v::~~~~d~A ~i;liiidunii%wsxi%m& (reverse percentages) b d d d a s a t h m (To change a
~du60%
=
60
=
snldmWasa:h&u
(To change a percentage to a decimal)
~1430uarAau 100 1 4 ~60% = 0.6 5.2% =0.052
I
1
~
r
n
~
r (TOfind n a b
~
percentage of a known qwntity)
ii3ouarlGrfiu~wwirn(i&d ua:gonhuJhnol rd~m3ouadrran~1a"rhwwQuur~a::~m6aufiuim
Internet links ~~odfous::'1dI~tn' www.usbom4quicklinkS.com
1
--. *
, - .
;
I
M
C
~
r
int-J4
a
-
s
k
Y .
~ o n ~ u=u
Lib
n
p
k
=- 1
..-
Xl&x
P Lhl5orhJ R ~h8maon~d (i8~h3oua::) u T ~ h ~ a (imrhg) rn
m~~uaw& Ij,sw = p+
d m d 1 Lh72aJLbw 5QO x 1.05 L l d (cjuoiu x Qnl)
P X R X T 100
krohariu qfifia@daaqu m i l a d l h ~ o n ~ 8 u f l eronrd~~jiruma::il~hrh 20 dau6
4% f
Lrn::jl
CTo-canpould-(Lorrg~l
Id&a~nnn~&ufi s d m o n ~ f i u r & m
u4ia:il&?Yt4~hau1rni~hrhPiusfm~8io1d r i 7 a h ~ ~ r itYnpandJm,u u NO d m 6 non~ih . d m vwP(udb9¶13aun:: 4 oid 4clwauGu'Lud~uror~ r~rjluil~ 520 hd m 6 (500 x 1.04)I u M a o ~ ~ l o n ~ f i a ~ : : P ~ D J A ' I u ~ ~ ~ ~ I ~ L ~ ~ ' ~sm u ~ dou6 u ' ~ Y (nw I~~E~~ R ~ 500 U dou6 ¶aukmon~du$a~a::4)
hod 1
r5uswrh
~svnfUfl(Geometry)
+d1m9
(Collinear)
I Y
mu
hWm (Transversal)
*
fmku'w
(Plane or plane figure)
5mrjno~iji#d ~nuuia~~a::naiunS"~~
L~~R~~~~BL~U~RSJIDJL
~3ouinniiaodr&u l&~l%fl83 &m (Coplanar) U M (Horizontal) l E d & r o~h i u i i ? ~ ~ iEnid&roLi~~~~umz~~~osrui~d~o Biidq ~o~ulds::ui~~iuafiu luumamia*qu 90' fiYk~?td
A
u m h u m h (vertical) ?3nid~h:o~muii~hms~w3osrui~i~ u 90' hLL~2pdâ&#x201A;ŹIld
m r ~ (Solid) h
kqaiu9i$ali~awuianiun5ii1u s l r ~ a i ~ m i mdm (Parallel) ? ~ n i d d ~ ~ ~ h i ~ ~ i ~ % ~ ' Pw% I~L&~~~~didq
~hlh~rzjwufiu \rjiwrdooan11 ag?u!iu~z:&u ~ & I d ? a
<
uu7h ~nmr1~~~41uw !Iu ~rn~z-fn%nmr&~:~@~
I
&1ihr5~~~1n'7n'~~dp1~~~1) LLR:T:?~&
L ~ O S ~ M ? ~
T "
F
s w A n ' ~ d a Q u (Cartesian u coordinate
Q p A (Quadrant)
u%amdu3nnfim7$ads:nau$uImuunu X
system)
~fuifungi
uu7uau
1
-=.:I-
7
~1~3~O~fifl~~~~ilnid~:al9~(il?(ild~ Ill 1-11 _ , _J-L . _ , ,< .- - , ~-< ;T di~~~aaa?m~~dauu~4um~a~3adauaaa .. .. u4umrsmuirno~uiul~(ilufiflm~n"mda cu:miuunu x 'bhiagaiamg(ilh~C(il~9uuan ~anul~,alu41rfiumLgu~JL9u~9~4 mxr:u:miuLmu x ~dnidimmgn6iri3m~9uau 3:u:wu i bLnu Y ~ndo~mdi~tmduuan
~h
I
I-
%
- 8
.
I , 1 1
,
8 -
f
'1
1
-4
-
Y
(Cartesian coordinates) firinao~gm( x y) ~tuafldlLLfim~(ilgmda1u
fin'daBplpd
pltiaa%:umngsl6~~h Gn'maa x ~~tda:ur~aag(il~ingm61~CmauiuCu LLnZd X Mmaa y ~~u%:ur~aa?m~~n~(iln"~~Cm~u~uiiu sbnu Y 41% x q:duuriau~auo
a
p~~?~~ihmra~'uBaijaiuu'i
Internet links ~ D J L S P I ' I A ~'Lfi1fln' W www.usbomequicklinks.com
x
'ru (Angles) I
y~~~nou6~u~biuan~~iudY ~u ~ ~f idu[ dA3Y~~3u~~ n y ~d ~~4 u d d ~d~ougslgflnifJ ~ d ~ d i i ~ ~ ~ r i ~ S i h r m n i s " unimyuIdd nd~n~~u~d~ k~fluo~m ( * ) iyuwaiujdi~uud ~ ~ i u a u i ~ ~ n ~ y u
I
-4-
i ~ ~ ~ i(Null l f langle l or zero angle)
nysn~~l (Whole turn, MI turn, round angk
-
quImq b i i n n d n n i i yuain (90') r~d~vuimdn niiyussad (180째)
I
angle)
1%
Mi;"~Iu&uni5nVm~ 90' ei?uva~~&ussad$~uiw~
rr3ir$u"&?n $IA~~LWZKU
8psrss ISrai-aM angle or fbt angle)
vum (Acute angle) yuImq i ~ b i n n 4 i d ~ y w i n A
(90 *
-
I D
v-
\
~~mi&aauflu~4uui~rn
ofusw (Neg*
wlw
I
*1&*
tl?iwpm(-looe)
ya~yddda~i~w?a~rn
'Lfltld
Internet links ~ O J L ~ I R ( ~ ~ W ~."~borne-quicklinks.com
w u ~ d u ~ l n l (Regular nt polygon) $ ~ w w L (Equiangular ~ ~ o polygon) ~ L ~ ~naiudu~~wsd"d~iyuniutun"~~ulil ~naiusbiuud~ilh~~n~7~~~a::quynyu (equiangular) h uarhm ~dirhr$naiuduuyu~di~dwd9~dBi~flu1~~i~viifiu~ f l u v b ~ (equilateral) ei~~dd~hc~"aotiu~1~w'70dimo~
hmtk
$ # m ~ l m d u u ~ r n ~(Convex ?d polygon) ~naiueb~~jj,im~~~dnuIu~~eiazy~ h u n i i 180" ybln~u?u~nyu?uj" nn.lurnn'm fi~ur7m' rflu q.urrn~wmo~u (iTounj7 is0 1
L
pJwimuLwion.h (concave polygon) d d u
$ ~ ~ ~ L ~ ~ ~ J d ~ ~ i r p NM%Q l i l ~ ~ ~ l ~ ~ ~ M u " G ~
u i n n i i ~ d ~ y-,. u ~ u i n 4 w180' nii a~"Dun'qB1yun7u~u H~"J~U?U~~~WR?L/LN~LIU~.I~
r8uyun$u (h~wlrnn-i? I80 *)
Internet links L ~ D J ~ ~LLlzVlwh ~ I J lfildd www.usbome-auicklinks.com
IMI~I~ (Tessellation) U r n a ~ ~ a ~ & d u n i 5 @ ~ ~ " 1 1kd~~dnddn30 ~d~elfid
1
naiu ~ l i i a ~ d a ifiU i ~I hI Y~Y ~ L ~ : : A ~ B V I I ~ ~ ~ " W ~ ~
S
&~~pd~~~il~~dgd~d.d19a~ilq ~ O L M ~ O N ~ I ~~UdOj iI d
imama&n6 (Regular tessellation) ~vla~~s~~~.~w'i~uhu~~~~wu"~"ua~ Iinaiutnbumtn3~vii6u
.@s'7J
l/?~u'1113,'!775'%7 1 .
9:-
m n k u(Triangles)
.-
l r 3
il,
~ n h $ d ~ ~ 9 u $ n 1 1 u ~ w d u u k f i ~ f a ~ adaiueduuriigq'a?4~:<1nunonnrnm(l aiuyuua:ii6iuiuiu ii7~1~1m1~~o~quu1taoqu ~ i ~ d i ado7~ ~ ~ a i u ~ nyuua:k~8~7 dtiu huam I ~ m u l i i cpt~mihi%n%auw:m3nd8 w ~JCDIL~~UUWZIU $mu~nduuflig~ n i s d i ~ m n ~ f l ~ u ~ m ~@cubangled um triangle) p~a~u~wduujhdd ~ p r m &~ dl m~ $ d ~ ~ ~ u ~ f l ~
+ub~wauuunm 'UUI~ msyufiounii 90'
1 1
p,uLMdHuy&u biagle,
(Obtuse-angid
~ ~ ~ r n u ~ ~ L ~uniutqa~wd~~fIw ~ps&'d~il~ yufllu ~u~~omr1fluodyuumnl.1 90'
yawnJwh'Irilrh (-ne
Triangle)
J
flauradeu$d~ lufl[~?ul'~n"~%1~d~if7uu" ddliiuhuq i i ~ a i y ~ a a %u7mu7nni7 i7 * umnd~gn'Pluaryuw"daiu lus1lni~~nn"~u8~ul'u'in'i h b Sh.~u~~umnriwiiid sXnrid7u a nazhu b ~ n u ~ w d u u ~ i u ~ i ~;,67u v i i ~ a jP)77uU77 u g~a~arnduuyu~~n~?u rierneil~flu $lnu~df~uuurrm(Right angled triangle)
- A
~aluLndw~&~wlU~~~g
(Right-angled triangle)
ha pain Iiui% 90' quinaowu~fIq~~:nou &quain hmuAnuin!&gws~uiiirl~ we
$a~Lwdu*~dii 61u~hrhrao~dhuyu(;od rrr&~u&~u~d~th~ud~vi~ iiir ~soscdesL&ICIWI+~
I
rsr/n7urnn"u%1~~7n
u'nm?w'1m (fin9~ jm
(peek) M W M U A ~ I3 1 w"mmuLvi7w (equal legs)
~
~~T~IT[J)
yaaLwimwm - s&h@d?~ivfud7& x u w q w y hu?~rn? I
~ L A nuJ 6 7 ~a ~ m f i u b~ m u ~ r n u d u d u o o n ~ h~ t i ~ c i ~ a ~ u ~ w d ~ m i n a ~ ~ ~ Lvi7riiryw:m
-
~
L
~mu&knr~m (Equilateral triangle) d
4"
$mLwdumuerm ~riibiUBi7uyu~da::@ m1n60e
Internet links L ~ O J ~ UPYISJ~U ~ ~ I J .(Shd www.usbome-quicklinks.0om
b
-
-
-
M I
, 1
I
7 -
JLI+IJ figfl w z n 1 ~ 5 1
(More Triangles) ~ h ~ h q (nc om ng~aa hienglas)
QWI-
jda~uduui~d1#~~2d~~~~~~~u~u~~: is?l~ul%osAluLfilflu $aiurn&ua~~*~u~nds:nisBi3d ~ I U L M Q ~ N ~ ~ P ] E I ~ ~ ~ ~ ~ ~ ~ : : O ~ I ~ ~ D ' ~ ~ ~ ~ "
h h h [ S i H m i d e (ass)] Blildilumuildinrum$~luLwf~ U ~ d
~ p i l f f J h
ai~Ailr~o;n~aiu~~bufln~d~~~iu~nduuamp ' .3 VU .
&mhfiudwnd%zn1%
ptdbdo~m (PmIIelogram) d d sr.
$hnduuad~umuunw~~~i~iufi~~~a:: murna~riirlu~ ~ ~ ~ d u u A i u ? ~ u i u l a i i i ~ ~ u n u ~~~riiauuims"~ro~ni~ 2 ~iiitioun~hfiAn yu~~didi~
~ddmduuympliwdu~~uq~a~~arpd~wduu m~ubfl~lendu &~~~~LLu'u~'LP[~o\~~~J~L +um*m~Alnrs'.u & ~ u V U ~ U Llu'fl+$I?@l M'~~~ iifuyu07n
II
a
I
f i ~ i m a l m y(Rhombus)
j
L~:~~ws&Iu~mria~viirhryhduwuu~flun ~uiic~uauanmnmb8u~~az ~AIUUI-XV~I~~~
*?or*)
p ~ d ~ m u a ~ ~ ~ u
pmcave quadrilateral) d
h
d~~~a~$h~pdfiaqdidMu"il i~~I~~mlwaJInnh 180' L l d L h 1 8 1 ~ m ~b 9 h
'loj5ap1mmmrn~ Intmet links daJ@jlJ UB:~ÂśJ~U
~ f l h dwww.usbomeguicklinks.com
1
I
- 4 r l i 7 ~~
3 rrnzn.n?s3ii ~ 5
>
# .
1
nsdu (Solids) m % h b f l p d a " m ~ ~ ~(three-dimensional) ~lu~ w ~ ~ ~ u ~ I ~ ~ ~ ~ ~i!W39shl I ~ M ~ ~ " I NlflNlU b$pd M % ~ H ~ I U W ~M59flQ.N I M3dfl3E¶J0fllb8Efl3aU d d d l ~ ~ ~ 6b~ aN ~~~ 2l 1~0 9 ~ 3 9 M 8 1 U ~fiidda~uididi19d
m m w 7 d (Poiyhedron) v
5 X d~
M ~ ~ R w I w u I I H ? L ~ ~ u ~ ~$by11~61 L~~u~~I~~
h 7 ~wiitfu~unii wSi? (faces) uax~du6wq & m ~ M ~ n&di (edges) i qd9.AziiBii9q nudiw3ouinnii~iu'~1diw~n'u ~3un11jauom
(Platonic solids)
Aurvi?
n3aWmdhhn6 (Semi-regular palvhedronl
(Dihedral angle)
yud&znoumulunu w a l m w lL b j ; ~ ~ ~ € l ~ M u ' l ~ l
v r m m d r ) i 7 (Concave
A
bwnJih(Plan) d d r ~ ~ ~ ~ I ~ I ~ w \ ~ w ~ ~ ~ ~ ~ I u L ' Yaatiiguwid"am I ~ u B ~ L L ~ : ~ . I ~ u ~h$mu~duubsnwdua(9 (apex)Bma&:i~ WS~~~U&U~~I~~UDPI $ ~ C ~ m a 5 3 ~ % m i 3 : i & ~ 3 ~ ~ ~uuh @ b~lrn4 mub~f nwh q h~3:ddu~h%:ililr~nrii (regular p m i d ) i &u'~p L y w u (Elevation) ilU6NtJUU a a ~ 9 h r n n ~ a i u # ~ u e ~ ( ~ ~ (ap4u min&7~di 67uM61) da6iu%i4(qu~~ubi?u%i~) &iuwU'i~flu
M F I (Pyramid)
4-
1
*?n3?u
dmia:Cimymin ~hfk:Sa ~~nmw44+"inma?~ lJa4siu
h d % ~ l ( 9
v~sdg~~duu
6zrSL.7
-
-U r n
ihugddp19 (Slant height)
-M A
=-p)
(Plane
~1mass:uiud~:n~ ~1(9un13w"(iloj7uw34iu Ayu'tlaq 1
IR%%BIU~N~J'~JJ$ n~;rdNrJ'u~~7nu"~ pw~nfiwthp W r J ; d ~ h h h 3 w s n m % i (cross -1 lu*ywindi d h a m i m B i ~ u m K u,*& ~ i y w i n f i M&~R 21u Ilfl(l~% 6w=3lujh d* ddN15'UM@$ "1109M4WUUlAS"llfllWF ywin~hpm~ y m n(rotation symmetry) bwduudniww&u ~ h W n i &nii uam6~(hstturn)
,
Internet links d o ~ ~ d iLL~%%X%U I$ ldldd ~~VJ.USbQme-q~i~kcinks.COm
(. ,-.
L
.
+.i, . b-.
cfi.
)-
n
-(
p/$i\r
1/Qj uazn7s-5~
>
-
. p
,!, ., fluuMlS (Syrnmetty) 6"' -.
wol%npl%m
.
ay":n ,; l * P % _ i -
8 , '
8
I
'.
C I
-
. : I
I.
. .
1.
I
-_ . 1 . t .
reflective symmetry or line s y r n m ) ~ 3
f6rder of roZation (al)
1-
m
m
(bne of symmetry or
m i m line)
% p-l Y
(Plane of symmetry)
1
I*.'
8
(RMectjon symmetry,
nlsauulas WU U I?~ ~ n ~ . b 1 4 9 ~ 0 oon~~uao~dau'b@u~&wd~~&w'rosmi~l ~i:da'~dq~q+~dum~:$~T~~y%:91 -,,/
-.
