Zero Emmision Building Rigakaai Gent

Page 1

RIGAKAAI GENT Zero Energy Building 2012

M. Margarida Pereira

Thomas de Roeck

Lise De Pauw

Hannes Vandamme

Thomas Depreitere


CONTENT

A

SUSTAINABLE CONCEPT _ Thomas Deroeck

C

LOW TECHNIC _ technical equipment of the building _ Lise De Pauw

F SUMMARY

introduction to the site mobility masterplan schading diagrams construction method compartments & zoning

ventilation strategy: scheme, plan, section + calculation sheme: winter - summer

total shemes

B

SMART BUILDING _ the materials, shading, passive cooling _ Hannes Vandamme

plan 1/100 plan 1/50

heating system hot water system integration of the techniques control system to save energy rational use : saving system > water: shower, sanitary, rainwater + plan & saving system > electricity D ZERO ENERGY and ZERO IMPACT _ M. Margarida Pereira

calculation energy demand + compensation (1 year) calculation water demand

section AA’ 1/50 section BB’ 1/50 section CC’ 1/75 section CC’ 1/50

daylight concept: interior image

complete sheme green energy

wall construction diagram (materials & certificates)

E

ZERO ENERGY = PHPP CALCULATIONS _ Thomas Depreitere

detail 1 1/5 detail 2 1/5 detail 3 1/5

verification

elevation west 1/75 outside

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

2


INTRODUCTION TO THE SITE Location: Rigakaai, Gent Context: Harbour, industrial

Sustainable decisions: Placing the building inside of an existing hangar. The design will take the profits of an already covered space which has a stable indoor climate. Environment: Construction of a module or prototype that uses the existing structure as well as the prevailing materials materials at the harbour. Therefore, the construction is based on reusability. This decision has a good impact on the environment, not only in case of the resources, but also about their transportation. Society: According the present situation, the harbour is just a working place. So, this new building is seen as an opportunity to attract more people to this site and play an important role on the social interaction. Moreover, since it is a zero energy building, it will also educate people about these issues. Economy: New people visiting and coming to the harbour and use of existing materials without any add cost of transportation to built the new design module have also good impacts in terms of economy. Eventually, this can be a start point to the development of the area.

Sustainable decisions: Placing the building inside of an existing hangar. The design will take the profits of an already covered space which has a stable indoor climate.

Environment: Construction of a module or prototype that uses the existing structure as well as the prevailing materials at the harbor. Therefore, the construction is based on reusability. This decision has a good impact on the environment, not only in case of the resources, but also about their transportation. Society: According the present situation, the harbor is just a working place. So, this new building is seen as an opportunity to attract more people to this site and play an important role on the social interaction. Moreover, since it is a zero energy building, it will also educate people about these issues. Economy: New people visiting and coming to the harbor, and use of existing materials without any add cost of transportation to built the new design module, have also good impacts in terms of economy. Eventually, this can be a start point to the development of the area.

source: A+221

Location: Rigakaai, Gent Context: Harbour, industrial

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

3


DESIGN DEVELOPMENT Main program: info point/ waiting room The harbour is a place mostly used by the workers, and disconected from the city. Habitants and visitors don’t have enough information about the occuring activities. Therefore, the creation of a point of information and a

waiting room for the passengers of the boats seems to be the most apropriate program to this environment. The idea is to bring more life to the harbor, that it becomes more than a working place, but also a social area. The rehabilitation of this place pretends that it is another interesting part of the city that should also be visited.

