RIGAKAAI GENT Zero Energy Building 2012
M. Margarida Pereira
Thomas de Roeck
Lise De Pauw
Hannes Vandamme
Thomas Depreitere
CONTENT
A
SUSTAINABLE CONCEPT _ Thomas Deroeck
C
LOW TECHNIC _ technical equipment of the building _ Lise De Pauw
F SUMMARY
introduction to the site mobility masterplan schading diagrams construction method compartments & zoning
ventilation strategy: scheme, plan, section + calculation sheme: winter - summer
total shemes
B
SMART BUILDING _ the materials, shading, passive cooling _ Hannes Vandamme
plan 1/100 plan 1/50
heating system hot water system integration of the techniques control system to save energy rational use : saving system > water: shower, sanitary, rainwater + plan & saving system > electricity D ZERO ENERGY and ZERO IMPACT _ M. Margarida Pereira
calculation energy demand + compensation (1 year) calculation water demand
section AA’ 1/50 section BB’ 1/50 section CC’ 1/75 section CC’ 1/50
daylight concept: interior image
complete sheme green energy
wall construction diagram (materials & certificates)
E
ZERO ENERGY = PHPP CALCULATIONS _ Thomas Depreitere
detail 1 1/5 detail 2 1/5 detail 3 1/5
verification
elevation west 1/75 outside
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
2
INTRODUCTION TO THE SITE Location: Rigakaai, Gent Context: Harbour, industrial
Sustainable decisions: Placing the building inside of an existing hangar. The design will take the profits of an already covered space which has a stable indoor climate. Environment: Construction of a module or prototype that uses the existing structure as well as the prevailing materials materials at the harbour. Therefore, the construction is based on reusability. This decision has a good impact on the environment, not only in case of the resources, but also about their transportation. Society: According the present situation, the harbour is just a working place. So, this new building is seen as an opportunity to attract more people to this site and play an important role on the social interaction. Moreover, since it is a zero energy building, it will also educate people about these issues. Economy: New people visiting and coming to the harbour and use of existing materials without any add cost of transportation to built the new design module have also good impacts in terms of economy. Eventually, this can be a start point to the development of the area.
Sustainable decisions: Placing the building inside of an existing hangar. The design will take the profits of an already covered space which has a stable indoor climate.
Environment: Construction of a module or prototype that uses the existing structure as well as the prevailing materials at the harbor. Therefore, the construction is based on reusability. This decision has a good impact on the environment, not only in case of the resources, but also about their transportation. Society: According the present situation, the harbor is just a working place. So, this new building is seen as an opportunity to attract more people to this site and play an important role on the social interaction. Moreover, since it is a zero energy building, it will also educate people about these issues. Economy: New people visiting and coming to the harbor, and use of existing materials without any add cost of transportation to built the new design module, have also good impacts in terms of economy. Eventually, this can be a start point to the development of the area.
source: A+221
Location: Rigakaai, Gent Context: Harbour, industrial
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
3
DESIGN DEVELOPMENT Main program: info point/ waiting room The harbour is a place mostly used by the workers, and disconected from the city. Habitants and visitors don’t have enough information about the occuring activities. Therefore, the creation of a point of information and a
waiting room for the passengers of the boats seems to be the most apropriate program to this environment. The idea is to bring more life to the harbor, that it becomes more than a working place, but also a social area. The rehabilitation of this place pretends that it is another interesting part of the city that should also be visited.