I
s j m w ~ n i u h n i m y u s m360' W"j7d
8n
I
i
C~~SII&D(Transformation) ~ u m ~ ~ l ~ ~ ~ f l I 3 L L f bddflpd61 l 1 9 D l bbMd9 Q ~ 44d
~ R ~ ~ ~ ~ ~ D ~ ~ ~ u bdhr ~ , " P ~
o
3 : : ~ d l ~ l ~ ~ ~ ~ 4 s ~ 1 % ~ ~ ~ ~ l ~ ~ l ~ Tflr) ~ ~ d(object) ~ ~ ~ 1 LLa~flaS(~fiR$~fiUrrj1 3 b b f l f l 9 b " %mw ~~~1 (image) nrn~dw~fluWd~<nn"pd~bI~mn13ddio (mapping) ~ l & d d \ d ~ b l ~ ~ ~l@hq d ~ u uu ~ i ~ d & ~ D s ~ 7 % 5 1 3 ~ 9 , "$~iao~19bh ~ 3 7 ~ 1 ' b 6daod"p~fNb~~fl39 A B d4&~d$9 A'B'
m'mp m1~ ~ U r ~ & " ~ ~ ~ ~ w l i f d M ~ ~ l ~
mwd~ARihrfi~9~m~~~u~~u~n~mw~fimM (mtre of rotation) &L&U (axis of rotation) Ifd
b~n'~la'~q~~~ua::unmim~iufi~ui~b~a::qu
~ o ~ n l ~ I ~ f i ~ ~ b ~ l n ' ~ ~ l ~ ~ ~ d ~
ii?rh~mo~i~~~~dpiw~u~~at:quhriir
f l l m 5 h (R4eclion) mnud~~~m~~91'a::~mgnd~~du"qrnAnu~uKd sru::vhd~hn'uuarn'iqu 90' C'~4ua::fiou ( m i m line) 6ia'wqbisusrui~~~uans::~m::b~u~Bu 6ia'nq
~isuns~rnufi3 ~~u?nszsnsr~hsruimuim~~arqu
A
-
q~a'm~~~un~lqmmmmyu (angle of rotation) h q m o i l n i a w ~ ~ ~ ~ m u ~4m1Rrnnhi7
Internet links I
L+DJIUUIM?
L L A ~ ~ I ~ U ~www.wbome-quicklinks.com ~ J
~ ~ r n w d (Glide r n reflection)
mmer (Enlargement)
mn~daa~~uldmi~~'api~eldm$iim~ r n ~ ~ ~ d a ~ ~ p l q d u d a ~ d d u u ~ ~ ~ ~ d i u n i
Qq m ~ ~ u i u ~ 5 u n~1un.ji n i n , auw~~~a~rw"mhu~~~rw"ou~uiuiiun7"s~d ypfinm?~"~odrnmuiu (Centre of enlargement) mu8uauiauazymniwbnfiou~u~ui~bba~Y~I ~ d n ~ n i u ~ u u u o r n ~ o o ~ u ~ n 5 w ~ u i a ~ aaoJI.q ~ ~ 9 qu~h ni w n a h m b ~ B uuazdduudk ~i I auiuoon~%unii 8arla:nouaimmdaM ( d e kictor or linear scale factor)
Image
@&her(Similar figures)
~@~iw~iimh~~~iw~~Cpln~kk Q~i,w~ia~w'a~nunimuiu
OA' = 3 OB' = 3 03 = 3 OD' = 3 OE' = 3
x OA x OB x OC x OD x OE
A'B' B'C' C'D' D'E' E'A'
= 3 x AB =
3 x BC
= 3 x CD =
3 x DE
= 3 x EA
o ~8u?rnguu'nam~~n7mu7u J
I
pkymrn (Conguent figures)
5~pl~fi~iiaua~nri~~~uan'usa&~~~
6ibBuKad~rnoummidauaf1 (negative scale factor) 3afufina79"11~9~
~uiwro~~rdia?"Cplq~~arrnw
nsrsn ni~wrflounis~~awuiub~azmm~~sdw'il째~i
1
'
onf=-2
XOA OBI=-2x06 m'=-2xoc
'i%q ABC YO?UMT%$ &dsznwmm7dau
o ri7upnguu'nm~
r/,,
-2iw"&:r5%,Ydnw
5YmnmLI7u
h n m dJ*drjm;4.1q5 m m 1. factor)
b$2--*id.? n-T,.
A&rnow~midau~~h~w'~~dauo&rdi~ -1 : : iiu 1 rn~dbii A h l R b i f ,
1
n7w A.; riruwmin'mwn M z n ~ u u7mdm $ da5iq ABC
i _
F; ,
m d (vectors) baill m E 1 f ~ ~ p d f i ~ ~ l ~ ~&'Ul dO~~uId&d' T I Ol b~ ~ (1~f~i ~ ~ 1 9
A
ni$iiuCf (Displacement) ~ h n i w J ~ u u~d6 ~i 8 a o i w B u d ~ ~0~d3s.~7m,n~,f
Ysnx
nnr~~~M'R~uu&~qo'u ~ ~ ~ u ~ u ~ ' m * r o 7 ~ w
~ ~ C f d i s . ~ i ~ ~ ( i l d ~ ~ ~ d b h m ~ ~ b ' J ( i l d ' J s$4. ~ ~ ~ ~ ~ i u " ~ i~h~mdsb~a~ nd m ~srht (da l ~ f s wn A IrhnJn'~~n~Yiir~on
a i u 1 5 a b ~n~4fi~lfis.Jimban~~a&~s.Jm ~~~M~ (vector notation)
L ~ E N L3 ~flnu~ws B
'~~w~Fww~M'(~agnitudeof a vector)
G d i ~ qr~amkman~fiai ~anrfiof&dg~~a~a'b(~u ~wmrnranbndY ~ I ( A ~ M s ~ I ~ ~ ~ s : : u : : Y ~ ~ J rnn~&u&@(directed line) & ~ h a d u d W a g n ~ ~ &fiqhMw"~~nhi'Inlr m i w a ~a drnrumrihu l a1 ah$u9::uamaui(9"~m~an~nafr~a::~n~&~m n n u u i ~ a ~ ~ a n r ~ ~ f f l i ~ ~inunu irnm~u
U"
x
nnrndr4mlmmu AB ~ $ 3 0 UlW:: duu~wu'aua (w'?gu$) 2 (filbfl~ muu'o)
C
!
ena"llos~an~fio%in~::u~~~~aul~niur~nu x LL~::
~ 6 ~ : : n m r h p a i u ~ ~ d u u y& uIa ~ n ~anrfisT7iffoh~~~aiiiuyuain (iiuuiadm) rr6dd ( $ + b2 = c2) a~bmAa7u nqwJ'um&n% en~~diiu~sdiuyuain UM Y
I "" Y
ransnafL4mlmw DC W% 66 e]799:: ~ d w ~ ~ ial (aW uU3fiA) -5 -2(filL.9~ mu&)
rii?aeiisL ~ ~ S M T P ~ W B x : 1x1 =
1x1 = 1x1 =
aan~na3a7~~::dendr9u~anafiafn~a'~dqu$r'u (;)
1x1
= Ixl =
J2-X
JGF J9+18
& 5
~urm x ~ i 0 d ~ d ~ @ i ~ ~ ~ b 6s ~ 'ld~i~~~~0~dh~i~~~ a n d r m h (Equal vectors) rsnu Y ~anrmo%~huiar3uan"ur~a::i~~wr~uafiu ni~~ndau#u~a::l11miaai~i~2d~anni~~n~auda~
Internet links
d~~~?nrmoi t f i ~ dwww.usbomequicklinks.com
IH,
(Arithmetic with
pan&mC
(To muItiply a vector by
vectors)
gmn~mo~&ua~nm~dd~i~~?~d~ ni3Qmamnai~ (Scalar multiplication) ran~moin;J~m
K'~nran~es~~bM u ~ n r ~ n r r n ~ ~ & ~ ~ ~ n r r n & ~ ~ f i ~ u ~ n ~ ~ r~f 6s ~ vu 3 p~r r 1~~ ~ ? ~c ( n 7 ~ r I m f i n 7 ~ ~ ? 1 1 r B m f i n ~ n S n w ~ ~ ~ ~ ~ $ swith ~ n r r nvectors) afh
~ ~ (Geometry aui~~~n~~l
' ~ I / ~ N ~ M S B ~ W M S Y ? ~ U ~ Z ~ ~ ~ S ~ ~ ~ R ~ ~ ~ ~ n7mn (Comm&&e and ascciafhfe laws of a d d h ) a+b=b+a
.d u~lwniopnusrpm~inr (cornpasse. or a pair ~ p l n s t n s ~ m n a o 1 ~ u a (To s ~ draw 3 ~ an arc -.
:
of ~ p a s s e s )
-.'- r>r circkc with coml>asses)
m ~ m ~ r n ~ ~ d ~ i ~ ~ ~ ~ ~I-.~- i ~~3glluufiafinhdQor~a::dau3n ~ a ~ n ~ ~ ~ w ' r oq uda daAmrmiu u ~ ~ ~~'I$nr3ru:~in'b~u3%~"mdon3zmi'13~~o~lnda~dMd'~ ' t4sJuiRni a i n ~ B u ~ 6 ~ ~ ' r o a ~ n a ~ ~ s ' i mii. ~~ r~~nm~~ ~ a ~ m m i m ~ ~ ~ m i w ~ s a ~ ~ a ' ~ u Q nmoi am ~ rdl u~u~&Ba m ~~~o~w" daiudiua m n d ~ ~ d ~ u n o w ~ o ~ ~4nnrnlJ~augn vi~mzka uwau~u~~'I$~~urWou~w"d~~u~~uld~~uy L.
bYwsuuwmd
(rnctor)
~g~~o~ww"~ddi~ni~mdo~%~~
n3::mi~Tmmln~~u"L~~~mn~84o~'3::~~.b~'In~~a::rrvu r i f i u f i ~ ~ a ~ n a m ' r o ~ ~ n a ~ u o n odaiu ~wi'b~~ou~ ~ d b i m ~ ~ u l u " L w s u m ~::(R'o~oiunrna n~~o4 .. 6~6uwngJ~nuo
(rlrJ?rluniw)
mIh~30f0d (Using compasses) ri~1'I~r~m~~az~'Iw"~~u'I~iidm~r~wa%~4~o~ a~duu~~u~arnu8unon::kak~a~~?eru@mguh bssM'hr~fiams7il~?eru~)on (~~mr~qud5'u) m ~uns:Gfiunonwld b ~ t wuhsn'm md6mm
Internet links rjo~suuin'lrr~~n15utlad 'td111dw.usbomequicWinks.com
L
h r i k J d u w 1 7(Useful ~ ~ construction terms)
dauambhmq
A
1.5 mi. P 1.5 mi.
B
.
~unmUglI~qz~A1~97q(i\p A B. c, E un: F u7:u:dwq7npn P iri71-5~ dmmr~lSum=id~yls~~~vi~riir
rmthhgu (Basic constructions)
~ W & W (TO comet ~ aL perpendiwlar bisector)
* ddmld
r
U
9
L
9
.
.
&
(To constmct a perpendicular line
a~idr4u~b~~~~au:W"~iain~udauao~b4u~1~ through a wlhdar point) &L~FI&J~I~ 1.
ah~4uW"da?nmmghdili7u~m ~\dk~ainti"daup~o~
niiras~%uu?~iaiiu~%~mm~aiuuimo~dau bthmsd AB &~~t4(il~1ild7il aod~Bums%mua7~?mflaiuaoda~b?up1&m A
I . ms?mnlaiur~wam.lrain~~?enr#pm P a7ndaubhfim
* yu 3n:dnilt 47 (L~uu~?u'~~/J); u v u m q u 32 (Ju~uiu):~ 5 u 47: u yuniu'lu 37 (yu'lu3daiu~nduu);~ ? U % O J L ~ ~ U30: ~ I Jbin, ga 30; lu'lw1unsnrma5 47; yuain 32: geuom 34 (pinriurnduu)
I
L
i
(Constnrcting triangles)
Y
szlqkmJLd+k w n u m b u h
mA
\
B &
10 m.
B
A
10 far.
B
A
JQ W,
rh?Bopiiiw%au' 4. a7nr&rhu Z MU'E ~ ~ f ? r i i r a n u mr v~i ?~fdi f i 7 w m & d (ti71~hs'/~~urvd~1~&?~6 ~ m u ~ ? w ' ~ ~ ~ ~ ~ d aniwldti)~NS~uuh~mr uT~mr i'w'nmiuuu~~nuu~?rvi~ xnnu xnnuhd7uThr~n&ff c AB)
I. mnn'?umutluw5~~&wr7'~ 2 ?I7 A rfiu?npu'nn~~s'flu"3.717 B
laXu"anq310 m. i7mn @+mr
A
* dd~~aii1m~~fl~i;uan"'i~$a1ub~duudd~xi~~~9~~i9~w"1~fl1~1d$a1ub~duu61(19~d~~0d Dl9~aD96l.lwo'iJ #d~Undln%&m~ai(ambiguous case)
6aaoei.I~a519~1Iaiurwduolii AB = 7.5 "Ha. AC =" 5 "1IU.
Lrazyu ABC = 50
\ r25 Sm
\
h
A I
5 -"' ,--
A
-
Z5
vu.
LB
(To consauct a regular polygon)
liaaimi-u a ~ ~ ~ ~ d u ~ n f i u ~ i m m a r p (l54l.0~')~ ~ f ~ l s l ~ ~ l u ~ u ~ ~ u ~ ~ ~ ~ us:lWqumqto~yrruria:yr $ ~ I I , ' Y I (I ~08'u) ~
B
l3
Id%L ~ A I W M ~ % ~Q~QY~SJIU% J ~ Q b?USrn~d?flsihl~ fh a n m ~ s i o ~ i ~ u d ou~hoiq~ihnwiu utu Aofibaawd" Q
~
~
~
d
~
~
~
l
~
~
~
~
l
d
b
b
~
~
~
~
~
~
~
l
Ia~mhnl~i~a~~~~w~~iu~m~~nw~i~rngl~t~&mquu'nm~ ~osadna~~bar~flhmadn6385~tuia~iifidadb~"U.uu rhuna&~u' 10 ms ur~,ru1r&gwprli,fl?~ (Compound loci)
from a fbred point)
'bea*~
.' P
(Locus from d d
%&mm9mmmm::a:h d
+
,.a â&#x20AC;&#x2DC;
. . .
,
~%m~lr~m~d4aona~o~~]inn~iwi;"9dou1'~ ~domnIa1~s:nm: 1. ainIfi4&id~vi7~~m~i~:~]m~1a'a~huii~~:1~ 2. 1 d ~ e l w : ~ ~ ~ 3 " u u a f i ~ w i w q l i l ~ i u ahw~hw"6'1dimt-13 3. L ~ ~ u u ~ ~ I LL ~~I ~U L ~~ ~U FU I ~ ~ W ~ ~ E ] O ~ ~
%m~su~aarhu~vi7h:vii'b 4. a:mu~sisdau~a~~w~~~~a~wfi1mK'i~dm~"
*.
@ ~dih91ngelmaoqlil+o du k i n u a r h ~ 9 a ~ & h n ~ 8 a $a ~ 7UU~~PXAP:~" %u,*??w P ~ : M a o d u
rrflqw Q tn'in'u
%
h (bcw from ~ a line) T a k a a o ~ s m ~ ~ d 9 i ~ : u : hd4iilhn n d u
3 d"
~JMX]~U~:YP~I~~~~'ULLI~JE~~
uamou~~aqndm1'~1~~a::vii~u~~~ 4i&ddh1X]a4 Aoei.1~ ~duYW P ba:glil Q o@mfiu 3 ~ ~ G W ~ J W S wmgeldo@imingn P 0a"oun-h 2 L ~ R L U ~ J%qn WT Q ~ n d i g fpi
&ayan~n
,
d ri'
~ ~ J L ~ w M ~ ~ ~ ~ ~ L E ~ . u " ~ I M ~ P ~ ~ ~ L ~ u .i?j~n~41 L L ~ ~ mpmw7 ~ L ~ u P-zBz : ~ ~ I ~
m n ~ h ~ l u ~ h 5 du u~miriir r
*:-
I"-- * ?m .
IL
u
Q-3
~ " ~ u n2iL'IIU~IURS ? ~lnyn &unwk3 2 ~ ' m r 6 6 ~ mdQdm@n#p Q annn-h P
' rniuun~fi&s\~ta'u
.
PP I ~ ~ ~ & ? ~ ~ ~ c J Z ~ ~ W P ) + J
hw
'
~ ~ ~ ~ i&uwhtrhirrr~ak
~
~
,
~
m
~
f
i
5
~
~
(I.ocus
from Memeding Ii)
b6a~yqd~&o~~minsd7~1'uo~bhma~ ao~~lhrfi~fiu bhT:u3l% LV~~KUSJ:: L ~ L ~ ~ ! u U ~ A ~ ~
~ U
-X.~LM~KB~~;-U
$'w7 w ~ a g r n : f i : ~ i h & f w ( ? u M ~ ~ 5 ~ & , Wwsin 6A UE dB riir-dqm nm&dw'wn"uuwm,rkznd intem~trtnb
do~Ta1~ 'IfiI11dw . u s ~ o r n ~ q u i c ~ i k ~ . m '
'
-"
..