ZEB space: toilets, boat reception, office Interior waiting spot, cafetaria, not heated Exterior waiting spot, covered

principal idea

Area each part: 148 m² Volume each part: 1048 m³

Carriageworks Performing Centre, Tonkin Zulaikha Greer

volume completely inside

volume completely outside

> problems towards sufficient heat gains

> footprint existing and new is not in balance there is no use of the (empty) possible space inside the existing storage hall

option 1

option 2 M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

SESC POMPEIA, Lina Bo Bardi (1977-1982)

volume partly outside the volume + opening of the west facade to have sufficient heat gains and light + integration of passive ventilation sytem in the existing storage hall option 3 4


MOBILITY 1. site 1. site OMA oude dokken project 2. OMA oude dokken2.project 3. Dampoort 3. Dampoort 4. Sint-jacobs 4. Sint-jacobs 5. Korenmarkt 5. Korenmarkt 6. Zuid 6. Zuid

1

1

2

2

1

1

2

2

2,1 km

2,1 km

4 4

4 4

5

3

3

5

5

4

4 0,6 km

0,9 km

0,9 km

3

3

0,6 km

Bicycle route Bicycle route without bicycle path without bicycle path

5

Bicycle route 2 km

6

6

6

6

2 km

Bus 73: Bus 73: Gent - oostakker - zelzate Gent - oostakker - zelzate Bus 6: Bus 6: Gent watersportbaanGent - watersportbaan Mariakerke Post Mariakerke Post connection in the future? Possible connection Possible in the future? Bus stop needed

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

Bicycle route

Bus stop needed

5


M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

ROADSIDE

WEBA PAR K I N G

SIDEWALK

BIKELANE

BIKELANE

VLIEGTUIGLAAN

BIKELANE

VLIEGTUIGLAAN

VLIEGTUIGLAAN

FRONTSQUARE

VLIEGTUIGLAAN

R I G A K AA I

BIKELANE

R I G A K AA I

SIDEWALK

ROADSIDE

STREET SECTIONS CURRENT AND FUTURE SITUATION

WEBA PAR K I N G

6


MASTERPLAN

covered bikeparking

entrance

Jakob Van Artevelde boat

parking 66 cars

new bus stop

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

7


SITE PLAN

trees closing the square to the street side and ‘watercatchers’ for infiltration

covered bikeparking

waterbassin for rainwater from the bikeparking (and the square)

entrance

frontsquare (fixed gravel paving for semi-infiltration of the rainwater)

solar powered streetlights next to benches

skystream small windmill

busparking (concrete paving)

new bikelane

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

8


SUN - SHADING ANALYSIS EXISTING HALL

Only during the evening hours, there will be direct sunlight on the module. There is opted for this solution to manage that there will be enough daylight inside the waiting space. Also, the opening of the hall with a curtain wall gives a possibility to have a visual relationship with the harbour.

glazed surfaces at east and south side (+ horizontal) need shading devices to reduce the amount of possible overheating 8am

10am

12am

14pm

16pm

18pm

footprint: 138m² (100m² inside the existing building)

curtain wall to have sufficient light inside the existing building + view on the harbour

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

9


CONSTRUCTION METHOD 1/2 putting together on site open space module

technical module

open space module

public toilet module

OUR ZEB COMBINATION

longer...

source: E-Cube Ugent

OTHER COMBINATIONS

Flexibility: The design consits of different modules that can be easily moved and put together on site. It also gives the possibility to combine different parts and have another unit

unheated...

putting together on site

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

production/ testing area

10


CONSTRUCTION METHOD 2/2 Construction of a module 1. Woodframe structure 2. Floor construction 3. Wall construction with Rockpanel 4. Roof construction 5. Placing of the window frames 6. Placing of the ventilation/water/... pipes 7. Placing of electric cables

1

Moving the module to the site

4

8. Positioning of the steel stands 9. Placing of the modules 10. Connecting of the modules 11. Placing of windows 12. Installing all technical systems

5 11

12

module 1

module 2

module 3

8-9

module 4

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

11


PLAN 1:100

By its integration into the existing storage hall, the visitors also get a view on activities that are normally hidden from the outside. As such, the design activates a broader field than just fulfilling its main function as being a meeting point for the boat.

the design stands open to new uses of the space for example: it can act as a meeting point, exhibition, small theater,...