ZEB space: toilets, boat reception, office Interior waiting spot, cafetaria, not heated Exterior waiting spot, covered
principal idea
Area each part: 148 m² Volume each part: 1048 m³
Carriageworks Performing Centre, Tonkin Zulaikha Greer
volume completely inside
volume completely outside
> problems towards sufficient heat gains
> footprint existing and new is not in balance there is no use of the (empty) possible space inside the existing storage hall
option 1
option 2 M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
SESC POMPEIA, Lina Bo Bardi (1977-1982)
volume partly outside the volume + opening of the west facade to have sufficient heat gains and light + integration of passive ventilation sytem in the existing storage hall option 3 4
MOBILITY 1. site 1. site OMA oude dokken project 2. OMA oude dokken2.project 3. Dampoort 3. Dampoort 4. Sint-jacobs 4. Sint-jacobs 5. Korenmarkt 5. Korenmarkt 6. Zuid 6. Zuid
1
1
2
2
1
1
2
2
2,1 km
2,1 km
4 4
4 4
5
3
3
5
5
4
4 0,6 km
0,9 km
0,9 km
3
3
0,6 km
Bicycle route Bicycle route without bicycle path without bicycle path
5
Bicycle route 2 km
6
6
6
6
2 km
Bus 73: Bus 73: Gent - oostakker - zelzate Gent - oostakker - zelzate Bus 6: Bus 6: Gent watersportbaanGent - watersportbaan Mariakerke Post Mariakerke Post connection in the future? Possible connection Possible in the future? Bus stop needed
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
Bicycle route
Bus stop needed
5
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
ROADSIDE
WEBA PAR K I N G
SIDEWALK
BIKELANE
BIKELANE
VLIEGTUIGLAAN
BIKELANE
VLIEGTUIGLAAN
VLIEGTUIGLAAN
FRONTSQUARE
VLIEGTUIGLAAN
R I G A K AA I
BIKELANE
R I G A K AA I
SIDEWALK
ROADSIDE
STREET SECTIONS CURRENT AND FUTURE SITUATION
WEBA PAR K I N G
6
MASTERPLAN
covered bikeparking
entrance
Jakob Van Artevelde boat
parking 66 cars
new bus stop
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
7
SITE PLAN
trees closing the square to the street side and ‘watercatchers’ for infiltration
covered bikeparking
waterbassin for rainwater from the bikeparking (and the square)
entrance
frontsquare (fixed gravel paving for semi-infiltration of the rainwater)
solar powered streetlights next to benches
skystream small windmill
busparking (concrete paving)
new bikelane
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
8
SUN - SHADING ANALYSIS EXISTING HALL
Only during the evening hours, there will be direct sunlight on the module. There is opted for this solution to manage that there will be enough daylight inside the waiting space. Also, the opening of the hall with a curtain wall gives a possibility to have a visual relationship with the harbour.
glazed surfaces at east and south side (+ horizontal) need shading devices to reduce the amount of possible overheating 8am
10am
12am
14pm
16pm
18pm
footprint: 138m² (100m² inside the existing building)
curtain wall to have sufficient light inside the existing building + view on the harbour
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
9
CONSTRUCTION METHOD 1/2 putting together on site open space module
technical module
open space module
public toilet module
OUR ZEB COMBINATION
longer...
source: E-Cube Ugent
OTHER COMBINATIONS
Flexibility: The design consits of different modules that can be easily moved and put together on site. It also gives the possibility to combine different parts and have another unit
unheated...
putting together on site
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
production/ testing area
10
CONSTRUCTION METHOD 2/2 Construction of a module 1. Woodframe structure 2. Floor construction 3. Wall construction with Rockpanel 4. Roof construction 5. Placing of the window frames 6. Placing of the ventilation/water/... pipes 7. Placing of electric cables
1
Moving the module to the site
4
8. Positioning of the steel stands 9. Placing of the modules 10. Connecting of the modules 11. Placing of windows 12. Installing all technical systems
5 11
12
module 1
module 2
module 3
8-9
module 4
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
11
PLAN 1:100
By its integration into the existing storage hall, the visitors also get a view on activities that are normally hidden from the outside. As such, the design activates a broader field than just fulfilling its main function as being a meeting point for the boat.
the design stands open to new uses of the space for example: it can act as a meeting point, exhibition, small theater,...
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
12
ZONING & TEMPERATURES
the toilets are placed outside the thermal envelope to fulfill the PHPP requirements threated floor area becomes: 84m² the design takes the profits of being constructed inside the existing covered space
INSIDE NON HEATED ZONE [aprox. 15º]
INSIDE HEATED ZONE [aprox. 18º]
INSIDE IN BETWEEN AREA [aprox. 13º]
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
OUTSIDE [aprox. 10º]
13
PLAN 1:50
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
14
SECTION AA’ 1:50
In summer condition, the windows in the roof of the hall can be opened to establish passive ventilation.
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
15
SECTION BB’ 1:50
PV panels & sun collector
Solar shading is necessary to reduce the amount of overheating resulting from the PHPP calculation sheets. The system works completely automatically and adjusts when needed.
The wood panels can be opened in summer condition to provide sufficient passive ventilation in the existing hall.