IL": f31 -&&iuwuf '
-
,
4-
.r
,
LCr2-
rns-fi
(Drawing to Scale)
I,,
,"
I
I n t m d links ~ O J ~ I ~ ~ % W UIfill& I ~ Iwww.wborne-quicklinks.com ~ ~ U
d
~
n
m (Making a scale drawin
hh(Example) d rr kP) % u ~ ~ ~ d d m b ; s u ~ u ~ ~ d n u d u ~ l o w u d i~i n~~lb~nw~id~ daiuws:"ii~nds as:fiufiq?dTm16 10 bums x 20 buns as:ro~dn8$iiuahua~~nd~"~1o~~dnn1,n~uu r i a : n a ~ u u i a ~ ~ ~ ~ i d a : ~ i u " ~ ~ ~ ~ ~ d5 nbums ni~duu~Bu c
I,
%h&~r;f~~ds81a& (Area of a rectangle) nii~%rn$~~n&uiod~i Pd"pl~?o~~.J"i~aun~au"11o~maiuuia ~~a:gmJaiau ~iuau~tiamplro~maiuna"~~
*-%wyI~prw .
.
l
l
r =Ix .
I
I
I
w
k*ka (surface area) wauarrno~~uho~~a~9~umo~~s~(fi'u Eern 2 dm ~unwagms637~%iiua~wuw~wo~w~~~u A' da
14
A'
da
~~~al~golslWni~i~amwun~wm~ nurwtudnir9u~d &' da A' dw wunwa = wunmiu%i~ x +iuauhu
Llslncls (volume)
I dhfUM
(Trigonometry) (Finding unknown sides)
[Sine ratio (sin)] . .@IS
sine 0 =
A
suol~o~ipab4d ~ ~ a1= 69 x sin 48' nIIIiju "sinn u'ldb~"sm~nrmrd~m~w~il sin 48' rurufiaunis a = 9 x 0.74314482 a = 6.69 "11a.J. (IIf3fiusl 2 ~ 1 L b ~ d ) & w V I % ~ ~ U ~ U48' fna 6.69 69'ijldhJfl3-(IJfii
ilbivrds)
knwrJrurrfusnn [(Hypoten-
*@*:
r r
.' :-1
r
1 (hYii11
1l7~m~~isly~ilin~hn"iuw"~1dqm~ (Using Your calculator) 2~alslmb;usl ( 2 ! u n ' h 7 ~so') sin-' cos-' tan-' AB rij9l6wolsdislymin (pythasloras-1
.d
d ~ ~ b ; u ~ ~ r n ~ i 7 u W s ~ s l y ~~)'~Imi'T~Idunz6~m~BUPj in~~ rnI~v~n~~)&Rwim
I
b ~ h ~ ~ O ~ h O J $ d b ~ b ; ~ u S ' ~ ~ ~Tw&11/~Butl i ' sin, ms ua: tan ~ d m 3 s l r r n ~ ~ "$ sIosine a cosine wz tangent I h l u ~ 2 o f ~ & w d w(Wdduslm) ~fi LL~MIJ & ~ h r h m n a @"shrd o Ymn riou
hznouyslain
~~~odm~m~anunm'~7~'Iu~~on"m~~'Ldi 6d"'Iii rru'I9-i?~Aidslmo~'Iuwn-n:: 'DEG" ~oliirmlioram
Iju n - I liuLR;mhmlflw~l sh xo
h ~ a ~ 4 m l m i ~ i ~ a 4 ' . j ~ar'iunn
h@oqm"thdd c = 5 x tan 50' nmqu w u u d m f i ~ m ~ ~ m d m tanm9' wufimrns c = 1.19175359 x 5 c = 5.96 tiU. ~ W 2 il~h) J u3.p asD l 1 5.96 r r n f i m (nrisuod 2 diu~43)
gkl'uh%1~1-
(Non-
right-angled triangles)
~"~IIBJ~H~U~~~'IBJ'I~~IBJ~M~UBJ~BJQ~~LL~ 8m'wairj?u~oilldlflldunr b r ~ u ~ w w ' ~ a i n a ~ i s d i u i
bZ=$+$-28bcos~
~hn'qrnrn ~mhuuar~~* 67!& I al.oli 4 a brLwrriw lu@nu~mublu A C w i u ~ r n h u r ~ a r a~A~ .lo B &IUAIW lngamlalml
a 1 2 a64278780
0.996194@
a=1 2x 0.64278760
I
0
~
1
I & nu.
uflaun~s
ww'ma~A
~
mmBJâ&#x201A;ŹrtmWhl'lda r 15 na. a2 = d + c 2 - & c o s ~ a2 =102+152-(2x l o x 1 5 x m 5 0 '
- (300 x 0.64278761) 9325 - 192836283 5 = 132.163717 a 11.5 h d a Ula 115 Lm8b01015 3
= 100 + 225
-
3-
m t h l m k (The ambiguous case)
d hs u q W m h (Area of a triangle) X d aa
~m~~awunamWiuam~iu"~~~mu~wduu rfio'Idrnz~sydnmmmmos~tlaiurwduu r ~ z q w ~ I h o ~ ~ x ~ 7 u d a m p m u s l u u mu7snh3alaliluld1ms ddii7(~d~hIdA 2 dimou &rhnsFii~Wm~wd&
Y J
mm = $ absinc
I r i j 8 o y a ~ ~ m o d e n ~ m r w d u (aimso dn1~ 4.9) a3qdmumwduun"idin~u2 diwou Ih&i
rimufilM"o~s::Miii~fiiu a rra:: b
A 12 41
ri7~~dm~1aiumrn~~17uao~6iur~a::, yamudd~u~u~m$alur~au~ 9 V#.
=
1 x 9 x 12 x sin 60' m i s i i l r m R ~ ~ m
sin A = 0.91925333
& & q ~ ~ n u a l u u1 x 12 x 15 x sin 49.4!j839813 2
Internet links ~%\lfl'iln~fi8Ifildd www.usborneauicklinks.com
d
i (TrigommMc or circular graphs)
~'Hmd~r)nrhhni
(Sine graph
nsMo&& or sine cum) ~Guunsi&m1m?p1umjw~a~1~dm 8d
~z~~daulM5uni.i fidwojI.au" LL~U@[N sl?ulh&iKu4nl m0 bdunsiauld~dii fiimm 360' mdaiu7sn1hiirno~sin x do x ~i3wya~Inq sin 90' ~viifiu1
mTAl-hiTAld
y = sh x
I I I
Crwm graph or tmmt -1 d~n57.hehl~L~LW.d~~~pI~~~h0~
isoo%dun41 nnhzu~un~infiud~& tan 8 ~ v i 7 ~ r ~ d i ~ ' L(m z jsoo d u& ~h ~ i ~ # ulmnmdw1~1nr~4m~til~~)aouuunuvl~j?u* u%~#ddur~j7&jfla~dw (discontinuities) midaimn~kdmm tan x do x dwplfll hoti7~~du da x = 45'. y = 1 %&dm99 tan 45* ~vhfiu1
8 dddo~$o~qzdifiuynt
F I ~ O 180' J
(Circles)
V
(Parts of a circle)
"uosa~nau
hW
(Arc)
ihld~91mhm~d ?~nau(i7~hsoummasnau
a
h& iwrdmul "
me&6
(Seniarcular arc ) hhddenabh&d~0d
h k m e & i (Quadrant =I
h&uia~vi~iiir~~d dauihm~o~asnau
4d
LmmC(sector) dau~masnaddsrnou 6auh'uarMnm~&u dm~dnniiqosasnauSun %L~&PI ~bazdmd bidnii~?unii
(Quadrant)
nm6a~aod~1udkainriid (90) ~ r n r h h h * J
m'm (Chord) lm"~~os~du~%sdmnah~
(Radius ypW9dad radii)
Internet links ~ O J $ ~ J ~ R 'Lfi1lli U www.usbornequicklinks.corn
.
3:.
h
h (Calculations InvolvingCimles) mmmhhmngi , 5,. wsb~u~nsihu"11~9bh3mmmailnauh (To find the length of an arc) ,;;,L ,;A
vvlcl (IT) (Pi)
-
..
~ ~ ~ ~ P ~ I ~ ~ ~ ~ ~ ~ & D S Z U Z M W nnrl?u~o9bho9~mi~~elaiuw"9~~ir~lmdatd~ T D ~ O W I Q ~ ~ ~ ~ ~ ~ ~
b~w~iuu~Y7Zu~mi~mn~1P11614ufin8i9 Lh41uruOms nu~wWI~61~luaEU9/npil~~L~u n~4uuMduinnii~iua~hu 6iu 6iu ~ I L L ~ J ~~oidmosmdsui 3.142 (~nQuu 3 di~~hil) $a 2 $QtTnwdfld~9u~n~~n~n n ~iuisn 7 * d. I.ihmos n Iuni%~11iAuhma9nau W P ~ M LWL~~ Z Gui~moil~~~nau mfiln~ruonnsau
&'LnJ~jgslquJnahmmxn~u~~afimimm~~uA~~li #u daniaugo~mu~aa~datdTA~csi~aaiuui?"um ~hsaummajnau sr~hii~&nai& 41fl"IIos qufi~gubnai960360' (mimo~~moy~~ufinm aagajnau) Pj;-u30 I x c --360 L
AB
(To find the circumference of a c k k )
~~~aiu~am~hgj7uqu6n~i9iimiu (n) ~n~lumavn~8usmair~l~sa9n1u A"a - = ~ d h 2 n r do r bhRa7uui?%mH
B
120
= 360 x 27Cr
--
Lx2xn:x6 3 = 12.6 %u. kcid mummdau'bhAB ~ranm 12.6 ~miwm
w db ~ ~ a I U ~ i ~ 2 1 ~ b ~ ~
'gj7~~6nmirPlmxmu
- 360'"
..nT
aai~uimm~tu~oux &~~9asnwubhn"fl (Areaofacirde) 2 x n x 5 adnauasmdu5nu ( r )
f
. U " U
= 2 x 3.142 x 5 = 31.42 bm~ruess.
8uRnsunaoJbgu30flmm
L ~ ~ Z A ? I ~ U I ? " ~ ~ ~ ~ ~ ~ S D ~ ~ ~
rmssa~na8(2nr) fililbbd~ a9ma~~nb9udau~ i1dpdho9
' ZSY
$~iuluwbuuiai~iorhrs~~h$db~duuiuhidud/ d l i i n " i ~ ~ ~ m a i o l u i ~ m ~ ~ ~ s ~ ~ m WmB JnW a~ Wunr x r 9. ~ i a n s n h i 1 ~ a n s w l ~ a i 0 ~ ~ ~ ~
1dhrldPj1u~u6na?~tlm~na~Tnuld~~adold YO.",
#O"IY
w.. 2
0 1 1-
.' . Ir
ifaii~ldi~~nkd ~9widuhm mman & A h v a o n
15 %S
= 2 x n x 6 x 15
II II
= 565 m319blll~ld~;1~'~93 (To findthetotal surface area ofa cylhmder) 105 = -x n x $ 360
=
g xnx,
~~?kurnrnnsarn~dIfi~~mrn &h~1~wbu~&&A~~"~109msn~::uon) w&mmp4n1~84aow (9dBwa iXd = m2
1hrn&*me3~)
(To find the toCel s u b area .ofa m)
r ~hT~h'aa~q7un Ir sh~~~~urnojdrn~~to'u Jr "
Y d-
1
&a'aa&i7~~4iusimmunw~~i~u~~mnsaud hdij~~ubiijrm~dns?u~vi~n'u~ x 4 x 10 1 '
= 125.66 ~ ~ ~ L ' ~ I U ~ L U W S
h ~ n w ~ m h
==+; --
-
- - - -- - -
'
r4
-,<K . , 8
;'
Om,
r-=w,==---
I
. ..
- .. .-
-
-
. ...
- -
-*
-
.-..'(
".
'
+
-
-- -
--
-
I
-
-
-
F-7A T. I.; I(
.-
- - . -- .- -
i
nwnnuim~ 4,
(To find the swface
(To find the volume
=4 -7w . I
3
iau"um~~umdmns~ln~~$udnb~i9'bel~~ ~o~lwiu~~uaarnu~on dun41 A $ ~ & ~ O S L L ~ ~ on (semi-major axis ) dau"uo~~8uws~Aain ing~~~~na1~1nl~mo~1wiu~~uar~nu'6~ dun n wism9"11os~mPd%w ( semi-minor axis) fh ~:Iflun~%~~iiuamrnw"uho~~
uufia1uuuius~3~nau (Angles in a Circle) a
U
@a~rn~ilriji+rr nU'14~il~1ufiw~3~3 ~dn6u~~"Ipdsjaudw~ ~~o~adna~
imkhwq WUVFJ (Properties of angles)
AGE, A& w"Jadm huTkJ~n~\ra~w~di~n"ud~u
~$8,
T$$OU A! W~"DR,D% AB APE = AQB = ARB
I
I. rrau?m~sofurnu'1uAo~~4~iu1hiifi 180'
~ ~ d ~ f i ~ ~ b ~ ~ B ~ n @ ~ ~ ~ ~ ~ 0 9 b ~ i 7
~dhr~mud~o~%kurlauTiid~Wuan"~(~u~m I pdnaia 70) qlnptil9sil~a~"~uiI+ ~u&w19&ulfi2a
Laa: 2b
Za :.a
+ Zb = 360" + b = 180'
~ i n ~ " i ~ u u ~ :OA ~ h~ d id ~&C fd n'1a4 0% = OAC 2.yuniuuom:~d.lhyuniu~u~o~mdiu y x rhh 180' - a LM~I:~%IUU~M€I~ m r i ~ ~ i i n ' u ~ u d ~ ~ ~ ~ ~ a d ~ o ~ d1ho4whriirsauriir~hn"u m~~mdiu 180" 4s
BY
3. ofu~~nmu~in~&~uw'a~~w::~03~ ~ma~lw'mrn
Internet links
b f ~ u ~ ¶ . I ? ~Ifi1d n ~ t r www.usbome-qu~cklinks~mrn
1
3
..
.
-.
-7.F,.
-
- -',-
i -1
(Measurement)
~S I&I
Y
*
MWI
yd
w~~L~~u%u
cwt
r
8~ W U
614
20 ~~n~fJpa5ou
wÂśkm~wrny Ado ooud~os~~aa fl. 02
amiifi
ihl4
20 oou5~os~~wa
~t
I
( M e system)
~ ~ & B ~ z ~ w Q ~ u ~ ~ ~ ~ ~ ' Y I I I u dz~wmTaTan W J I J W S ~ ~ & ~ ~ M ~ &
-*
~BEIQI L K ~ Z * w'~~fin1~6~~1ua~ldm~'bnlrn~w1 ht4rusls
MA
;I
I mm*urn WW3
miamwane
rrilkir w. (rnm) m. (cm) u. (m) nu (km) kh (mg) n. (g) fin. (kg)
0) ihfh
I
10 iiatwm
loo L
S I U ~ ~ ~ S
-
1.000W W ~
~i7h1
loo ialn% 1,000n$u 1,000?lan<u
bviwKJ
w. (ml) (d)
EJ- (1)
*hunlir 53 @hurmAttnGr);auumGuu 1s: (n 76 ~ h r n - drra uu~uuu30:r?nrmof 45:li3~181J 58
loo Q@Tters 1,000 9aSRrna
I
m&nS&
(Measures of motion)
a'rnb3-J (speed) nia~m:u:wi&'57nni~b~dmflu%a9band9 rniu~4~~uni~a'm:u:widdauuin~fiu~un'do~a~i I i a b s flu6hhb9) i?i,a~um~d&Ius (nu. / vu.) v4o~uwaio3uifi( w ~ ~ h u i f i ) gAfluni~<fi?Rdim ih
k ~ ~ m : l d x ~ a a~ IdU L~! ~ L ~ ~ % W \ F U L ? ~ L O ~ D ~
~ku~i~3ab~irelsr~~ahrUi~dah
u i d q n &umni&lw (nu. / m ~f )i o ~ ~ w s d o qldiil ~ ~ d o u % & m i~~~iJrf:u~:~~*iy%$dmlf ~% fia~diil~itd ~1aiu~%~mh9~nfojikdoi~~:~bu I I o bd &h9u& 050'
b
7
das*ftm w
(Compound measure) -id
nwanm~nu4osMaumnn~dau Kaohi79~du~ m s i ~ ~ a ~ f i u n i ~ m ~ $ ~ d ~ : n 0 ~ 1 b ~ u 4 ~ n"E1~:u:wi~uar~aai ni3Tn~%d-=i:nouEnoeii~ d 9 a; ~i~i~~sd~d~9~i;~an"u8.~aab~a:d~uims
4
A
(Time)
k
d [Minute (min)] Tu 1 &T%9 $I 60 u l i
~24&%ohs(2ehourdock) mnibam 24 &hTu 1 %&b'tbi am d
o pm
~~&:Td~a~rnr~amin o % 23 Kaam o 8s 9 9:
,&
; dwau&~ 0 d 3 f i 01,w,... L~~~"I:wT~H~B M [Second (SorS~C)] 1 u i f i m o n ~ a s 24 n 24Twiu ttiihbm 4 ti?uar :L ,r Iu 1 uis ii ao i u i i iuii~~um.iaddn$~n aom*rn blSu~apliTn~h:ui~~~sni~~h~o~~'aT~ ui%:Ubb&hTnaT*n kmtx~du b m 2 f '83, pdifim 20 ~4Tu~mfilw:~$m~h 1420 1 ~ $ 3dond~adi-iiu M T ~ T ~ ~ ~ ~ a n :.+,,-' 8
.