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

12


ZONING & TEMPERATURES

the toilets are placed outside the thermal envelope to fulfill the PHPP requirements threated floor area becomes: 84m² the design takes the profits of being constructed inside the existing covered space

INSIDE NON HEATED ZONE [aprox. 15º]

INSIDE HEATED ZONE [aprox. 18º]

INSIDE IN BETWEEN AREA [aprox. 13º]

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

OUTSIDE [aprox. 10º]

13


PLAN 1:50

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

14


SECTION AA’ 1:50

In summer condition, the windows in the roof of the hall can be opened to establish passive ventilation.

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

15


SECTION BB’ 1:50

PV panels & sun collector

Solar shading is necessary to reduce the amount of overheating resulting from the PHPP calculation sheets. The system works completely automatically and adjusts when needed.

The wood panels can be opened in summer condition to provide sufficient passive ventilation in the existing hall.

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

16


SECTION CC’1:75

modular wall construction

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

17


SECTION CC’ 1:50

necessary for this horizontal glazing to avoid overheating of the unit is the use of a screen

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

18


ELEVATION SOUTH (EXTERIOR) 1:75

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

19


‘ Waiting on the boat, Harbour Ghent ’

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

20


WALL CONSTRUCTION

ROOF TILE

15 MM

AIR CAVITY

100 MM

EPDM LAYERS

CORK

10 MM

3 MM

OSB PANEL

18 MM

AIRTIGHT LAYER

0.6 MM

VERMICULITE

30 MM

CELLULOSE FLEAKS

300 MM

OSB PANEL

18 MM

AIRTIGHT LAYER

0.6 MM

AIRTIGHT LAYER

0.6 MM

OSB PANEL

18 MM

CELLULOSE FLEAKS

300 MM

AIRTIGHT LAYER

0.6 MM

OSB PANEL

18 MM

ROCKPANEL

18 MM

ROCKWOOL

150 MM

OSB PANEL

18 MM

AIRTIGHT LAYER

0.6 MM

CELLULOSE FLEAKS

200 MM

AIRTIGHT LAYER

0.6 MM

OSB PANEL

8 MM

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

21


DETAIL 1 1:5

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

22


DETAIL 2 1:5

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

23


DETAIL 3 1:5

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

24


WINTER

SUMMER

2/month boat trip on saturday sunday closed

USEABILITY DURING THE WEEK

1/week boat trip on saturday sunday closed

week 142 days - 5 holidays = 137 days

week 132 days - 5 holidays = 127 days

x 137

permanentie

x 127

permanentie x8

x4 or

or x8

x5 or

or

public transport

public transport

use electricity

use electricity

x 137

Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)

x 127

Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)

Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 4 280 3 35 2 210 2 35 0,5 35 1 11 0,5 5,5 11 0,0833 0,9163 1 2 11 0,0833 1,8326 1 80 4 320

Total: 2828 Watt-Hours/Day

Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 2 140 3 35 1 105 2 35 0,5 35 1 11 0,5 5,5 1 11 0,0833 0,9163 2 11 0,0833 1,8326 1 80 4 320

Total: 2583 Watt-Hours/Day

use water

use water

x 137

4 toilets (combi toilet + lavabo) 3 urinoirs 1 disabled toilet 1 shower 2 wash basins

4 x 4,5 l 4 x 1,3 l 1 x 18 l 0,5 x 50 l 2 x 1,5 l

4 toilets (combi toilet + lavabo) 3 urinoirs 1 disabled toilet 1 shower 2 wash basins

42 l toilet water use/day 28 l hot water use/day

4 x 4,5 l 4 x 1,3 l 1 x 18 l 1 x 50 l 2 x 1,5 l

x 127 42 l toilet water use/day 53 l hot water use/day

WEEK

9.00

10.00

11.00

12.00

13.00

14.00

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

15.00

16.00

17.00

25


USEABILITY DURING SATURDAYS

saturday 13 days

x 13

permanentie

visitors x2 or

x 75 or

x 40 or public transport

use electricity

x 13

Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)

Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,25 150 1 1600 1 1600 2 50 7 700 2 3 1 6 1 11 1 11 1 0,3 2 0,6 1 1,2 5,833 6,9996 2 35 4 280 3 35 4 420 2 35 2 140 1 11 0,5 5,5 1 11 0,5 5,5 2 11 0,0833 1,8326 1 80 8 640

Total: 4867 Watt-Hours/Day

use water SATURDAY

9.00

x 13

4 toilets (combi toilet + lavabo) 3 urinoirs 1 disabled toilet 1 shower 2 wash basins

10.00

11.00

12.00

13.00

14.00

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

15.00

40 x 4,5 l 20 x 1,3 l 3 x 18 l 0,5 x 50 l 2 x 1,5 l

260 l toilet water use/day 28 l hot water use/day

16.00

17.00

26


CALCULATION HEAT LOSSES & VENTILATION

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

27


SECTIONS WINTER & SUMMER SITUATION

WINTER [CLOSED]

Opening the brise soleil

South windows Solar gain Solar gains + Ventilation system D Retention of the heat

SUMMER [OPEN]

Roof opening North facade

Shading system

Fresh air

Shading system Fresh air + Ventilation system D Cooling

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

Fresh air

28


VENTILATION SYSTEM D - EXTRACTION & IMPULSION CIRCUITS

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

29


HOT & COLD WATER SUPPLY + GREY AND BLACK WATER EVACUATION

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

30


LIGHTNING & ELECTRICITY minimum lux / space storage toilets waiting room working space

(source: Eandis)

60 lux 120 lux 250 lux 500 lux

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

31


SAVING SYSTEMS: - WATER - VENTILATION/HEATING - LIGHTNING - ELECTRICAL APPLIANCES

3

5 1

4

2

5 1

7 6

1

2

3

5

Water Saving Toilet

Water Saving Headshower

Water Saving Faucets

Combo Sink/ Toilet: Water reuse technology. All the water that falls into the washbasin follows an exclusive drainage system. Thanks to a filtering system, the larger waste products are separated out from the water, and only the liquid passes directly into a small treatment tank where it is purified. - Greywater system that is capable of reducing water use by up to 25% compared to a standard 6/3-liters dual flush toilet. -Single Pro faucet that contains a progressive cartridge which enables water to be saved.

By electing a water saving shower head, it is reduced not only the water consumption, but also energy is saved. Less consumption of water means less energy to heat the water, so there is a dual benefit.

- Toilet: Single-lever basin mixers feature a flowlimiting mousseur with aerator, reducing water consumption without compromising the quality. The result is a satisfying, voluminous flow that never exceeds 5.8 litres per minute. Also the inclusion of a temperature limiter, which can be adjusted to meet the needed requirements, allow the reduction of the energy consumption even further.

Standard toilet = 13 l (per flush) Dual flush = 6/3 l (per flush) Water saving combo sink/toilet= 4.5 l (per flush)

Standard showerhead: 10 to 25 l/min Water saving headshower: 6 to 9 l/min Shower -> 8 min x 10 l/min= 80 l 8 min x 6 l/m = 48 l 40% less water

Combo Sink/ Urinal: The same technology is used for the urinals. Standard urinal: 2.2 l (per flush) Water saving combo sink/ urinal: 1.3 l (per flush) W+W_ROCA Eco Urinal _Yeongwoo Kim

- The model consumes 6 liters per minute, which is possible due to the specially designed inner turbine cham. The design of Nordic Eco Shower mimics nature by delivering water in large well-sized droplets, through repeated propulsions from the central chamber.