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
16
SECTION CC’1:75
modular wall construction
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
17
SECTION CC’ 1:50
necessary for this horizontal glazing to avoid overheating of the unit is the use of a screen
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
18
ELEVATION SOUTH (EXTERIOR) 1:75
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
19
‘ Waiting on the boat, Harbour Ghent ’
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
20
WALL CONSTRUCTION
ROOF TILE
15 MM
AIR CAVITY
100 MM
EPDM LAYERS
CORK
10 MM
3 MM
OSB PANEL
18 MM
AIRTIGHT LAYER
0.6 MM
VERMICULITE
30 MM
CELLULOSE FLEAKS
300 MM
OSB PANEL
18 MM
AIRTIGHT LAYER
0.6 MM
AIRTIGHT LAYER
0.6 MM
OSB PANEL
18 MM
CELLULOSE FLEAKS
300 MM
AIRTIGHT LAYER
0.6 MM
OSB PANEL
18 MM
ROCKPANEL
18 MM
ROCKWOOL
150 MM
OSB PANEL
18 MM
AIRTIGHT LAYER
0.6 MM
CELLULOSE FLEAKS
200 MM
AIRTIGHT LAYER
0.6 MM
OSB PANEL
8 MM
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
21
DETAIL 1 1:5
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
22
DETAIL 2 1:5
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
23
DETAIL 3 1:5
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
24
WINTER
SUMMER
2/month boat trip on saturday sunday closed
USEABILITY DURING THE WEEK
1/week boat trip on saturday sunday closed
week 142 days - 5 holidays = 137 days
week 132 days - 5 holidays = 127 days
x 137
permanentie
x 127
permanentie x8
x4 or
or x8
x5 or
or
public transport
public transport
use electricity
use electricity
x 137
Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)
x 127
Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)
Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 4 280 3 35 2 210 2 35 0,5 35 1 11 0,5 5,5 11 0,0833 0,9163 1 2 11 0,0833 1,8326 1 80 4 320
Total: 2828 Watt-Hours/Day
Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 2 140 3 35 1 105 2 35 0,5 35 1 11 0,5 5,5 1 11 0,0833 0,9163 2 11 0,0833 1,8326 1 80 4 320
Total: 2583 Watt-Hours/Day
use water
use water
x 137
4 toilets (combi toilet + lavabo) 3 urinoirs 1 disabled toilet 1 shower 2 wash basins
4 x 4,5 l 4 x 1,3 l 1 x 18 l 0,5 x 50 l 2 x 1,5 l
4 toilets (combi toilet + lavabo) 3 urinoirs 1 disabled toilet 1 shower 2 wash basins
42 l toilet water use/day 28 l hot water use/day
4 x 4,5 l 4 x 1,3 l 1 x 18 l 1 x 50 l 2 x 1,5 l
x 127 42 l toilet water use/day 53 l hot water use/day
WEEK
9.00
10.00
11.00
12.00
13.00
14.00
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
15.00
16.00
17.00
25
USEABILITY DURING SATURDAYS
saturday 13 days
x 13
permanentie
visitors x2 or
x 75 or
x 40 or public transport
use electricity
x 13
Appliance/ Load Name Fridge Microwave Coee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)
Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,25 150 1 1600 1 1600 2 50 7 700 2 3 1 6 1 11 1 11 1 0,3 2 0,6 1 1,2 5,833 6,9996 2 35 4 280 3 35 4 420 2 35 2 140 1 11 0,5 5,5 1 11 0,5 5,5 2 11 0,0833 1,8326 1 80 8 640
Total: 4867 Watt-Hours/Day
use water SATURDAY
9.00
x 13
4 toilets (combi toilet + lavabo) 3 urinoirs 1 disabled toilet 1 shower 2 wash basins
10.00
11.00
12.00
13.00
14.00
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
15.00
40 x 4,5 l 20 x 1,3 l 3 x 18 l 0,5 x 50 l 2 x 1,5 l
260 l toilet water use/day 28 l hot water use/day
16.00
17.00
26
CALCULATION HEAT LOSSES & VENTILATION
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
27
SECTIONS WINTER & SUMMER SITUATION
WINTER [CLOSED]
Opening the brise soleil
South windows Solar gain Solar gains + Ventilation system D Retention of the heat
SUMMER [OPEN]
Roof opening North facade
Shading system
Fresh air
Shading system Fresh air + Ventilation system D Cooling
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
Fresh air
28
VENTILATION SYSTEM D - EXTRACTION & IMPULSION CIRCUITS
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
29
HOT & COLD WATER SUPPLY + GREY AND BLACK WATER EVACUATION
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
30
LIGHTNING & ELECTRICITY minimum lux / space storage toilets waiting room working space
(source: Eandis)
60 lux 120 lux 250 lux 500 lux
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
31
SAVING SYSTEMS: - WATER - VENTILATION/HEATING - LIGHTNING - ELECTRICAL APPLIANCES
3
5 1
4
2
5 1
7 6
1
2
3
5
Water Saving Toilet
Water Saving Headshower
Water Saving Faucets
Combo Sink/ Toilet: Water reuse technology. All the water that falls into the washbasin follows an exclusive drainage system. Thanks to a filtering system, the larger waste products are separated out from the water, and only the liquid passes directly into a small treatment tank where it is purified. - Greywater system that is capable of reducing water use by up to 25% compared to a standard 6/3-liters dual flush toilet. -Single Pro faucet that contains a progressive cartridge which enables water to be saved.