,
ii-.
I
hi?id [Millisecond (ms or msec)] Tu 1 Suiq JJ 1,000Q a t % d Qnt5udauni% a drr
k i d i m ~ f a ~ ~ a a m n~du i q ~89mdblil~ehll~adab~9d n dwuamYo~answ~ mh'l 12 & d h(12-hour dock) s:mmram~QuQaTuil I u d f i r ~ f i ~ 2~ i h -$as7 p:l 12 QqTu9 ramaudx~sanazwhs~iersfiu (24.00 w.) t i g ~ i (12.00 ~ a ~u.) 4d.ti am dsmwn ~l~pl:i%.ddl"ante meridiemn w l m r n ~ s %"dau ~iers~u* ~amTuiasisas~a-iis~$us?'un"s~M"ek)%
&Id pm ~~NwI~~IMIw:~~-~I
om
uifiIl1
1400
uifin?
1800 1900
U*M
"post meridiem"
waJiu~ai~% "mhw"usa'odw ~apli~rhui!~:~iiuung~g~ daoliia.du npli ~ i i u u I 6 6.15 ~ h am 9m&i'b6bfhd .ylw~[ilua~ 6 ul%nl 15
*Au4'~1o\lpi~~ndlru 56: n~fiuu,g~ndiuuls: rm41iir3~21: ~ ? i u ~ & a ~56(pÂśmmi&n): n 8maid? 73
u*ni
1
I
,
r m,
i3vmhdm& ( A l s e b r a i c e e o n )
ihk6Wi1u ( D q e d m variable)
d ~ ~ ~ ~ ~ ~ ~ 1 $ ~ 1 f i 1 6 1 d b ~ ~ ~ '~iarbddd~.lrm~a~b~~w"iuabu~~nd~~u L f l ~ ~ ~ d % A ~ bduw"u# I rns~~am~nuIu~~~~ii~K~#n~m4ofiabmlmu a o q d a ~ u ~ ~ d ~ u o ~ ~ d m ~ a ~ u u ~ a " L 1 ~ q i u aI ~ a da~dbilu.w"o~fiirn761~~unisww~m~liiw mman &up fidu ~u$u~hkrbbds~1m eimmmaiuun ni%auni~gm~ba::nimn a o ~ w u a r d a u ~ ~ ~ @ a i a . ~ ~ ~ d u u ~ ~ ~ m ~ u dI l a L~IJ 7 x - 4 , 1 4 + ( y - 2 ) . 122 ~ ~ J ~ " ~ R ~ I N ~ I % ~ ~ bhKaod~mm I ~ L L ~ : : ~ ~ u Q ~ ~
mw6-a(Constant) imd!Pii~&~auo b2EPd a~n-13 y = 2x + 4, 4 bhdlAdK3
(wqaqe pue laqurnu 40
=tw) mnqwmm.-
bfflddmh (Algebraic fractions)
rmdau~rviik r~iuisnlr~nurnsg~wfow7~
iinm (~i~o$ii~uu) rmrd?ri?u(iii!otjiii~d~~) ~au9'iuaurfluah+o8aBnw(R'a~fluan'u
I n t a t links
Lj~~%mtiimli2~d 'Ln"Ld4 www.usbome-quicklinkscorn
I
I fWms (Equations)
fn%%Wm%
(Realranging an equation)
R"di~fluai~i~~(~aa~ni~Ifio~~u~mKa~bd~bdek9 hb~m~mulfi&abbdduo~hi&iui~"~~m ~ n $ o w a ~ i ~ ~ v&fiunji i i f i u rnsnidiemKa~~d-=du
m%-
(Solving an quation)
fiia~ni~i8al'?rbnJ%~3era aiui%dfia4~n?s~iowidi as&aiab~d~d&i fh8unii ni3~bn"aa~nia
.I :"I. .f
.
'I.
:'-*t , ,*:.
-
Internet links ~ D J B U M fd*Idd ~ w.usbomequicklinkrcom
wilt~(Algebraic Graphs)
w x @ -
g d ~ 5 n ~ ~ m A ~ ~ g u I p i x~i~k 0p 1%ual ~i ul ~
unu x uu y = o
m $ ~ n r r r s w l ~ % h(Toplot m a linear graphMan-)
M S ~ X I M I W W I S I ~(Drawing ~ a
w'aoeiw~hdaqmasmi%G~r8uy = 2~ + 2
quadratic graph)
.
-.
(Quadratic
;i '?!
graphs)
n~i~o\ra~ni~rii~~am::~4upd~u@ ': : :: y = ax2 + bx + c ~ d aa, b, c ~hdiwrFaial~a:: a o
+
: :8
fmWWMi (Cubic graphs) mid~nui~~~s::n~u~auww'n'bi5~ x3 nnd V
m5-d (To plot a cubic graph) m~j~mi~pnultnn"~"i'b6~~~~u~hnaid
gnul~%um::~1uu'Iufnl y = &+bx2+cx+d
d hPii~(Alu~:: az d ~i5i~ymriinuuunu Y L ~ a, O b, c L:I
o
fnlhun'qn"uo~rmdgn~i~6 L y =9
i i i m i m (Cubic cuve)
~~~YJ~~TA"J~~~~~JB~J~~I~J'Iu$$.~I~D~ d2uI*od&Pimo~
a 'Ildaunis y=&+bx2+cx+d
3.
-
~ ~ W W (Exponential ~ W U graphs)
m H h m & (Reciprocal graphs)
ifWmsn'm (Quadratic Equations)
~ ~ ~ 7 3 6 1 ~ d ~ ~ d ~ e h l ~ ~ ~ % M $ ~ ~ i ? ~ ~ 3 ~ ~ d ~ ~ ~ ~ n S ? & d ~ D
d1&arm8uuoqTu$
ax2 + bx + c = o ida a
+ o aunn
rii&~mv?naum~aim~~m~~~~~lr8ia~~i~~~~a'i~~~ i in n (roots) n - l ~ ~ ~ ~ a u m ~ d i ~ ~ ~ ~ ~ m M " ~ ~ ~ ~ u ~ ~
---(~Y~~ZPI )
I
r n s t i i ~ b h h m q p(Completing i the square) - ?
1'-
.. . (:,i
- - -,
>
.
=
- ,-
:
.
,
-
gmaumarlr&am9~~1rna~~ii~un~~Tpd~
&+bx+c
= 0
aunsm6u (Simultaneous Equations) a u r n n r a i u ~ ~ i h r a u r i a ~ ~ w ~ i u ~ ~ ~ zi;+Js ~~~1~~
%
LL~Q::~~LL~SLL~PIJ~IU?UL~~?KU"L~~~LL(~~~::B%I~IS
%tqs4
i l l 4 ~ h h ~ r \ r ~ n ?~sL~~Q~ lEdJ J M I Q ~ ~ ~ ~ ~ ) U ~ B D ~ ~ P I B D J fu~un~~ri'ao~ (~i"tfir\runiai~ao~ ~flusi~)
aun7r6~i7d~7~7rn66fiB~~n7m~~ufi~~1w'7"~~~ x 6 6 E y ~BD~~~~~DJ~EI~WT~SVKWZN ?wn~&u X 6669,' y 6m7I%~6El2
rrw~~m-~~num
(Solving by
r n s ~ ~ h r r y s f ~ e(Solving ~ ~ l l s by elimination)
sulastttution)
(To eliminate terms that are the same or opposite) - 2 ~ I. f i ~ w ~ J ~ u ~ d o uih n " u2x iqil 2x ?-2x ii a 2 u i ~ n a u m ~ m ~ o o n n n 8 n a ~ n i & l68li7~9ld"$~Qs3d$l~fi'ld L$u 2~ 4Y - 2 ~551151761~1 ~auniddaa~ui~an~dw" i f ~ o @ / i , ~9~~i ur i f i a ~ n i 2x s - 3y a 5 3.~1~a~~plaodw9~d~~dou~u~uu'1dddua:~'1"Ifia~ x + 3y = 16 l~@â&#x201A;ŹId1\347~ ~~nw~Gdi~B0uirui~1~auflu(d~in~~1dw~6 ~h2 ~ + 5 1~ 3- ~ 1 5 w=i&ir~~u'1uaunisM"~1o~) 7~ - 13 15 (2x -3y) + (x + 3y) = 5 + 16 7x = 15 + 13 3x = 21 7x = 28 x = 7 2. r i ~ u d i a a d ~ a i r d s f i ~ ~ ~ d ~ u 8 n m 9:bdi uni7~u"~ x = 4 u au~a6 a~~n~ d 4. ~ ~ ~ u d n o ~ & a i ? ~ d ~ ~ ~ ~ ~ h a s ~ ~ d~i v~r ina ~ ~ ~ n ~ s ~ & LTh 2x-3y-5 ~~:~lhi~odW"?i?i?d~dn63~~9 (2 x 7) - 3y = 5 !,2d lj x = 4 6ddu (2 x 4) + y = 15 1 4 - 3y = 5 8 + y -15 3y 14-5 y = 15-8 3 y = 9 Y P 7 y = 3 kaouun~aun17Be, x = 4 LL~: y = 7 Pi.iwouuasauni.i Wo x = 7 iia: y = 3 5. a~aswou6ii7rsm4muni~~~~udiu~~ x ua: y 3. ~ssavaoun'~~ou%&~un~~~~~upi~ao~ x bia: y 13 "lurna~n13i~m "launisu-dn E t b"du 2 0 - 7 - 1 3 6 k U ~ x = 4 L L Q t y = 7 ~h 7 + 9 = 16(Ajuu x = 7 $ddwdiaod@nhm I ~ra: y 3 ~~~fiuaii~sau~~nfio~
h a ~ r n % ~ ~ =ymo~niil41ufln lfi y = 5x-13 2. L L M U ~ ~ DyJ a~luanmun17~& ~2jld fil y = 5x-13 2x + y - 1 5 LLWU~ITO~y 9:lh 2x + (5x - 13 ) = 15
5
-
' t ~ h dwww.urborne-quickIinks.com
Internet links L ~ B J B U ~ I S
J
IEI
~ n d m (Elimination continued)
rvlslllfi3.J~~
~~~~MGLMWDU~"I&WL]~~ 3 ~ 1 g ~ l ~ b i l f i ~ ~with % a ~mph)
n41dwl"iu (To elimination like t e r n if their mfficignts are rtof qd or oppersite) 1.
rnhgolia~uam&~d~:hho~fi~ds~d~
& i n ~ l h r d s / l & o d h u d 3 x d o l h ~ y~na:ga s
auni%d~~4oa~ln7d~m~)96~i?~iuaueid19fi hd%re4&o&ao~fla~~dq~w'ih A'aoliis~du
plot sr graph d simubnwrus linear
1
i h o l i i d ~ d uhrwaJgrmo~nnh~~aunimaiu$u x - I = y 2y+2x = 6
Qaunis"bd1fi y o@?~Si.ida y =
x-1
y
3-x
-
~ n i m i & w (More simultaneous
~mb~~b~bbazi~umasn~u (Linear and circle
equations)
equations)
1um~~b~1ur78~umfii&~m (Linear and quadratic equations)
a"aodi;ldu
9whwuni4
y=x+3 (1 y=x2-4x+7 (2) LLMUP~IWEN y ~inaun14(1) a~luaun13 (2)
y-x-1 (1) x2 + y2 = 25 (2) ~bVl~dl"fl9 y91~~~n (1)l .Qj J ~ U Q B (2) ~ ~LI ~L w ~ ~ I ~ ~ ag"Iu$"i99iu
1,1,a:Yi7%fi
0~~~$0d1941~
x2+3= x2-4x+7 3=x2-4x+7-x 3=x2-5x+7
Internet links L%JBU~IÂś
fiaoeii9 ~ 9 ~ ~ f i m n i . j
'IGIdd www usborna-qumkl~nkscorn
x2 + (X - I ) ~ x2 + (X - 1) (X - 1) x2+x2-X-x+1 2x2 - 2x + 1 2x2 - 2 ~ - 24
= 25
25 =25 = 0 = 0
(Inequalities) oa~nw~hh~l~~~6~fiiam~~~efid~9d~&~fi~w"
tYai?ah~h ~~uiioauni34 - 3y a 12 - y au 4 oon~inr?'saodw 3y a 12 - y - 4 uan y w'Jaadii9 3 y + y 2 1 2 -4 Y
Y
-2y
3
8
#XI-rn
(Example: Inequality
-1 ~\1~1u3~amd~~alih3~lnum~ y < 2 - x, x Q -4 uar y a x - 1 l3nsIvhq&daon~6mn'u 3x + y d o a ) 3iiuinCIqn LLR: b ) i l ~ o u d q n
Internet links l%h10#%1l11 ffihd www.usbcmequicWinkScom
w!ll
riJuriiiu (Functions)
- .-. *.
,
m r-
prer (ResuN)
,,
!. t -
-
-m7$t-5-,T!
(Illustrating functions)
au ~rsY +11m$hms/lho~ii~li7"tlo~ x fhluuunuiou %3nimaid3Mdq:~~am4~iih I,&#qn~ru"mm f(x) d?od-61w aod x" Kai?ohi?sb&h f L~u%& bd~?'i~aid ~I,PI~~'SIU~In ~ M~ ? ~d "yan 1'' f ( ~= ) x + 1 drp~~9%&wi~fi~iniI?Jm x &U"M LdaJo f(x) = x + 1, f (2) = 2 + 1 = 3 ruQ: f(200) = h-m (wn)n
200 + 1 = 201 ~ ~ ~ o d ~ 8 ~ ~ d n " b 1 9 " 8 ~ n d 1 6 % ~ 1 ? ~s s 1 7 $ n u ~ o ~ ( 9 " ~ ~ ~ 6 1 ~ u W ~ C 9 1 A ~ D 9 f i y a ~ ~ ~ h b ~ I and f r s w : r ~ u f i b ~ m ~ d ~ @ m (codomain) ~ ~ ~ u i ~ a w'auosb~olw+u~dua 8aohdbiu f(x) = 2x
k w (Domain)
(Composite function)
-fm~l
n i ~ h $ ~ ~ ~ f l ~ i i * b t d a o d ~ & # u ~ d a i 1 ~ 1 ~ 0 ( N W ~ H hes) duu164au $(XI w?o f[g(x)]~,aa&iqrflodi~n"h ~~u.J"iuaumil19"i~diuQo ~ L ' S Bb~uu A bb~: g rim 1,1,1a%q:Gi4s& f WYaoh~~iPd ~ & ? ' i u a % d ~ i ~ ~ i w a i ~ o ~ ~ a ~L ~L F~~ Pa~ Q~~u~ I u i a u &I f(x) = x2 LLW: g(x) = 3x - 1 am~~w'~i?oa~6od%ki~r~i1"11mTm~~~~iw $(x) = f(3x - 1) = ( 3 -~ I ) ~ h0riwbiPd / ua: @(XI = g(9) = 3x2 - 1 f(x)=x+l a
n''ufis& T W ~ ~ ~ ~ ~ Q ~ f B-I(x) J ~ ~ U U L Caohurdu wmiSu~aoimo&ii% f(x) = 3x + 5
a*
r
s
-
a
i
1. y = f(x), y = 3x + 5 2. ~G'dmmAu~d~ x UR: y .KJWU~ x = 3y + 5 3. mimoil y, 3y = x - 5
.
474
y = -5 =f"(x), f-'(x) = X 7
d
(Map or mapping)
.