Standard faucet: 10 l/min Water saving faucet: <=5.8 l/m 50% less water

6 Energy Efficient Lightning combined with intelligent controls Fluorescent lightning dimming system with an automatic energy/ CO2 savings of up to 75%. It switches the artificial light automatically on and off and regulates the luminaires (artificial lights) down when enough daylight (natural light) enters the room. Therefore, the ambitious energy savings are possible by the combination of energy efficient lights with the detection of presence and a natural daylight. ActiLume 1-10 V_PHILIPS

- Kitchen: The same principles are followed for the kitchen. For example the flow rate of the faucet is about 1.5 gpm, compared with the standard flow of 2.2 to 2.5 gpm. Standard faucet: 10 l/min Water saving faucet: 5.6 l/m 50% less water

Galant_NordicEco

Allure E_GROHE Minta_GROHE

4 Compact Unit RecoupAerator UltimateAir

7 Fridge A++: 92 kWu/jaar

This system offers up to 200 cfm and 95% heat-recovery efficiency

KU15RA65 BOSCH/SIEMENS

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

32


USE ELECTRICITY - WATER / YEAR 1/6

WINTER

SUMMER

week 142 days - 5 holidays = 137 days

week 132 days - 5 holidays = 127 days

1/week boat trip on saturday sunday closed

2/month boat trip on saturday sunday closed

x 137

x 127

permanentie

permanentie

x8

x4 or

or x8

x5 or

or

public transport

public transport

use electricity Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)

x 137 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 4 280 3 35 2 210 2 35 0,5 35 1 11 0,5 5,5 1 11 0,0833 0,9163 2 11 0,0833 1,8326 1 80 4 320

Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)

Total: 2828 Watt-Hours/Day

use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins

use electricity

x 127 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 2 140 3 35 1 105 2 35 0,5 35 1 11 0,5 5,5 1 11 0,0833 0,9163 2 11 0,0833 1,8326 1 80 4 320

Total: 2583 Watt-Hours/Day

4 x 4,5 l 4 x 1,3 l 1 x 18 l 0,5 x 50 l 2 x 1,5 l

x 137 42 l toilet water use/day 28 l hot water use/day

use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

4 x 4,5 l 4 x 1,3 l 1 x 18 l 1 x 50 l 2 x 1,5 l

x 127 42 l toilet water use/day 53 l hot water use/day

33


USE ELECTRICITY - WATER / YEAR 2/6

saturday 13 days

x 13

saturday 26 days

x 26

permanentie

permanentie

visitors

x2

x2 or x 75

x 75 or

x 40

x 40

or

or

public transport

public transport

use electricity Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)

x 13 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,25 150 1 1600 1 1600 2 50 7 700 2 3 1 6 1 11 1 11 1 0,3 2 0,6 1 1,2 5,833 6,9996 2 35 4 280 3 35 4 420 2 35 2 140 1 11 0,5 5,5 1 11 0,5 5,5 2 11 0,0833 1,8326 1 80 8 640

Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)

Total: 4867 Watt-Hours/Day

use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins

use electricity

x 26 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,25 150 1 1600 1 1600 2 50 7 700 2 3 1 6 1 11 1 11 1 0,3 2 0,6 1 1,2 5,833 6,9996 2 35 2 140 3 35 2 210 2 35 2 140 1 11 0,5 5,5 1 11 0,5 5,5 2 11 0,0833 1,8326 1 80 8 640

Total: 4517 Watt-Hours/Day

40 x 4,5 l 20 x 1,3 l 3 x 18 l 0,5 x 50 l 2 x 1,5 l

x 13 260 l toilet water use/day 28 l hot water use/day

use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

40 x 4,5 l 20 x 1,3 l 3 x 18 l 1 x 50 l 2 x 1,5 l

x 26 260 l toilet water use/day 53 l hot water use/day 34


USE ELECTRICITY - WATER / YEAR 3/6

ELECTRICITY

WATER

137 x 2828 watts-hours/day = 387,4 Kwh/year 127 x 2583 watts-hours/day = 328 Kwh/year 13 x 4867 watts-hours/day = 63,3 Kwh/year 26 x 4517 watts-hours/day = 117,4 Kwh/year

137 x 42 l/day = 5754 l/year 127 x 42 l/day = 5334 l/year 13 x 260 l/day = 3380 l/year 26 x 260 l/day = 6760 l/year