By electing a water saving shower head, it is reduced not only the water consumption, but also energy is saved. Less consumption of water means less energy to heat the water, so there is a dual benefit.
- Toilet: Single-lever basin mixers feature a flowlimiting mousseur with aerator, reducing water consumption without compromising the quality. The result is a satisfying, voluminous flow that never exceeds 5.8 litres per minute. Also the inclusion of a temperature limiter, which can be adjusted to meet the needed requirements, allow the reduction of the energy consumption even further.
Standard toilet = 13 l (per flush) Dual flush = 6/3 l (per flush) Water saving combo sink/toilet= 4.5 l (per flush)
Standard showerhead: 10 to 25 l/min Water saving headshower: 6 to 9 l/min Shower -> 8 min x 10 l/min= 80 l 8 min x 6 l/m = 48 l 40% less water
Combo Sink/ Urinal: The same technology is used for the urinals. Standard urinal: 2.2 l (per flush) Water saving combo sink/ urinal: 1.3 l (per flush) W+W_ROCA Eco Urinal _Yeongwoo Kim
- The model consumes 6 liters per minute, which is possible due to the specially designed inner turbine cham. The design of Nordic Eco Shower mimics nature by delivering water in large well-sized droplets, through repeated propulsions from the central chamber.
Standard faucet: 10 l/min Water saving faucet: <=5.8 l/m 50% less water
6 Energy Efficient Lightning combined with intelligent controls Fluorescent lightning dimming system with an automatic energy/ CO2 savings of up to 75%. It switches the artificial light automatically on and off and regulates the luminaires (artificial lights) down when enough daylight (natural light) enters the room. Therefore, the ambitious energy savings are possible by the combination of energy efficient lights with the detection of presence and a natural daylight. ActiLume 1-10 V_PHILIPS
- Kitchen: The same principles are followed for the kitchen. For example the flow rate of the faucet is about 1.5 gpm, compared with the standard flow of 2.2 to 2.5 gpm. Standard faucet: 10 l/min Water saving faucet: 5.6 l/m 50% less water
Galant_NordicEco
Allure E_GROHE Minta_GROHE
4 Compact Unit RecoupAerator UltimateAir
7 Fridge A++: 92 kWu/jaar
This system offers up to 200 cfm and 95% heat-recovery efficiency
KU15RA65 BOSCH/SIEMENS
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
32
USE ELECTRICITY - WATER / YEAR 1/6
WINTER
SUMMER
week 142 days - 5 holidays = 137 days
week 132 days - 5 holidays = 127 days
1/week boat trip on saturday sunday closed
2/month boat trip on saturday sunday closed
x 137
x 127
permanentie
permanentie
x8
x4 or
or x8
x5 or
or
public transport
public transport
use electricity Appliance/ Load Name Fridge Microwave CoďŹ&#x20AC;ee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)
x 137 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 4 280 3 35 2 210 2 35 0,5 35 1 11 0,5 5,5 1 11 0,0833 0,9163 2 11 0,0833 1,8326 1 80 4 320
Appliance/ Load Name Fridge Microwave CoďŹ&#x20AC;ee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)
Total: 2828 Watt-Hours/Day
use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins
use electricity
x 127 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,166 99,6 1 1600 0,166 265,6 2 50 7 700 2 3 1 6 1 11 0,166 1,826 1 0,3 7,833 2,3499 1 1,2 0 0 2 35 2 140 3 35 1 105 2 35 0,5 35 1 11 0,5 5,5 1 11 0,0833 0,9163 2 11 0,0833 1,8326 1 80 4 320