~
~ ~ W II
dm(Flow chart or
z
~bsnaniw1,m~s~i~mo4~~di~~um~~u
L&
moqmnbaWs~~~LL61r~&
i~dnra~~~arn~ou~Qrnduu~uh~~a@d~& rtqJrnumuua5li)dd&
fx) = 3x + I I
w
I
~ ~ o d$Qn5dniSEdJ d d (Mapping i nim%&~~nsjir dmrr~sJ"~~u~mr~~nrn~lmu notation) ~mnfi?d~ifi#~m&odfld& (Function hn8in6dRm77k16.SliSun17 8aDeilidu dg&glw notation) ~aaz~d$q&nwddwwufi~LLrn.sk" f x ) = 3x + JIiediaofa f-'( x ) = G
-
*Id$
(hrhr):
75: ~ s ~ 12 d nmilhi.nhl~n?.80: Lii 65: < I U - ~ Ut~X?lhznoummndw ~J 00 (gufiu):mmuou 12: unursuri 60 (4u3~w): urm x unu Y 31 (~zuu~iiwmii~r~uu) Ba
52:
rim 12: d n o & d
'
-
-
fnmn -
-Fd-
..
and graphs)
%&~majwnlasr~.~h~&wo@ rm x ~wrsQo~urm Y urn Y suunmdwlbwu &XI"Y" d0 W(X)* &D y = f(x) 81LgFJUdoblrn dFau "y" duunmd "y = ..." ~ ~ I L ~ U UY LhIi7 ~& Y ( X ~~ i i ~ l ~ nysxd ) = .: (grr&iadl& mi~m f(x) = x %&tda*& oBmumi~~nu~r Lam:
f
gm~b) ~M-~IW~L~~IJ\~I~~RU~~~LII~W
IWhoEiW~4tiU~ L L Wf(x)U(ii?~ $ -f(x) nnfd :ar9iwruuum x wrfii~~wd f(x) h u q-X)
I
m ~ i m w nia>om?d w h u M (&7u at]Aa<ons?rJ
I
I
a
I I m d a d \I = fix)
+a
W y = f d t a
h-rn
0
%rn*
d
h a c ~ d
b
(Cubic function)
9h6iMby?u3d t(x) = ax3 + bx2+ cx + d r i a a, b, c uajl::d h i i ; . l a s i h LL~: a~xi~viiirEl0 rlQ?ntMfunction) = ax r i a a ~fludiwKa
*&Aqiup
(Reciprocal function) f(x) = &O a LOUP;IRJ~
:
4 d h - a ( ~~i r~d efunction)
'31diw y = ayx)
ndnm-mww IU Y A a m ~ m a ~ h a > 1 nn&: wan es~u~nnu Y I e < 1 nm&:f9ff ~ ~ ~ 7 u r rY m r
% ~ ~ ~ o ; " 1 u f(x) s n=] /(x - (xl2 + (y - b)2 do (a, b) L~~~diuA~u3figufinnm~09asnau n%iduv~61 84 ~~md8aorjim9iu x2 + y2 = r2 wlulm y = fax) h~ftu$asnwAB~ii r nri?u ~ m ~ a r ~ u k n ~ o d d n*&anwm 7u x &am?w (0.0)
.I .I
.I
.I .I
ni=i~~dnlas y
,
= f(,) 1 s ; nj a z l ~?~Jo~BL~R~~W~P)~PJ
-
, or cirwlar function) YX) sin x. XX) = cosine x f(x) = tangent x T
m
%&&;lupJ
\
luXt'f7aaI ~7rJ~zmaanRw ru --
Internet links
dod~fi%u 'In"l11d w.usbomequicWtnks.com ,-
7 7
I
i
id 4 LLUU
,,,x&y=fx+a)
*h%fi (Linear function) $h%%doy'6u$ f(x) = mx + c b d ~m ldbhfi' 0 C" " %mtmmmd ( Q d M c fundion) cu d %mmu'6upJ f(x) = ax2 + bx + c LLaz c ~Oudi;.lasK!~~a: a Td~viiK~ o
~
\
I
iwti:a:~:dlouwrunu Y %;rdiJd~Ouni~~~dm
-1
khrnfh
(
8
I
*
( ~ l ~ ~ l B F lu y~=I nun x m : s s t l e u t p o ~qcnrrryLIeyLnn m ~ p t rn ~ hw~ ~ l e ~ u i:LL p ru)qQinl)r 9 : ( u L ~ L u )UL~~BIM ~ ~ c :LL Lynun$w :zr hu.r(:oc m ~ n n w ~ ~ r ~ r b # i n r i :sr .~w wD :(nt.n-p~u) rn p y r ~ :u 6 n~ ~ n ~ t ~:s m ~ u :$ yngc :FAr+iw+
A
I
1 flTadWd%bi~(To hkfind the area under (Omdhts and
a c u y ! graph)
~~(R"~h'b~oon~flu'M~rnu~~~a~~6admau i i r n m : ~ ~ l i l a b ~ d ~ ~ o i a ~ ~ h l m ~ h h ~ ~ & a~ a i n 1~ d m ~ ~ h l a~~ u n m f l - ul m A aiui,mu Y Yaui?@n:u:m7~mwunux ~a*?h:~fi ~ ~ U M ~ & ~ L @ : % I ~ W " ~ @ % L W ~ U N RW~~JYW: ~
"P1
I
d
-qua
..
b & w ~ m ~ ' & & f ~&mnm*1dd9:rnd~qwdera~up13~8~ iB~:w fig?An - j l n T J " d ~ a L ~ U N R l wS
~ ~ V I N I O ~ N ~ ~ L L I O ~ ~w ~ t= &m& ~ U ~ I ~
fil~l;ma~urr~7~~~h719bbm~ila3'11ul*~l~
d
~
~
fl%:an&dn&dmlliw&&ilbfi
fi@d~wdu~Rsrn&u(ilij~nunhbhn"u
I ~ B J ~ Q ' w I & A ~ " ~ ~ R ~ B ~= I ~n w x Jum
gmb%
+ ~&nlil~i.lu+ 2(wanrammi~~t~))
C w ~hmun%rnmihunoi~zfiu"~~*
d ~ d u a m ~ g- dng~u ~ n~* ~ p d r n u g m w d ~ n d v u bh~n$JId ~ H $~3dad(R"luhdD # ao~~~67m~wrmn~~~m~"1~i~dcii1uaai~~~b~~~
"R~'~~IU"
~ A ? 7 U $ 9 " 1 1 ~ d b ' y 1 1 ~ 1 ~ ~ ~ L b 3 f I
Qllq&f.l Aaei.1J~h nmvi am - A ~ I U L=h~6jid~:b16~~n7~ ~~ r n w d ~ u h m i R n i s:uznidlilunl~:ui~w"~ q b ~ p d V l 7 4 1 f d b ~ @% ' l ~d l ~b f l ~ b i l l 3
Internet links d 0 ~ ~ 5 ? d n l d %~~ f$i~h d w.usbornequick~nks.com
~
~
~
u
(Data)
~o~,ouaiflu~oamn~~in"mau~a~~~aeiou~
gonm%?fl datum ddd#k%ou) iVd~?~od ~dn~iaw~flurns~n"u~au~au nwG"n nninauo nnuaehl ~ra:nn?a.nc%~apd rio~~bud.iuauuin dun41 afil d i j m d b p (Types of data) %vb*m
(Quantitative data)
4oya~~naaiuiana'~1~~u~~i~da~Kaoiim0~ 4a;a~5&anm mfi~1~aiuuia uaa ~baznnuth
~~e
@isCrete data)
~y&i~auo~u$n~mr~awi:: idu du i apdPdUu' nio~udiiio~~~~9"uo~di~auW"~~um Kaoimou ~ B ~ ~ u VU b TL fi~d l~~ ~U U A ~ d ~ U nLW (~ I: 1 ~ d ~ I U ~ U A U ~ U ~ ~ ~ ~ ~ ~ I M ~ U P ~ U ~ ? B ~ U ~
m
e (mnj-) of data))
pistribution (of a
h&'1dmua~%~ya~~cia::~~mau~
%qawdw (Nominal W data) 4oyauisJy'~~3bjaiman~dnia8~9n'i~~~iu ~~6 L ~ U40 LWW W?D aniu~~iimoddsxtiina 100 AM
-. -
7.
:', '
C C
"
(Collecting data)
bmmmmw (Questionnaire)
I
-
1rls~niidimcuanuJ w1u7irm Q h ~ w h ~ l m : a m a uma=dinw I. v i 7 u % d s ~ & n n i a w d o l u ' 0 14 0 'lu'Iti 2.lonnjuiiiiwrnaI&gou Q smoiud Q ifon'lniu~ O 4 m 3. ' I p r m h ~ m d ~ l o ~ f ~ w w 1 ~ v i 7 1 ~ 1 ~ ~ ~ d w : ~ a i ~ 01-5hu Q6-10hU 011-15hU O mnnn 15 h-iru 4. h q ~ v i 7 1 ' 1 Qliourrhlsil 0 1 8 - 3 0 3 0 3 1 -403 0 5 1 - 6 o a Quinm16oil 041-50s 5. l o ~ ~ m u m 1 Z h u ~ D U 1 3 i c X ? u 0 ciluhu
I
~~&!~~~~~R~P~~wB)wwBMIMuM~~~R~~ ~ J ~ ~ L L U U I M I ~ ~ ~ ~ W ' R L ~ R ~ L ~ ~
frE'%a-
(Data logging)
%ms1d~o~~bnas"luni~a'm~barniduw"ni 3Znis~iilrrnsaudaqaTmuni~niuw~~q mwrmu 3 ~ u u u d a ~ d u a n i u~iu n iqmqbad ~rviaqniA~&onqunislSQmiw-iladiilb~umi~nis 3;oJ mM'nr~udoyad~lfl(iluni&n"n~~oda~nai dinim:idim'Ye9iu$~~mo~nisniu ms8md rhAi m5~ioya~;3~niumwd'b6bbri gqh%uad oii~ld~Qumi~nis dini~~:~hdinia.h'a~ I dl A ~rard&a~aldhni~o~~na~~ds~~nmni~m l r n ~ a ~ m ~ ~ ~ u u i ~ ~ l i u a r ' k j i n x ~ ~ i ~u a%~dad~ ~ ~ h ~ ~ o q a 1 u w u a m ~ o & ~ ~ a ~ d s ~ w"mmsotii~~6udm ~ l ~ l 3 ~ ~ ~ ~ n l f i ~ ~ 4 l ~ M ' b ~ ~ (Interview)
Internet links L~D4+Dtlfi7?%J
tn'hi www.usbome-quicklinkscorn
I I
A
fwJ(ampling)
rll%@~&u' ( M e d sampling) iimrdanTfiunisi~i~d4::%in~ooni9un$u esiu n+u8aodiubfludau~W"d~~drls::%ins idaviirn~ qtu~n~nr::~awi::bniw i w ~~~ariini~(IW"adiu97do a"i%a&~fiu~a'b~~i~inmuuim"so'bd~aaiuiniiiu~du 4uodldLh4 zulq lnLbdaznEjunvsluuwdugl? n i 3 d ~ ~ i % d ~ o J ~'(uamunimdinnrju ~nR~'b~~~~ ithmnuamm~ud3::mnd~nfid i ~ i u a u w ~ m o u hodida~~uA~im~mn~uM'~wum aarlriwrm:: nrjuQn~lbion~inusia::n~ulu~md~uol~viin"u'1u~tu::A h d u u ni3~fionn~iiaodw6 ~Sundinix@ ~r~iarn~du~9uau4mod~:'tlin&ufi lkmm (Population) nqul~@4hmm.nIonn~uw'aoei7~ Xaodiadu f i i n d u ~ o d i u i h i ~ n @ i u o5i q- 10 il<luau 100 ~uddd~mn4fi~n~udn@iun"Jw8.1A#!~i~ 5-log m@uzmn ( C o n v a b sampiing) nimijonn(ufiao~~~a::man"Luni~~ii~s~3a~o~a ~duR S Q ~ A~ S? o~ ~ & o u $ f i i M r n i
frm@h&i!l
(Random sampling or simple random sampling)
n$d.nduu%! 1 = x 50 mi$onn~urhodiminrl~ain&adn~undqn 350 n q r n ~ n ~ i u2u d= '05 x 50 ~~onib::~nii3on~&uui~vii~~~nmaiu~~n" 350 s r ~ i i o n d 6idu n i ~ ( u ~ ~ m m a u ~ n ~ u d s : : ~ i n sn(rninduuild 3 = D x 50
= 18 = 15 =
17
ms(u~~u~abdui~u8ai~nu"~odau~~n~u'Lu m'dun~uw'aoh~iiu~~~::nmm"aw'nrau p Ih:%in4 ni%'b$Rou$2iWo5b R f o ~ % bM%ILLW@ ~ anduuhnquilCI 1 4 1 ~ 18 3 ~u ~ n$jjJ# 2 4 1 ~ 2 ~ 1$(~63i&u7 15 m u irntntjuili 3 <im17 ~u
wmw L:
m~~~odhh47uo~~3iu~aiuimn"~a~n1~ (MUm n g ) nrjurln~~!~nnwuh~~~~n'~d~1:fi~~1d&j~h~aiu %mdonn~u&otihmnBnn~uh~ 9% wini~tihhiul6n~ufiaodiun+u~fdu~t! h o d w ~ d u1 h ~ i j o n n ( u ~ ~ o h 0 9 ~ u # i j m q ~ n n ~ so 9 n ~ u ( ~ " a ~ d w & ~ ~ ~ ~ U '50milq u i n r r ~ i miuifiwaifiriwddou~do~el"%uub~uu~uni~ih s?.ma6o~w?inn~ul~t$ &fim&lnvmn#
**
(-
=lpling)
r r x @ & ~ (Systematic h sampling) nisu,iatmins~i5unduq iinisdonn~~eiioli72,aaii~ m~~$~:uu~awi::~~u~uni~~~onn d ~~ua8~anob~ui rdi a r n ~ u m i n a u d m ~ ~ : : m ~ a ~ d k o d i a i h d ~ ~ ~ i n a o i ~ v : : ~ 6 ~ n i s 4 i ~ ~ u~hT~~~~wmuTSJ~"suldrn::~~ui~a::n~&oL n~i~s~m'~ mq u a q n l ~u$iBu~uw" 10 s : : l 6 5 n n f i ~ l n u i ~5un@daadian ~ u h o d i ~ f i n n sr(u~m"4iuau.eiiou~ni~(uo~u
frK*ula?m (Quota sampling) rn~&nn~u8a~eii~n'w~nr3wau~mmn~ ~in~mun~u'bud~::'~~ina n~~wdiii%5nv.~'mndu riou~s::inis(~ ~'7oei7~~niw I~amd&ouni~ih P~?IW@ UI so ~ u ~ i a : : 4 i u a u50 RU iia: ho~nirfi~~~l~iu3wa~n~ui~91a:n+uaa~~~-dw
HANDLING DATA
fn&nfju$~pl (Grouping data) n m u u o n u ~ i & m +(0-
frequency.
d i s t r i i o n table)
wdu$ua~smdw (Tally chart)
%nifin'n%aua~munis~flnwi;"ddd~?u~i d" du:n (tai~y)dlua~~~;o~auia::gowuu nil~nlu wGmAn 5 3w ~ . t (do f m) d~sr,diTflni=Sirndu P.