13,2 % 7% 43,2 %

36,6 %

Total electricity use/year:

Total toilet water use/year: Total average toilet water use/month:

896,1 kWh/year

137 x 28 l/day = 3836 l/year 127 x 53 l/day = 6731 l/year 13 x 28 l/day = 364 l/year 26 x 53 l/day = 1378 l/year

~ 80 liter hot water/day = 5,12 kWh/day Total: 1500 kWh/year

Total hot water use/year: kWh/year

21228 l/year 1769l/month

12309 l/year

kwh use hot water/heating 171

kwh use devices 23300

152

21800

132 18500 108 13150

77

8300 34

43

2400

http://www.easyswitch.nl/energie/energie-begrippen/energieverbruik

http://www.pidpa.be/nl/klant/fact_tar/gemiddeldverbruik.htm

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

35


USE ELECTRICITY - WATER / YEAR 4/6

INPUT

SYSTEM

OUTPUT

+ ~ 1810 kWh/year

SURPLUS

solar panels

lighting

weba 7 x 300 Wp Sunpower

Total electricity use devices: - 896,1 kw/year

work complementary Grid

+ ~ 2971 kWh/year

Skystream 3.7 ~4 m/s windspeed 3.7 diameter blades 15 m height

windmill

extra after heating

2 m²

Total electricity use hot water: - 1500 kw/year

boiler

sun collector efficiency 50 % = 2,3 kWh/day

+ 710 kWh/year

sun boiler

+ 40 000 l/year, or more...

rain collector

for hot water

100 L

700 mm/year

Total water use toilet:

- 21228 l/year

for car/boat washing harbour activities

wc 10 000 L Rain falling on 1 roof shell = (0,8 x 700 mm x 72 m²)/12 = 3360 l/mnd

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

TOTAL: -2500kWh + 5500kWh = 3000kWh surplus (theoretical average!) 36


Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9%

USE ELECTRICITY - WATER / YEAR 5/6 CALCULATION PV PANELS & THERMAL SOLAR SYSTEM Performance of Grid-connected PV PVGIS estimates of solar electricity generation Location: 51째3'12" North, 3째43'49" East, Elevation: 0 m a.s.l., Nominal power of the PV system: 2.1 kW (crystalline silicon) Estimated losses due to temperature: 12.3% (using local ambient temperature) Estimated loss due to angular reflectance effects: 3.1% Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9% Ed: Average daily electricity production from the given system (kWh) Em: Average monthly electricity production from the given system (kWh) Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modules of the given system (kWh/m2)

source: http://valentin.de/calculation/thermal/system/ww/en

source: http://valentin.de/calculation/pvonline/pv_system

Wind and solar energy work complementary!

Ed: Average daily electricity production from the given system (kWh) Em: Average monthly electricity production from the given system (kWh) Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modules of the given system (kWh/m2)

average speed 4,5

wind

2,8

source: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

jan

feb

ma

apr

mai

jun

jul

aug

sep

oct

nov

dec

hours

200

sun

50

jan

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

feb

ma

apr

mai

jun

jul

aug

sept

oct

nov

dec

37


USE ELECTRICITY - WATER / YEAR 6/6

opening of the roof in summer condition

overcapacity of electricity goes to neighbouring companies and is used for the lightning of the storage hall

7 PV panels (angle: 30°)

2 m² vacuum sun collector

skystream windmill concrete water tank 10.000 (inside storage hall), water evacuation of the square by water infiltration (gravel), excessive water flows to the pond

ventilation system D with heath recovery

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

38


Passive House Verification

Photo or Drawing

Building: Location and Climate: Street:

Jakob Van Artevelde terminal Gent Ukkel Rigakaai 9000 Gent België Terminal

Passive House Verification Country:

Postcode/City: Building Type: Home Owner(s) / Client(s): Street: Postcode/City: Architect: Street:

Postcode/City: Mechanical System: Street: Building: Postcode/City:

Location and Climate: Year of Construction: Street:

Postcode/City: Number of Dwelling Units: Country: Enclosed Volume Ve: Building Type: Number of Occupants: Home Owner(s) / Client(s): Street: Specific Demands with Reference to the Treated Floor Area Postcode/City: Treated Floor Area: Architect: Street: Postcode/City:

Specific Space Heat Demand: Mechanical System:

Pressurization Test Result: Street: Postcode/City: Specific Primary Energy Demand

(DHW, Heating, Cooling, Auxiliary and Household Electricity):

Year of Construction:

Specific Primary Energy Demand

(DHW, Heating and Auxiliary Electricity):

Number of Dwelling Units:

Specific Primary Energy Demand Energy Conservation by SolarVolume Electricity: Enclosed V: e

Heating Load:

Number of Occupants:

Frequency of Overheating:

Port of Ghent J. Kennedylaan 32 9000 Gent

or Drawing Margarida Photo Pereira – Thomas Deroeck – Lise De Pauw – Hannes Vandamme Hoogstraat 51 9000 Gent

TMLHT Hoogstraat 51 Jakob Van Artevelde terminal 9000 Gent Gent Ukkel 2012 Rigakaai 9000 Gent 1 Interior Temperature: België 120,0 Terminal Internal Heat Gains: m3

9000 Gent

120

2012 46 1 43 120,0 14 2,4 1

Specific Demands with Reference to the Treated Floor Area Cooling Load:

84,0 Applied:

the results of these values were used to determine the exact postioning of windows and necessary sunshading

We confirm that the values given herein have been Specific Space Heat Demand: 13 determined following the PHPP methodology and based on the characteristicPressurization values of theTest building. The calculations Result: 0,2 with PHPP are attached to this application. Specific Primary Energy Demand (DHW, Heating, Cooling, Auxiliary and Household Electricity):

kWh/(m2a) kWh/(m2a) 2 kWh/(m a) 3

m

W/m2 % kWh/(m2a)

3,5

over

25

°C W/m2

°C

15 kWh/(m2a)

PH Certificate:

Fulfilled?

Yes

h

0,6 h

Yes

-1

Specific Primary Energy Demand Energy Conservation by Solar Electricity:

43

kWh/(m2a)

14 1

W/m2 % kWh/(m2a)

We confirm that the values given herein have been determined following the PHPP methodology and based on the characteristic values of the building. The calculations with PHPP are attached to this application.

Internal Heat Gains:

Issued on: 2 15 kWh/(m a) 17/06/12

kWh/(m2a)

Cooling Load:

20,0

kWh/(m2a)

46

Specific Useful Cooling Energy Demand:

Interior Temperature:

m

kWh/(m a)

Heating Load:

Yes

120 kWh/(m2a)

Annual Method

120

Frequency of Overheating:

W/m2

2 W/m 2

Specific Primary Energy Demand

(DHW, Heating and Auxiliary Electricity):

°C

3,5

2,4 Ghent Port of J. Kennedylaan 32 9000 Gent 84,0 Pereira m2 Margarida – Thomas – Lise De Vandamme Pauw – -Hannes Vandamme M. Margarida Pereira - Thomas de Roeck Deroeck - Lise De Pauw - Hannes Thomas Depreitere Applied: PH Certificate: Fulfilled? Hoogstraat 51 Annual Method 9000 Gent 2 2 15 kWh/(m a) Yes kWh/(m a) 13 TMLHT -1 -1 0,6 h Yes 0,2 51 h Hoogstraat

Specific Useful Cooling Energy Demand:

Treated Floor Area:

20,0

signed:

-1

Thomas Depreitere

120 kWh/(m a)

2

2

over

25

Yes

a more in detail calculation has been done separately from the PHPP worksheets due to the variable use of the building (see previous pages about summer and winter / week and weekend conditions)

°C

15 kWh/(m2a)

W/m2 Issued on: 17/06/12

signed:

Thomas Depreitere

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere PHPP 2007, Verification

the threated floor area has been reduced to reach the necessary values: the module of the toilets has excluded from the heated space (see previous pages about zoning and temperatures)

ZEB_G_INT_1_(Thomas_Depreitere).xls

39


SUMMMARY 1/2 ZEB RIGAKAAI GHENT

opening of the roof in summer condition

overcapacity of electricity goes to neighbouring companies and is used for the lightning of the storage hall

7 PV panels (angle: 30°)

2 m² vacuum sun collector

skystream windmill concrete water tank 10.000 (inside storage hall), water evacuation of the square by water infiltration (gravel), excessive water flows to the pond

ventilation system D with heath recovery

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

40


Estimated loss due to angular reflectance effects: 3.1% Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9%

SUMMARY 2/2 ZEB RIGAKAAI GHENT Performance of Grid-connected PV

INPUT

SYSTEM

OUTPUT

SURPLUS

PVGIS estimates of solar electricity generation Location: 51°3'12" North, 3°43'49" East, Elevation: 0 m a.s.l.,

+ ~ 1810 kWh/year

Nominal power of the PV system: 2.1 kW (crystalline silicon) Estimated losses due to temperature: 12.3% (using local ambient temperature) Estimated loss due to angular reflectance effects: 3.1% Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9%

Total electricity use devices: - 896,1 kw/year

solar panels

lighting

weba 7 x 300 Wp Sunpower

work complementary Grid

+ ~ 2971 kWh/year

windmill

Skystream 3.7 Ed: Average daily electricity production from the given system (kWh) ~4 m/s windspeed Average 3.7Em: diameter blades monthly electricity production from the given system (kWh) 15 m height

Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modulesextra of the given system (kWh/m2) after heating

2 m²

Total electricity use hot water: - 1500 kw/year

+ 710 kWh/year

sun boiler

+ 40 000 l/year, or more...

rain collector

for hot water

boiler 100 L

sun collector efficiency 50 % = 2,3 kWh/day

700 mm/year

Ed: Average daily electricity production from the given system (kWh) Em: Average monthly electricity production from the given system (kWh) Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modules of the given system (kWh/m2)

- 21228 l/year

Total water use toilet:

for car/boat washing harbour activities

wc

ELECTRICITY

Wind and solar energy work complementary!

10 000 L Rain falling on 1 roof shell = (0,8 x 700 mm x 72 m²)/12 = 3360 l/mnd

WAT

137 x 2828 watts-hours/day = 387,4 Kwh/year 127 x 2583 watts-hours/day = 328 Kwh/year 13 x 4867 watts-hours/day = 63,3 Kwh/year 26 x 4517 watts-hours/day = 117,4 Kwh/year

7% 43,2 %

average speed 4,5

36,6 %

wind

TOTAL: -2500kWh + 5500kWh = 3000kWh surplus (theoretical average!)

137 x 127 x 13 x 26 x

13,2 %

Total electricity use/year:

2,8

Tota Tota

896,1 kWh/year

137 x 127 x 13 x 26 x

~ 80 liter hot water/day = 5,12 kWh/day Total: 1500 kWh/year

Wind and solar energy work complementary!

Tota jan

wind & solar energy work complementary

feb

ma

apr

mai

jun

jul

aug

sep

oct

nov

open space module

dec technical module

4,5

modular construction

wind

kwh use hot water/heating kwh use devices

comparisation

171

23300

open space module

hours

average speed

kWh/year

152

21800

132

public toilet module

18500 108

200

2,8

13150

77

OUR ZEB COMBINATION

8300

sun

50

34

longer...

43

2400

jan

feb

ma

apr

mai

jun

jul

aug

sep

oct

nov

dec

jan

feb

ma

apr

mai

jun

jul

aug

sept

oct

nov

dec OTHER COMBINATIONS

http://www.p

http://www.easyswitch.nl/energie/energie-begrippen/energieverbruik

hours

200

unheated...

M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere

41


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.