Total: 2583 Watt-Hours/Day
4 x 4,5 l 4 x 1,3 l 1 x 18 l 0,5 x 50 l 2 x 1,5 l
x 137 42 l toilet water use/day 28 l hot water use/day
use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
4 x 4,5 l 4 x 1,3 l 1 x 18 l 1 x 50 l 2 x 1,5 l
x 127 42 l toilet water use/day 53 l hot water use/day
33
USE ELECTRICITY - WATER / YEAR 2/6
saturday 13 days
x 13
saturday 26 days
x 26
permanentie
permanentie
visitors
x2
x2 or x 75
x 75 or
x 40
x 40
or
or
public transport
public transport
use electricity Appliance/ Load Name Fridge Microwave CoďŹ&#x20AC;ee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)
x 13 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,25 150 1 1600 1 1600 2 50 7 700 2 3 1 6 1 11 1 11 1 0,3 2 0,6 1 1,2 5,833 6,9996 2 35 4 280 3 35 4 420 2 35 2 140 1 11 0,5 5,5 1 11 0,5 5,5 2 11 0,0833 1,8326 1 80 8 640
Appliance/ Load Name Fridge Microwave CoďŹ&#x20AC;ee machine Laptop use Laptop asleep Printer use Printer standby Printer idle Lights TL5 (area1) Lights TL5 (area2) Lights TL5 (area4) Ligths Genie Esaver (area3) Ligths Genie Esaver (area4) Ligths Genie Esaver (storages) Ventilation Heat recovery (Ultimateair)
Total: 4867 Watt-Hours/Day
use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins
use electricity
x 26 Quantity AC Watts Hours on per day Watt-Hours/ Day 1 90 10 900 1 600 0,25 150 1 1600 1 1600 2 50 7 700 2 3 1 6 1 11 1 11 1 0,3 2 0,6 1 1,2 5,833 6,9996 2 35 2 140 3 35 2 210 2 35 2 140 1 11 0,5 5,5 1 11 0,5 5,5 2 11 0,0833 1,8326 1 80 8 640
Total: 4517 Watt-Hours/Day
40 x 4,5 l 20 x 1,3 l 3 x 18 l 0,5 x 50 l 2 x 1,5 l
x 13 260 l toilet water use/day 28 l hot water use/day
use water 4 toilets (combi toilet + lavabo) 6 urinoirs 1 disabled toilet 1 shower 2 wash basins
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
40 x 4,5 l 20 x 1,3 l 3 x 18 l 1 x 50 l 2 x 1,5 l
x 26 260 l toilet water use/day 53 l hot water use/day 34
USE ELECTRICITY - WATER / YEAR 3/6
ELECTRICITY
WATER
137 x 2828 watts-hours/day = 387,4 Kwh/year 127 x 2583 watts-hours/day = 328 Kwh/year 13 x 4867 watts-hours/day = 63,3 Kwh/year 26 x 4517 watts-hours/day = 117,4 Kwh/year
137 x 42 l/day = 5754 l/year 127 x 42 l/day = 5334 l/year 13 x 260 l/day = 3380 l/year 26 x 260 l/day = 6760 l/year
13,2 % 7% 43,2 %
36,6 %
Total electricity use/year:
Total toilet water use/year: Total average toilet water use/month:
896,1 kWh/year
137 x 28 l/day = 3836 l/year 127 x 53 l/day = 6731 l/year 13 x 28 l/day = 364 l/year 26 x 53 l/day = 1378 l/year
~ 80 liter hot water/day = 5,12 kWh/day Total: 1500 kWh/year
Total hot water use/year: kWh/year
21228 l/year 1769l/month
12309 l/year
kwh use hot water/heating 171
kwh use devices 23300
152
21800
132 18500 108 13150
77
8300 34
43
2400
http://www.easyswitch.nl/energie/energie-begrippen/energieverbruik
http://www.pidpa.be/nl/klant/fact_tar/gemiddeldverbruik.htm
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
35
USE ELECTRICITY - WATER / YEAR 4/6
INPUT
SYSTEM
OUTPUT
+ ~ 1810 kWh/year
SURPLUS
solar panels
lighting
weba 7 x 300 Wp Sunpower
Total electricity use devices: - 896,1 kw/year
work complementary Grid
+ ~ 2971 kWh/year
Skystream 3.7 ~4 m/s windspeed 3.7 diameter blades 15 m height
windmill
extra after heating
2 m²
Total electricity use hot water: - 1500 kw/year
boiler
sun collector efficiency 50 % = 2,3 kWh/day
+ 710 kWh/year
sun boiler
+ 40 000 l/year, or more...