&UM&
m l r o n s r o ~ (Frequency d table) ~ ~ ~ ~ b ~ ~ ~ 7 2 6 a t d R f J " l l ~ L ~ ~ ~ l 3 ~ ~ 3 7 ~
(~aiu$m ~ n i s ~ a n ~ adud1 i u am w ~ s ~ n ~ ~ w(E r n quency ui cfistribution)
dm~lrnub~3~&Lb~~&n"~dd1\118~~3dn~
&6u uw~~ulmrae~dumni~&b~lida9"11o&n"o~ 8,
R
~
~
W
~m7mwnq ~ M vim m m ( , "+Way tabk tab) I
Z
cinsw"Iuuda:uoag~~da,-n8n~fiu~mn'ir 8~bilwi::8n~m::~il
Y
Ldo~um,& l Pduu m * *
Y
Y
Y
%hmwm& (Class wkW, class length or class size)
~ai~~undi~s~~~~"llm~"~~m'~~~~a:
8uusni& Gaiaadid~iu~aiuna"i~"llod5um3ni& 48 1 o (~iiod9in30.5 - 20.5)
L~BM~%J~ r3i,6s"m&~~ii gn6s"m.,?. ,
21 - m
nm (Mi-i-al
hiiuur
vrouunIrL,& u x
value or miclpoii) (computer database)
~&nmm~~ia::o"umm&m~~numa~~
~~o&a~adiuauuidido~aw"u~iu9'7~1auuinaiuisn kmdw~du di&namm8wwsni& 11 - 20 Go 15.5 ti.iuia3w~~mgii rth uwwnu'~~~~~irms%o~arrn::ffm ~ % W w ~ m ' i ~(11~+20) m u+ 2 Go dmouwnh ~h di~& ~m~m~'limmnriid~~Amshau 2 (10.5+ 20.5 ) -+ 2 iiuab~~;iwiaatii 'Ifi111n'
Intcwnat links L ~ D J ~ ~ â&#x201A;Ź + S ? U www.usborne-quicUnksmrn
m&
(Averages)
4 v m ~ m u (w W i a n of a dkbibution) hnauammru~nb~qd~4~1~wdi&u~imuia
~ ~ ~ ~ ~ L L ~ ~ ~ ~ J $ D ~ ~ I P yo~ U " O ~ Q . K ~ W
h r ~ ~ d ~ s =u ~(ni+u1) d o n ~busm2ir *o$afidvm fiaoiidldll s m ~ u ~ i u v m n i ~ ~ 9 n ~ r ~ i l & 9 d
gIuikimasmarmuw (Nlode of a diibution)
mmu-or (Bimodal diibution) n i 5 ~ ~ q n a b q d ~ ~ s ~fiaodidbdu ~ 1 u ~ u ums ~rsnuwdddf?divm 32 rm:: 36 ~9amdidnngod
R~JR~JM 30 31@35 @9
32 LLIZ 36 bbpd~lÂśd~pl%J%3~
rn.arnnar9~dLla~~~uaiu~wiium7~uinnii
ode of a
pdi%mmrnmud
s~'fl.~rnumuw (Median d of a frequency dilstnion)
m r m ~ i j u s i u a ~ adrrqn~rw~aiud oy A%LLS~ ~ o ~ i i u a a ~ ~ a i ~ ~ a ~ ai imu aoa ~ n i ~ r ~ ~
di~~&m$s~unmdm~o$aW"o;"1u09"i~d~ Bdsu9w
(Modal group or
modal dm)
pd&-nmm~d~~wtld 05 I h n ~ r n U ~ ? ~ d ~ ~ 6 & u & m & ~ ~ ~ ~ h 6 ~ 7 & ' d q n i f n 25.5 ~ & n (50+ I ) 2 h ~ p m " ~ ~ 0 1 2 5 nios ~ ~ 1ljfEhWln@8)+2 ~ F
dirm&~mmmusn~~~~mud~~in~e~
1
n @ w u d ~ b -10 u$ r h n
(Nledin of a grouped fnqumy MbrdIon)
n1rn~u~w~mo97s.i~rb~nr~~~waiu&
$ ~ ~ f i ~ ~ ~ d ~ ~ h d d i ~ ~ d
ei7L~~mumdw-& (Mean or arithmetic mean of a distribution)
(Mean of a grouped frequency Mbution)
m~5mimadayalmu#a1n~ ~ i ~ h i n d i r add du nimdiradma~ni%rr~nu~~~ai~dr~uuh~1m L 4 ~ ~ ~ ~& dimwi~~~~naisaaodutrlsnim (x) ~os~uria: dbla$u 1 ~ITJ~N~OC!R ~~umni&aa:pfiufimuil (t)w a ~ r r i ~ z ~ u m n i a ~~UTU~OJP~"O~~ &A u6auan~agorriwu~ ihwauanimurma~ n%tlfl%l?8 ~ ~ 1 ~ ~" 7# d1H 0~ ~~â&#x201A;ŹW% ~l ~1" darja r r a t m t i r d l u n i ~ l ~ i "Nauamadn . i 2 ~c~wmui~mrmuma::~d dlbaau = w"2~did~iu ~mh~adm0d~;ai~1did* o 5 7 6 2 10 i111mAfl
l
%dflun7%~1di~adm~h9$~~d~~~a ~fiduaejiddardmrtamin1ajwnu~A~~oiuau"11m rriarEYuw%m~&luni%ii~at-wii~adu~9l&fi $dnmmasukzEYuwani&~dr9uhradd$u diradmmni%u~nrr~dmiu&~lil5n7&~dr9u dilm~.rrma~viifiu diibution)
~aaeiidrsiorm~i~~nnrr~~aa7ufirrwEYum~slia~u n i m i d i r a d e p f 1 a ~ ~ i ~ ~ r ~~~~n ~r ~u~s~n~rani u d iia6iidd r ~ ~ ~ a ~ a n i (nrrruu) s n o u aas~r41,laou w a u l m a d ~ y a ~ d v u m ~ u n i ~ ~ a d 7 " ~ a ~ ~ y a r ~1 aummfiaau zdi uRnu rc9upii1nJ ( x ) fiuaaiud ( f ) ~ m h i f i u ~~~zuan~a~mid~um r~&am14iraduimunis"L.ii . i 2w~~m~oJa'~ahmuh~u diraau = iIunArnhR
f i ~ i d r s i o~r 9 i ~ i ~ ~ r ~ n r ~ ~ ~ a i u f i i a h d ~ r 1 l i l ; ~ b i u a ~ mwd~o~~nmiuun~uMu"~diu"Iu~a,ni Ir4ar nismdiradmmni%rr~n~a%~rr~nwiwauan w n u d x v (XI
M
0
0 1 2 3 4 5 6 7
1 2 0 1 1 2 0 1
1x02x1= ox2= 1 x 3 1x4.. 2 ~ 5 0x61 x 7 1
Cf-8
-
-
0 2 0 3~ 4 10 = 0 7
I
~
I
Z ~ =X26
~~6a6iu~mdirduimu1$ ilL =& Z raqmnnudh~irnoJa'~yaumar~ ,
6~~7~daahrlazma~a~~rr~9d0dr~du~ni~ wflaaudau a4 2 #.*mda::Lwun& dirdu =
4~uwmlu&R = 325
=
8
7 ' 7 w w h w
=
60
~ i ~ a d u ~ a s n i s r n n r ~ ~ ~ d325 ~ ~ rdu u ~ i u a u ~ ~ ~ a = 56.99 (nwQuu8adi?rr~g) hraduk~irhzdiadrhiiuapd~u d~rr3hdmm ~ ~ ~ ~ a ~ & u ~ ~ ~ ~ l o r p ~57n l m W I m ~ dorjarriaz4m:rdd~u ar r ~ w Internet iinks L%IJ~~~KJ&J II'Ltld www.usbornequicklinks.com
~El1
I
i
(Measures of Spread)
mh1-
(Standard deviation)
Internet links d ~ ~ n 7 7 ~ ~ f l 1 7b?%,ld f l ~ : ~www.usbome-quicklink.com i~
I
-;1
.-!,
r,
&m%rX&
\l?
(To find the standard deviation of a
grouped)
=m
;A'
-
i*
(2y
l4~n8~nn~amuda:bum~n~~&~~an~di"11o~x ~~a:~4~~ni~~midnim~amani~~idi~~u~~uu u1m~~iu~1~h:imin~d~uln~~do~1"~~s"iio~~~~~~t~i Emhuaaiud (q =&9= = 2.83
6
Gaiaoeiiil~th m131~~~qn~~qd~lai8~d~~uubum3nia&
,.4
3
d i ~ a i u ~ o s n i s ~ ~ ~ n ~ ~3~ ~d ilm wu~wmu ~I~~~I~~LLB~~~I~~~A%"J"uD~~I~%~M~~w~""II~~
$9Lfilf% 3 + 3 = 6 ~ d d l ~ d u 9 ~ u ~ u l m ~ i u u ' 9 ~ 9
w~d'nnsiu"~~m~rnd~lu~a~i~~~u L ~ I L W ' U ~ S ~ W ~ ~ I ~ L L ~ i~oL2.83 LB~~"~WD~R~~ ~~~idi~du~~~~uuimaqiPdcbm~n~~:u~~ I. diuammidi x LLP:GI~JI~N~YEI f MI fx : IEL fx2 I
MSL~II~~UO~OUR u (Representing Data)
I
k:..:?a
~?gni%ld"i~au$o~afiau3$ni~b~(alnd~fiu ~ ~ a 9 n a u n " % ~(Pie ~ ~chart) w y ~ ~ 1'I ~ . Y~9119131db b e ~ ~ ~ l ~ d ~ l ~ ~ l ~ l ~ 6 1 ~ d 째 lba~p~1iduamd~a?8~&osn?%bb~nbb.~s6aiae~11~d7m~od 'bfi~~6 "3 ? i i n ~ ' ~ l j o n o i ~ n r o ~ f i n i d 6 r n n i ~ i ~ syrr~p4&d) uo ao~daufbdmnda~nau ~ o ~ o m ~~i$a~m'~uo~i~~~~id~ ~~a::$od bam~o::'b o:~3?~nimidiiioiw: b6udoyabb(alndidfiu~6 bammh1da"n7UTuP qzuo ni7bb am9LiUan"uorlS P
u#amahm ( Pictogram, pictograph or Y W
wnrgi$a~na~~~~am~wi~u::~~~i~o~
1-i
bt~~dibrmok@nwbdoua~~airrd aodnis~9nk94uer0d@~niwnls::nou6audodod ~w~~a~w~l"modo~aAn'im&T~u ~ a i u ~ u i m o ~ $ nuidhuas@ni~a?uisn iw Td~bamfiui~~$nnimodo~a
1&
Internet links ~
~
.
Y
d~
vmu.bcme-quicklinkcorn ~ u
~ - u (Bar * chat) a w P s a A M m(Component bar chart , aq~ui~ma~uak~~o~~uauouB~~ ~ a 7 u nbar ~ ~chart, ~ sectional bar chart or composite
. ~ r o ~ ~ d a : ~ ~ i~~ ~~i iot %~ ~ n ~ ~ m i u h o stacked \ ~ n i bar % chart) ~~~n~~~~ $odasszuonii~~~lp11l9~~fi4~~nmd0:17 ~ba:uodo~~nu x ua:Lmu Y Ua~sa~~Ua:~~i?u~"Lwuiraun"td
~~w~Ej~risa~ansdo~a~i~l~aud~i.rim-d7~~aa'~~~pi~ .~osu~uqEjrrifiia9ptrmq2a~isiinvijdua~rr~am
~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ u ~ % r n a ' i ~ t w a w ~ ~ ~
~~~~~i~daud~:nd~~d~dbbamdioy ~3uan'pdsrhm:d~~isum'a:~ri~~~aw~~~~odi~ b w ~ u ~ ~ ~ r ~ q ~ b b ~ d ~ a i ~ " I b ~ ~ Ldatw3B ~ u ~ ~ d b ~ u adlnnmd' u bWW#bLWndWCu #uw&oM~annn-di 1 n]s:mw multiple bar chart)
UTE
Internet links ~ ~ N ~ ' I ~ I ~ I'In"Ltli LUU www R usbome-qutcklinks.com <D~~
- f I'I
47
-.-
l*hd
Internet links L ~ Q \ ~ I T ~ ~ ? L U U Q www.usbome-quicklinks.cwn ~Q
I
mmm
I
am.
I
I I I I I
--1
I
I I I I I
I
I
d~q&ii~nh%din~~uadu~,
#maw Y
~
~
~
L
~
~
~
~
I W'I ~ R
~ ~ d i & % udddiaqinhh nii (outliers)&LLBW~&
hy N l a ~ d m % L ~ ~ m(* )i l& ~~bhr ~~~ ~MIU&
~
I
u
R
~
L
w
~
~
~
~
~
I
~
~
eC ( C o ~ o n )
h i I Âś d k m + d a h r n ~ (ul.of best fit naiu~u~~%::di~d791oipii~qaa~9~ nsidni% or reg* liy) s~am9 nsrqiu A ~1aiaasum~)1.diim~u~da::nii~s~m r4umainaus~os~am~n~idn~r~i~srar
krsq amr8o~agaaiiQur r u a l f i ~ d ~ d u a a ~ hanFukrn.IiJboyaan~qm u~~ dolm~~#~@ui;ain aoqmw'idq aosn%idnwn%r~iu a3un.di mmnw rfimauqinni%uos&auaiumi~ ~ 1 9 ~ ~ ~ m 1 ~ 6 7 ~ 0 5 n 1 4 mmrm ~ r u a T , ~ m m i i ~ r n i 9 " ~ m ~ ~ n ~ t ~a i u n s~Bi aP~i [ M " ~ n w " ~ ~ v e i l ~ m u ~ i ~ i r ~ ~ u a o ~ n i ~ " uriae&~rarainduiw"~~inn'~s~nu8~a~~ (90') Aunii i g ~ l i uuhains4u~auira$qmiiodgmddi~~~u uiwun'uTmudi~~8ufiuain~inr~nu x rrarknu Y d~ramsdisadwesdoq(artda::grm "
C
"
C
m!mC (Event) uiskriimk rtiu n i ~ I u u r u d w u m?a n~mon~nrhd~~narnGd
m
m
h
h (Probability scale)
m~mnia~~~~u~~~1a~riiduaaianiv:~~m wnd~&6ibnidw~fi~briuou~~~p1 1 ii?oiiarniu~nuii~::~~~~::floi~uiduda~ ~hrIu~u"rviifii~ 1 m i u i i q r ~~uvas~yni4su'~mifl~ 1 ~ i ~ m ~ d u u i(certainty) uwr ~ ~ m : : ~ h v a ~
~ ~ ~ 6 h : : ~ r i l i i d u ~ ~ ~ ~ uo L&u ~ d r v i i ~ ' u muiw::~fldw~znmu~fldid~vi7~~ o 6111~ l i i s : ~ h r n ~ ~ ~ ~on nnad~ ud ~ ~ S u l d b l &
(~ypesof events)
&%~~T&%wu&
bqdera (Single event) ~~ms~~du~mfiudamd~~~ua~miduh niaIglPd~w?u~d~+uq kMq&dkq&ukwqd (Compound event or mlJtiple event)
swqni~di~ilu%mn'ui~"~a~uinni7d~iah JglPd~w~uqam~+u~w3on~luu~~u~d~~w?uq uamonpn~ddqp
daub ( d i n a l probability)
na7U1414)tbhS
~drnlwmq~dam&~viifiu $
(Mutually exclusive
f m w h b 3 (Combining ~ probabilities) qmga ~
E
u Iz n gWII(
muttimon
and ~ l e ) ~
~
~
~
~
I
~
W
~
~
~
I
~
I
B
~
m"aoeiis~4u nis~iaai~pi1~:~~u"~o~ni~~4on~i~~~(il~ ~?oliT~iidoli4dna5minlidi%dd P(R W?O S %4% KC) = P(R) + P(S) + P(KC) P LLMU "W~I~~IQ:L~U"~OJ" R LLW " ~ L L A S " S LLwu "MTMdl" KC LLMM %iianon4nw IP~~I%H~~%IU~U 52 '1y !<19da~~fi3bbt?d 26 lu Iw'bwii 13 '6u ~ua:IiAdmoSn~iuiers1 lu Y
~ ~ w u
d~ P(R)
26 = 52
1
--
I . . .
7 --
-
),rt!q , ,
-'. y. -
-
-
-
4
D
4
.--
.-
. ...
--
- a 1-
r :
-
-
-
- -
.
-
.. L
.-
. .
-
-
-.- -
-
d ~ l d possible d
outcomes)
aa~w6drHacd~o~nm~a&o~h1iuau
rn?rmtldrfi&ua:~~qni~dd~~&~bha'a~~o bbh3aSz
uagdd~h1dkm~w~ni3dd~i5w~~~:~im~n ~irn~ufnl6&mald ~ o c i w ri ~i i~l u~ u. ~r ~ % ~ ~ ~a~vs"d9z~fJu 1 LM?UQ Idla' ao H ; T &I H d ~ f l a bur T ~ h K o u
fiiIuur~u~~es~~4u~r~auwwi~~flu1n~li a~~b&J&bh
HH, HT, M , l l
HHH, HHT, HM, HlT, M H , TKT. TM, ill
'Ui
sf== or probebility spclce) m31d~a@d~n~wi5drh~d'Lhmr~qmMu"floj~h (P-ibilihl
o^&fj &aotiwrTII.J rwqni3dd d ~ i 5 w l e l l h ~ruudl ~z Hmqn -
m
11
Intsmet link -
pbmIpb3f
L 3
4
I 5 b
IdId
I ~ ~ Z ~ T P Z L ~~ ~ ~U .usbomwq~i~klinkscorn
-
~~ (Currency) ~ ~ $ o m h l u h : : ~~du ~ ~uu~bhwamm ~[ frlmIu(Sak and senrices taxes) ~ m ~ o u a u 5 7 m ~ ~ 1 bhohbdu L a ~ m lh::blIff & I I .
4
l f ~ ~ a h ~ w4 w mdm: f i m m ~ h ~ d G ~ h A d u i u o u ~ o a ~ i ~ i ~ uarm~~ndi~um$uI~u 6ihiu
4Y
P
~ ~ ~ : : ~ ~ ~ ~ ~ ~ ~ M $ w ~ L L ~ : : M s E ~ % ~
-Lh
W~?UAI
(ValueAckkd Tax (VAT))
L5urh (InRation)
Y ~L~ierrrm~~~ba:m Pi&
das~aaid~ i3~nxcjhJq ti'u ~unl%amGu~fla b-iu ludjnqqwnMaimid5n (RPI) &?'mm ~dienr~~dmmmnmam~~bLa::~~nia ~IL*mm
4
pay As Yo" EBm PAYE))
n m k h h B a (credit rating) %-&~~~u~MAuAM~J d a::m~~IIiuh~wmu'L6~~a::h::aw~~~~~ ~ ~ ~ I ~ ~ I ~ ~ M~ ~" D~ Uw* W B W J R~ ~9::$nh U'~A~ ur.
&mi~ia~~a::nmiiuniaGuiwq ~iP,@flumafimh%
a M " ~ ~
,
8
'
1
0 . 0 4
wm~m¶f€l (Credi Emit) ~wm~dm~Amm:@aIhm~'m h ~ dd ~2aum ~ i w : : i m ~ i J u d i ~ ~ ~ i u h ~ m ~ ~ wCJIdrnin(ilI7"
*4h (Excess) 4iua~dhdn'im&::6~9iiu~hdih::riid bdu ~ama&::M-::&mufi oiw41~9~9rbAufiu 4wauh 1w dau&~~A iao d~u8fi~~ti~hnunSo~h8 ~a:u%~~::4iuGuw" L~oaw"~~un%'du
$a
'i
h m d h (Commission) mulM1%7nm~ah3m rdu nimiwsilmu~kd ~armnu~fln"d~~aBn~ud~~iui~i~::~m~Bu ~r~hhmmda&u16 Y
V
Y
kllmhmmet (Insurance premium)
~waufiu6~~ery~a:~u~~::~ubm
$aI~uah3liin13;unTm&5 &UOU H ~ U & mamd1rd~:~uwfa~in~amdwi~'bd~~aiu3~~a:: Us~uGunhh3
dicm&(creditcard)
-
Y'~~uni&ourJ::4iui~iewr&~ln~1n1nisi7u 3 $u~:~nar~a:dmrra:nanruumw:~mi~iu~$u~ ~0~W~ilsdilWm3oY'~shdii~::ouTu~m"m d d" h ~ ' ~ ~ ~ ~ a . s i
muhn-
bk -rPl
income)
(I-
~ ~ d i ~ n n i s ~ wor hn rui uqmshn midoms~nh~"~dPi7Jq
( u t r i bill)
fb&mmd&i&8&o@8u bdld hfha hl* ~m::dnr"nlmJi ~ u ~ a f s r h a m @ b ~ m:Pjubh&mC +qn%::u:~arnai~rGim
,
balance)
m b ~ b & t-(
Internet links do~n73~an15~3u jud111d www.usbome-quicWinks.com
%.
L
'.&.C.J - - -
-
-
-
a-& *; -b-- -
r+
It:
.-
--
- mk
-
-a&,--
-
-
h
- -.
:kvm :J 21
~
- -
-
.-
Aiyfinlm~niwlflamacd(Maths symbols)
{n) r%m
du A = 13, 5, 8) LLQZ B = (1, 2,3)
bdu 3 E
{3, 5, 81
g h ' iL h 4 @ (3, 5 , 8)
abfi (Index)
n
nisns31u (distribution) 96. loo,
n~rnsrddoumj(associative laws)
addition) 14. 15. 46 15
~
distributions) 100
m l ~ d a (cancelling u fractions) 17 n i s n ' ~ m C r n ~ a u d ~ ~ ~ : : nh i~m @ a a d u a t n i(trial ~ and h ' L s j r v i 7 ~ u ~ o w ' 1 \ r ~ ~ ~ i t ~ improvement) 79 nmmao~dism(pilot surveys) 97 (elimination of like terms with ccefficients not equal or n i r v i 7 r h Q ~ a \ r a ~ s(completing d
nflao\rrmR$fi (laws of arithmetic)
~
msrnn~rs\rd~7uiiutJ (bimodal
108.109, 110,111 nisnssiu (spread) 102, 108
nqnisaWkmnimn (commutative laws of
~
frequency) 99
101,102.103.104.105.106.
14, 15, 46
w
nisusnusdR?iuifaa\rn~u(grouped
n ' o u r ~ w ~(ante u meridiem) (am)
~
~
(trapezium rule) 95
nsau (cons) 56, 59. 68
M Z F I W ' L D ~ W ~(isometric ~ paper) 50
nTu (grams) (g) 72 nsirln1sns:s1uw'ioup1un1~ msnszsiu (scattergraphs or diagrams) 110, 111
~
opposite)m ~ ~
d
~
~
nisrhn$ (taxation) 117 nisriiYni~nw6au(indirect
(simpliication) 77
nisrrnuh (tu-on)
taxation) 117
nisrfiusmsado~a(collecting
curve) 64
n?sliirawdoqa (representing data)
data) 97
nisrrfiaums (solving and
105-111
equations)79.85-86
n1~LIif.I(enlargement) 44.52 services taxes) 117
n?.sduun~o&au~iwnda~uau,
nsihodId~adauIhodId (sine graph or sine curve)
63, 64
nrw;lni&~$w (graphs algebraic) 80-84
nslrlwnau (circle graphs) 89 nsd~mmr?al-~alur~a(s~eedtime graphs) 94
(box plots or box
-
and-whisker diagrams) 110
nn6mPiiuini5d (standing
curve) 64
ndm (boxs)llO nqu (clusters 98) n~u~7~iiuu~io$uq?uiiur] (modal group or class) 100
nduhoriw (samples) 97.98
niman (addition) 14, 15. 16 n i f i f l n (tallies) 99 n ~ s ~ u , u ? r u & d ( ~ r n a tarea) i n ~ 55 nisilarflmfiiiuu (rounding decimals) 20, 86
nis~fiu~rficnmisusnrrs\r (comparing dibutions) 102
rnsrdduuPi15oua:: (percentage
charges) 117 change) 28 nw~~i7~aru~aiu~uiuuus1n n w r d d u u r r d ~ ~ u ~ i ~ d u ~ r u u UIW~~W(changesin standard lalnrrrnu (calculating frequency from a histogram)
graphs) 64.
n?.sgruama+ (scalar rnukkiiion) 46
nn~@nsa"rtio#a (handing data) 96-115
ni59'wnidoSja (grouping data) 99 t-rrdh~um~(-in9 79
deviation) 104
n i s u M u m n 5 i d (variations on
107
ns7v~Godau~di~~1o\rr~nu~ww' nisgru (multiples) 11 (tangent graph or tangent
77.79. 81,
85.86, 87. 88, 89
ns~d~IsnIGodauTd~~~o\r m ? u w u , n i % d r n s (salesand
Idd(cosine graph or sine
m the square) ~ ~8689y nim"il$kqj!u$orji\rdiu
-1
rnsbrdad (transformation) 43-44 r n s f i i d (displacement) 43 msrsun8ads:nw (factors) 11.78 nisr~udo@alu~ndutJ(labelling pdygons) 35
nisa\r?@nsd(plotting graphs) 80 nisams7m (discounts) 116
n13m (subtraction)(-) 14. 15. 16 rnsn'mmm (translation) 43.44
n m 3 (division)(-)14 15, 16, 76 nn1Mosfu (naming angles) 70
(measurement)72-73
&@I
rnÂś%yu (measuringangles) 47 msmrrlubjnq~(imperial msaswement system) 72-73 m ~ l d % ~ a d 3 t n(drawing w compound loci) 51
rn3~3ht5a1snl3rnw(construction of oompound loci) 51
nnrrfiounb (refkction) 43.44 nnaA~1~~mrn'ouaunruw (glide
(kilograms) (kg) 72
n*IaLUcirr (kilometres) (km) 72
obrvation) 97
sampling) 98
ni~~datma ( cn o n ~ e n i ~ ~ ~ sampling) 98
n n ~ u n u u n ~(cluster u sampling)
UftU Y
~ n f i . I I o j ~ h ~ .(gradient I\r (m)
Ln'&uriuou (certainties) 112 (Y-axis)31
1LftU Z (Z-ads)31
unaou (gallons)(@) 72
U
ni.~QumT~an~ (quota sampling)
'1lulU (parallel)
30.33. 39. 41. 44.
45, 50,51. 57. 81 107. 109
~I~~UUWMII&WW
(mutti-
sampling) 98
nwuacm, diu1~nkeimk (back -to-back stem-and-leaf
96,
S o t ( a 1 3 W (quantitative data) t)?c~L+Jil&b$ (ordinal data) 96 %ayah (raw data) 96 ht(~~doLdaJ (continuous data) 96, 101, 106. 107
4ot(~dmniau(discrete data) 96, 101. n13LLNBd h-~rld?ut%%~)?a9'1~?~ 106 uln (stem-and-leaf displays or diirarns)lCB % ~ y q i q (secondary $ data) 96 *D~(FUI~QC@ (nominal data) 96 m5uaBds:u:mw~u~?m(distan~~ Q ~ o ~ ( ~ L(primary ~DJB data) ~ ~96 time graph) 73 $oy&S~unw~&a~nd nlmyu (rotation) 43. 44 displays) 108
m d f i e i m (finding ~ area under graphs) 94-95
wnudh%~b (dative frequency) 112
wd?prth@robabi~ity) 10,112-117 miuri79:r&.nro~mmao~ (experimental probability) 112 nnuriwr~t!u~w~ncqni~d (extremes
'IIWL.II~(upperbounds) 16 awr~nrj?J(lower bounds) 16 of probability) 112 Sqa (data) 96-97 n&: p? i l Jm- 3 t (total probability) Qo~mnrmvl(infomation from 113 wr#ni?p:thr#~ (-in9 graphs) 94-95 tya~%qcunw( q u a l i i data) probabilities) 114
96, 97, 108
98
25, 80. 81
m1u8 (frequency)(o 96 RTl~8t3:lu (cumulative frequency) 99
97
98
fl
L L m X (X-axis) 31
mrwn& (classboundaries) 99,
M 5 & b l ~ ~(interview) ni ~3d1m (surveys) 97. 98 nwju (sampling) 98 nl5Qkloti.IJLfiu.I:~11 (stratifined
49. 50. 70
~ i m ~ n (semicircle) au 51, 65.70 Pis'JrnJtl~u(hemispheres) 69 R?l%J? (capacity) 59. 72
mb?(spirats) 10
m 1 W (magnitude) 45, 46
reflection) 44
n i ~ k ~ (observation) nn 97 nrs&~n&d?tli?uu (participant
LLWaJsfU (ann~ of angles) 32, 48,
(computer
199 L~AFI (compass)53
ma~mii~dofio (credit) 116 R?l~LLdtlSlj'l~~ (variance) 103 A?IU011 (length) 72. 96
R ? I ~ L ~ (acceleration) 73. 95
mnuL~a(velocity) 73.95 ~ n u i i ~ fpias) i u ~97, 98 ~31Udl L%( s u m )112 P~~MUIU~U ( d ~ s i t y59. ) 73. 94.
95
Rouwfiw$iao~r%n (complements of set) 13
~oSa(chord) 65, 69, 70, 95 dlfiJflalJ&nrn& (mid-interval value) 99, 101, 104, 107
dlA~&(Constarrt)10, 24, 75, 83, 84
d l h (wages) 117 d1L~du(mean) 100, 101. 102, 103.
h?~~llrra? (natural a numbers)
104,111
d i ~ h m ~ n d i d(outsers) u 110
6, 12, 78
b ~ ~ r w ( up ahn d i i numbers)
~ I U I ~ (commission) I 116
~ i l d u 4 ~ y t l ~ ? o(quartiles) f [ ~ d 102
h.nuaqd @e&d numbers) 11 ~?u?u~emnu:: (ircational numbers)
~ I L ~ ~ ~ L U U U I W ~ ?(standard ~
deviation) 103. 104
dnl~zbmfin(place value) 6.9.
9
16,
19
P ~ ~ ~ s ~(Ma cpup r o w equal to) (=) 72
9. 66
dIl.404 (mortgages) 116. 117 ?flfilrqfl (origin) 31 ?~1~4na?~.ao4Ro5m (midpoint of a
i-iguLtsri3nb (coefficients) 75,81.
ga&mo4r8um4 (intersectionsof lines) 48, 49. 51
85.86. 88
r~~omuiuGounii (less than) (<) 90 12
U r h (money) 28.29, 116-117 ~ u r j 8 u d n (personal ~ ~ ~ a bans)
117
billu (sides) 34, 35. 37. 49. 60.62
E7iu-n (hypotenuse) 45,60 6ilu~~~billu (included angles) 37 B~~UBIUBIUU~~$~I~LM~UU~UQI~
(Pythagorean triples or triads) 38
Tmrw (domain) 92. 93 bw4?urdu? (codomains) 92
?a#murmY (y-intercept) 80.81 gfl#flmrmu X (x-intercept)80
cl
?muom(vertices)(sing.vertes)91
h (tons) 72
9@14?~5r~lU (coplanar points) 30 gFd?ul&Wld (collinear points) 30 gfl~u8na1~4lm?4nau (centre of a
m%rdw'
circle) 70
?fl&I$B (point of contact) 71
(trigonometry) 60-64
m & m (piece-work) 117 hg(u (multipliers) 28.29 #?gm~?adhu(common multiples) A.5.U. (LCM) 11
&dsrnwmsgcu (multiplying
117
thh(principal) 28 ~d6i%q~nwad~:TumnS
asnrh (interest) 28, 29, 116, 117 6iIihltnl&7 (retail price index)(RPI)
chord) 70
~ I ~ ? J L ?(overtime) ~I 117
r ~ ~ o m u ~ u i @races)({ l n n ~ }) r~dou4(motion) 73
C1
factor) 29 (mutual
(averages) 73.99.100-101
funds) 117
r h d o (inflation) 117
hd~:nourilvu~: (prime factors) I1 h d l t n ~ d l : @ f l ~(identifying ~ factors) 85
&TUG (hours) 74
i)
#?dlrnauj?u (common factor) 11. 24
11u~ri1~dqd6~u (Pay AS YOU Earn) (PAYE) 117
4 1 ~ (number) 7 ~ 6-31 ~lu?ui184~04 (square number) 8. 10. 21, 38, 78. 85
blu?uri?~4alu(cube mumber) 8 blumd (odd number) 7 blu?u$ (even number)7 4711x444 (real number) 9. 12.92 b~u?udu(integers) 6, 12, 19 b 7 ~ 3 ~ (amemth kb number) 6 bluaudrh (excess) 116
6ar~d.r(variables) 75. 79. 80, 87. 88, r%m (sets) 12-13, 92, 98
r~mtiat~lo~u~vm (subsets) (C) 12, 13. 92
rm+N (empty sets) ({ Jor a 1 2 ~mfiu~ml (centimetres) (cm) 72 rauw'fim.r (centiliies) (CI) 72
90
hmiiUd16q (significant figure) 6, 9. 16, 23
& ~ i ? r f f n a l u(three-figure ~l~~~ bearings) 53
#?r~kt(numerators) 9. 17. 18. 62 #?cj?u(denominators)9.17.18
qlufiuu (mode) 100, 108 qwao4 (base two) 6 g d u (base ten) 6
h i ? ~ (The n highest common factor) M.5.N. (HCF) 11 m ~ n ~ n l m(contingency l tables) 99
mlnd6fQanw(two-way tables) 99 1difn-d (under a graph) 94-95
rn18~( i d e m ) 75
n
d u J h (midnight) 74
h o cup (u) 13
~ V i l f (equals i singn)(=) 79
ui%ni12 dalw / u19n1 24
n3am:uQn (cylinders) 58. 67 wr4naa.I (spheres)59,69 n.sdr4n~1k(heptahedra)40 n~ahrwaTm(Platonic solids) 40 nsdudnvrii~(octahedra) 40 n s d d W (icosahedra ~ 140 n~dhn~~MZi7 (dodecahedra) 40 n3a8UMSil (decahedra) 40 n w d d i ~(tetrahedra) 40 n s d d ~ ~ i u u ~(cuboids) m ~ n 41.58
Euler's) 40
n~aFi?lNh:Lh (theoretical probability) 112
nqr~jwra~dn11nT~ (Fythagoras' theorem) 37, 38,45, 60,68 nHfiuu(decimals) 6. 9, 19, 20.27. 74, 102. 112
n d (reaming ~ decimals) 9.19 nffl%td&l (non-periodic or non-repeating decimals) 19
nfI%d@~
(non-terminating
decimals or infinite decimals)
u"m%I
(weight) 72
expressions) 75, 76, 77, 78. 79. 90 $2 (inches)(")72
L ~ ~ N L % ~ (tessellation) L& 36, 39
114
wadrTidUhdq (successb~ outcomes) 112
bJa3aU (sum)(Z)14,38, 55,101 praiTwjtr8'(quotient) 15
~mt%dthW (possible outcomes)
UU?8dM~QLLU?h(vertcal) 30, 31,
50.95.106.109.110
rruaum (horizontal) 30,53. 81. 84.
115
~raranrmoS(resultant vectors) 46 W U ~ ~ ~ Q U L (pension ~U&
schemes) 117
95,106,107.1 10
c d (accounts) 28, 29, 116, 117 ~ d 0 0 ~ % (savings 6 accounts) 117
rrwd (maps) 53 u w k (plans) 41 u m m w r ? u u ' (Venn diagrams) 13
rrPlwJ$nd(pie charts) 105 rrwfl$rrviJ(bar charts ) 99,106.
h7dllim'lu (charge cards or store card)116
lh3%7~h1 (stock markets)ll7 lkflnu'u4a (recording data) 99 L&IJS:~U (insurance premiums) 117 ~~iJ~$~(bisectors) 48, 51
~~lIll6fwnIx (questionnaires) 97 ~ u u ~ ~ d l a l a l 3(utility q d i bills) ~ 117 ~ d U r & U ( binomial ) 75. 78
107, 108
~~PnrrJij~~hr&"m (muh@te bar
1106
rrprugijuhn'?uds:n~u (component bar charts) 106 ~~wug~~~hn'awd'~:nw (sectional bar chart) 106
umqiirrviJn'auhtnsu (stacked bar chart) 106
pictog tog ram or plctogaph) 105
n H f i ~ N w(finite decimals or
fiffn13 (direction) 53 flml (theta) 60.61
Pld~~idU (outcomes) 112. 113,
~ U ' ~ & R $ B (algebraic I
19 terminating decimaJs)l9
pmgCU (products) 14 prehd (diience) 14
h184 (1'2124-hour clocks) 74
W ~ J l l d (hexahedra) l 40
rnma~uwCi(polyhedron) 41 n~filM(il1(pentahedra) 40 nrpt@o\twu~aos' (EIJI~~ theorem)40 nq$ojQD~Lâ&#x201A;Ź4& (theorems
W bJR (result) 92
U (minutes) (min) 74
n
rddrfh6 (percent) 27
u w ~ i j @ w (ideograph) 105 d33ln3 (population) 97, 98
U%.I(prisms) 41. 58. 67 fiulOl3 (volume) 58-59. 94. 9 5 dm6 (pounds)(lb) 72 ~flddb1di(impossibilities) 112
L~P~U~~~IU~~~~M~~UP~~~MW~
(flow chart or diagram) 92
8lIWPIOd f (image of
WdM"ldLmu'oufb(un1ike terms)75
ws~dLm8ouh(like terms) 75 wlu (pi) (Tr) 9, 19, 55, 66 w151~Ual @arabolas) 82 wiIuTmu (palindromes) 9 d8tWod x (xcoordinste) 31 fifiWB0d y (ycoordinate) 31
fifiGW&~k(~srtesiancoordinates) d n ' q ~XY (coordinates XV) 30.31 f i 8 B ~ l n(rectangular coordinate system) 31
fhlfl (pints)(@)72 fl8~0Jn13~9nLL94 (range of a distribution) 102, 108. 110 f i f l t J 5 L M ~ l J ~ ? 0(interquartile ~6
range)(lQR) 102. 109. 110
%mfiii(~ (algebra) 75-95 dltfin (pyramids) 41, 59, 68 (area) 55-57.68.69
&Aij?(su&ce
-)57
%& (functions) 92 fi~& (functions) (9 80.82.84,
fi~&L%d%~~%(circular function) 60-64, 93 functions) 60-64, 93 (composite
~m(feet)(sign.foot)(')72
a?@(mass) 23, 59, 72, 73, 94, 95,
y m ~ (interior 1 ~ angles) 34.35,37,
96
dfju3.l~ (median) 100, 108,109, u i n n i i (greater than)(>) 90 ulmmd?u (scale) 52 fi6 (dimensions) 31. 41, 54 f i a h f u (milligrams) (mg) 72 ~ ~ A ~ U J B(millimeters) IS (mm) 72
fia%mS ( m i l l i l i ) (ml) 59. 72 fiaQ?u$i (milliseconds) (ms or msec) 74
50. 71 Y U - ~ U (angle-angle-side - ~
(AAS))
38 ~ u L L(&emate ~ ~ J angles) 33
y u w (negative angles) 32
~"U'QJHI
(null angles) 32
yuguU'mwl(zer0 angles)32 y u E J ~ " 7(dihedral angles)40 yuLLMau (acute angles) 32, 35 bum3 (metres) (m) 72 ~P~OL& (discontinuities) ~J 64
yu (angles) 32-33. 48. 53.64. 105 yunn'u (refiex angles) 32.35 yu@apil$q (pairs of angles) 33
I r i r h h (not equat to) 90 'lu"[w3umnud (protractors) 47, 49.
rfUNu(elevation) 41
I r i i n i t ~ I u n ~ o (noclaims ~hd
50.105
% ~ J w u ~ ~ u & (side J elevations) 41
bonus) 117
~ ~ L d ~ (front f i lelevation)41 ~ ~ l yualn (right angles) 30, 32, 41, 48,
'lu6 (miles) 72
50. 51, 56, 57. 64, 70. 71 angle-hypotenuse-side) (RHS)
yumu (flat angles) 32 y u m ~(straight angles) 32 yu*1urru* (vertically
undirSJaoa (squaring) 8 uom (apex) 41 uoa~3u~mBo ( balance ) 116 u o a h (frustmm)41 ~Lfl~.lloJL~.er~1 (union of sets) ~ L I % ~ I ~ L % H (union of sets)(U) 13
opposite angles) 33
n 8llFi8WB'Jld (cross W o n s ) 41,
ydLfi~30u?~.nra~?Jnnu(su~ended
angles) 33
nim8m?iJ~on$ (uniform cross-
yULh%% (adjacent angles) 33 yuilllJ (obtuse angles) 32.35 angles) 34. 37. 71
yU&luu'u~~ (corresponding
58,69
angles)33
%pllfJUDfl (exterior or external
38
~&mancu2W (trigonometric
33, 37
y u r h r n ~ s a ~ q w(supplementa~y n
u
y u m n h m 5 d i u y u ~ i n(rigtit-
92-93
fld&dstnou
n d (taxes) 116,117 d % a i I ~ d (Value u Added Tax) (VAT)117 nhft-1u16 (income tax) I I6.1 I7
110
31
&M"
9 92
angles)70
yuY3n (positive angles) 32
section) 58
yd3:nw (complementary angles)
3aua: (percentages)(%) 18.27. 28. 29,112, 116, 117
b u a z h n h (reverse percentages) 27 5 3 l l U (plane) 30, 31, 43
5ZÂśJlJ6JflCp72(irnperialunits)
3mII84nfp (imperial units) 72 5rumd (distance) 73 ffig (radius) 51.57,65, 66,67,68,69,70,71
n d a i u (roots cube) 11.22 51ul6 (earnings) 1 16 5iul69inma~r2u(investment
$&IBD~R~W (dodecagons )34
f l l ~ ~ i r n d u(quindecagons) u 34 gr~aurnduu(decagons) 34 $~lldmrnduu (hendecagons) 34 $d~ndU~(quadrilaterals) 34.39, 71
$drndusmnrur~un~u(rhombuses)
iiM1yw't-d(fibonacci sequence) 10
kl-(~itres)(1) 59.72
+,58
~Rlliflfi(cubes) 8,
~ R $ W(arithmetic) 14. 15,16
L&~'IRYJ (indices) 16.21,22 r d f i l ~ ~ m d (fractional au
income) 117 ~ I U ~ % ~ M O(net J Wearnings)
indices or exponents) 21.22
1 16
~ ~ J ~ L M ~ U ~ ~ R(trapeziums) IJMY 39.
nuhEmum (gross eamings)ll6 siul6d~r&r#Bu(salaries) 1 17 $rfiirnduu (nonagons) 34
;~lirnduuscq~a (squares ) 36.39,
$21~61~(similar figures) 44
$drnduuyuain (rectangles) 35,
$L&LM~UU (septagons) 34
LEn'L.Gi(il (digits) 6
rmunriik (powers) 6,16. 19,21.
57.94 56
39.56,67
n.76.84 uarng (and rule) 114 I n k (loci) 51
$~%i~duu (heptagons) 34 $ummm (m inthew) 97 $~rwRnfi(gradient form) 81
pnrnduu (hexagons) 34,
3
ph~alurndux(polygons) 34-35,
adnflu (circles) 47.51,55, 57.65-
$ L ~ W L M ~ U(octagm.) N 34.36
$ ~ W I U L M ~ U ~ R O U L(convex ?~
?A (ellipses) 69
(function form) 80 $daurnbu (icosagons) 34
pol~gons)35 ~aiurnduudi?urni(equilateral
w r h (brackets) 16 aa~?uu(compasses) 47,48, 49, 50.
@I%I
$in (kites) 39 $~~4$fi(t~0-~Jimensional shapes)
30
40.41,50. 55,56.57,107
polygons) 35
$naiurndu~a"7tlbrrii(scalene triangles) 37
- t
71
%J (days)
74
~!$LLVI!
(unitary method) 26
klfi(sector) 67.68, 105
$ n r ~ ~ ~ d u(triangles) bl 30.34. 37-38,56,60-63
@murndunini!
@am~nduu+u(~hinesetriangle)
~ a i u ~ ~ d ~ ~ u ~ ~ i i ( e ~ u i aranrmnf n ~ u ~(vectors) ar 43. 45-46 Pol~gOnS)35 ranrm~f~oiTu6 (column vectors)
10
grJmu~nduuhum7tl (parallelograms) 39
~umdu&'I~~iu~nduu
(regular
pdygons) 35.36.40, 41,50
$naiur~duwr~nau~~u(~clic polygons) 34.71
$naiurnduur% (concave
yuain (non-right-angled
~ h n d u (pentagons) u 34
triangles) 62-63
~sp'lR(iiW
~murnduniiania(Pascal's triangle) 10
31J~urnduuyu~in (right-angled triangles) 37.38,45.56. 60-61,70
$ ~ I u L ~ ~ u N ~ U ~(obtuse]IU angled triangles) 37,56
%~r~iurnduuyurrnau (acuteangled triangles) 37
(geomentry) 30-31, 32-44,47-50.51.52-54. 55-57.58-59.60-64.65-71
â&#x201A;ŹI aW (reduction) 52 hKu (sequences) 10 h K a u i n i (order of rotation (4)symmetry) 42
h n f ~(Whiskers) j 110
45
am (time) 73,74 raairdw (noon) 74
raw (remainder) 7,15 rfldBu (complex fraction) 18 rflwd%~(fraction) 6.9. 17-18.19. 21,24. 27, 112
rflwdau~&~#ua(vulgar fractions) 18
~ f i w d ~(decimal ~ ~ ffractions) i ~ ~ d a u d r m h (equivalent fradb~)17
& k c, -
r~ktdmuM"(proper fractions) 18 r~ktd?~'Ldr~fi(impro~er fraction) 18 ~Hdaubrrfi(top heavy fraction) 18
arnf~?i;niduicuarnmf(scalar or scak quantity) 46 alwu (stones)(st) 72 an1unisdni~~3u (statements) 117 a86 (statistics) 96 nunis (equations) 60,61, 79, 85, 86, 87. 88.89. 90
d?uTfidon (rnajorarcs) 65 h u l & g m i ~ f(cubic i curve) 83
85-86.89
88. 89. 91
EJUnlmnau (circle equations) 84 numstlm& (simultaneousaquations) 87-89
mdanWhmn (mdmtecorcel;bion) 111
8qnsdnwk (mapping notation) 92 ~ Q ~ ~ " & E N L ' P I W (mternotation
69.
82
(m notation)
8~tlÂś&u7Hl~d
or rotational symmetry) 39, 42
-
a u ~ m a (refle'on = ~ ~ SYmmetV or reflective symmetry) 42
8qnsnI~anrmoi(vector notation) 45 8~cnt~ (inequality d notation) 90 t g h h (proportion) 24. 25. 26, 52. 98. 107
a.@m* 110
1-
dauncjir (reciprcd) 18. 76, 77 d?~%whmau (parts of circles) 65, 70-71
d m l a ~(arcs) 47. 48.49. 50.65.70 d?~Tfi~aoo~ao~%d (quadrant arc) 65
d3u~fi~&htnau(semicircular arc) 65. 70
d ~ u ~ (curved ~ ~surface d ~area) a 67. 68
fi8;111%1~ (lateral faoes) 41
dau (debit) 116
d d j 6 (one-dimensional) 30.31 num (cap) (n)13 nyumiudwiCni (clockwise) 32. 43
8lJ(edges) 40 gmd (interviews) 97 (-triangles)
nyun?uduuifini (anti clockwise) 32,43 W V ~ O Y(whde turns) 32. 71
nj'ioiy (or rule) 114
37
hu:lwrlsains (census) 97 ~fiuT~~~&fii& (exponential curve) 84
~ J ~ ~ ~ D J L (elements)(E) 'PIW 12, 13,
m'nlh~ou (hundreweights)(cwt) 72
d h (faces) 40
nL l &OIMUw&
auuiBl~nlmyu(rotation symmetry
H Mliamrmrndn (mof measuement) 24, 55, 58. 72-73, 74
26
P r o m ) 44 SblNIBlS (symmetry 1 37, 39. 42,
r h ~ u ' n(zig-zag) 110 uam~murYu~s"s~-Mii~8n~s (trinomial expressions) 75
kd~m% (direct proportion) 25,
r~~%mbrr21srls?u (invariance
L ~ U B (mirror ~ M ~lines) 42, 43. 44
111
21
~ u n i ~ ~ f i(linear d l h equations) 81,
34. 55. 65. 66. 67. 68, 70. 71
65
dau$dr&Id (slant heigh) 41 ,68 nut8fid (correlation) 111 m8*bfiwin (strong cortelation)
of sets) 12
aun13fii~a~d (quadratic equations)
92
(mino-)
tinil&&
rh3wad (perimeter) 55 rh3ou3JaoJ3Jnau (circumference)
(directed lines) 45
18u~id(line) 30, 31, 32. 33, 34, 48 71
r f i u ~ ~(msversa~s) rn~ 30, 33 ~hnAnofJ(regression line) 111 l h L L ~ d q ~ "(long ~ 3 dia-141 ~ h n u u ~ q (short u h diagonals )41 L~UM:UW~MOJ$MQIULH~UU
(diagonals of polygons) 34. 39
M&L~U\ITU (post meridiem)(pm) 74
Ma1 (W&)(Y~)72 3;?% (arrowhead or delta) 39 ~ n q n ~ (events) sd 112. 113. 114. 115
LM?~I~~U'L%I? (single event) 113 ~~qni~~h:~i~iAaimi~::r~~vi h (equiprobable events) 112 ~ ~ ~ ~ h f l u ' I ~ J '(possibim L8;hu~ space) 115 ~nqrndn%~fi~liauKu (mutually exclusive events) 113, 114
~ $ u l ~ ~ d ~ j d(perpendicular ~ ~ $ d ~ l n ~ ~ ? r n ~ (dependent ~ g a 3 ~ bisectors) 43, 48. 51 r&u~IUgu&n@ld (diameter) 55,65,
66. 69, 70
events) 113, 114. 117
~ n q m d(random j ~ events) 113 ~nqtn~dEa3:(independent events) 113. 114. 115
3
.spuawwoml a! sqs aqa 6 u ! s ~ o ~ q 40 alnsal e se papeolu~opaq Xew ley1sasru!nAq pasne>ssol l o a6ewep Aue lo) &!l!qe!l ou aney II!M 6u!ys![qndauroqsn'qa~ay3 uo leadde Xew y > ! y ~le!lalew weln2>eu!lo'an!sua#o'ln~wleya alnsodxa Xue lo) l o ' u ~ oU!ueql laylo aa!sqaM Xue 40 aualuo>l o r(l!l!qel!ene ayl 104 A!!!qe!! adam lou saop pue ~ I ~ ! S U O 3ou ~ s! S 6u!ys!lqnd ~J auloqsn .sa!lluno>~ayiopue sn aya u! paraas!6ar1.>ul'e!pawolmWjo n(rewapeJaa1eanenny>oyspue yselj .sa!lluno> laylo pue Sn ay, u! puas!6a~ "XI] 'n(lowaNlea!j 40 yrewapeq palaas!br l o ylewapea e s! laXeld auoleau .sa!Jluno:, raylo pue sn ayl u! paiaas!6a~">ul'lalndw02 alddy p qJewapua ale awlyyng pue ysolu!>ew n(rewapwl
'le!JaleW a>np~Jdal O l UO!SS!UlJad pue UO!lnq!JlUO> J!ayl lOJ paula>uo>slenp!A!pu! pue SUO!I~Z!U~~JO ayl oa 1 q w e ~aJe 6 uays!lqnd aqJ.'uope>y!aou 6u!~ol!o)'uo~!pa alnay Xue u! s!ya 4!a>a1o l lago slays!lqnd aqa1pau!wouaaq aAeq saq6!r Xuejl yooq s!ya u! le!laaew a y l p uaploq lq6!1Mo> aqa a > u 01 ~ apew uaaq seq u q a han3,
19 (
~ n ~nblWllr\Q!&$QLlng )
19 (~033n) ,yr\Q!&$QLlng
911
(saw e6wwxa) ~p~t?iirurw_a
19 ( u r n ) ,nrp~r\oqo~ing ZL ((zo'y) muno p!ny) w ~ u r \ o q m o PZ @!w
ZL (20) ( w n o ) p o o
wpiynbs lo so!@.~p n b )
zv
tyyi~tU.pLrujokunLpLrq
s 11 (SPPO)Guup~.pr~ubui P8 ( s m ) LBQQMlq
Q
~
(4 bid@)LtABQ11 ~9 (wwldw) ukjwnnoii 09
EL 'ZC
(a)(-
m ! u n ) gWIkunrQ1
~
u
~
vz (uJ:u) (o!w)
LO1 (wmm)RLUllupg
J!
B
~
~
( o w d m ) wLnn!m
06 (hpnbau! alqnop) tymmunsa 06 (4@nhu! ~
~@uo!gprnun) Q L ~ ffilnoppwLunkzo c L ~ B
tU.flLWB
06
EL (wads e 6 w ) npoitkiLr@,g (hpnbeu! @uo!gpum) r&lnnftrLun!m 96 'vL 'W .9v (Peads) qlu* 16-06 (sewlenhu!) LLU~PQ 9 11 (tldV) (em
Z )!Jl'4~ 4 !(
pnum) c~+:rpyngippiuleno~
L c c (saw =-!dl 8Z (wW!
y ! d u y
lo MW) flpUQULLIB$
yn-p
ZE c ) ( m b P ) LB@Q
(?