rain collector
for hot water
100 L
700 mm/year
Total water use toilet:
- 21228 l/year
for car/boat washing harbour activities
wc 10 000 L Rain falling on 1 roof shell = (0,8 x 700 mm x 72 m²)/12 = 3360 l/mnd
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
TOTAL: -2500kWh + 5500kWh = 3000kWh surplus (theoretical average!) 36
Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9%
USE ELECTRICITY - WATER / YEAR 5/6 CALCULATION PV PANELS & THERMAL SOLAR SYSTEM Performance of Grid-connected PV PVGIS estimates of solar electricity generation Location: 51째3'12" North, 3째43'49" East, Elevation: 0 m a.s.l., Nominal power of the PV system: 2.1 kW (crystalline silicon) Estimated losses due to temperature: 12.3% (using local ambient temperature) Estimated loss due to angular reflectance effects: 3.1% Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9% Ed: Average daily electricity production from the given system (kWh) Em: Average monthly electricity production from the given system (kWh) Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modules of the given system (kWh/m2)
source: http://valentin.de/calculation/thermal/system/ww/en
source: http://valentin.de/calculation/pvonline/pv_system
Wind and solar energy work complementary!
Ed: Average daily electricity production from the given system (kWh) Em: Average monthly electricity production from the given system (kWh) Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modules of the given system (kWh/m2)
average speed 4,5
wind
2,8
source: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
jan
feb
ma
apr
mai
jun
jul
aug
sep
oct
nov
dec
hours
200
sun
50
jan
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
feb
ma
apr
mai
jun
jul
aug
sept
oct
nov
dec
37
USE ELECTRICITY - WATER / YEAR 6/6
opening of the roof in summer condition
overcapacity of electricity goes to neighbouring companies and is used for the lightning of the storage hall
7 PV panels (angle: 30°)
2 m² vacuum sun collector
skystream windmill concrete water tank 10.000 (inside storage hall), water evacuation of the square by water infiltration (gravel), excessive water flows to the pond
ventilation system D with heath recovery
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
38
Passive House Verification
Photo or Drawing
Building: Location and Climate: Street:
Jakob Van Artevelde terminal Gent Ukkel Rigakaai 9000 Gent België Terminal
Passive House Verification Country:
Postcode/City: Building Type: Home Owner(s) / Client(s): Street: Postcode/City: Architect: Street:
Postcode/City: Mechanical System: Street: Building: Postcode/City:
Location and Climate: Year of Construction: Street:
Postcode/City: Number of Dwelling Units: Country: Enclosed Volume Ve: Building Type: Number of Occupants: Home Owner(s) / Client(s): Street: Specific Demands with Reference to the Treated Floor Area Postcode/City: Treated Floor Area: Architect: Street: Postcode/City:
Specific Space Heat Demand: Mechanical System:
Pressurization Test Result: Street: Postcode/City: Specific Primary Energy Demand
(DHW, Heating, Cooling, Auxiliary and Household Electricity):
Year of Construction:
Specific Primary Energy Demand
(DHW, Heating and Auxiliary Electricity):
Number of Dwelling Units:
Specific Primary Energy Demand Energy Conservation by SolarVolume Electricity: Enclosed V: e
Heating Load:
Number of Occupants:
Frequency of Overheating:
Port of Ghent J. Kennedylaan 32 9000 Gent
or Drawing Margarida Photo Pereira – Thomas Deroeck – Lise De Pauw – Hannes Vandamme Hoogstraat 51 9000 Gent
TMLHT Hoogstraat 51 Jakob Van Artevelde terminal 9000 Gent Gent Ukkel 2012 Rigakaai 9000 Gent 1 Interior Temperature: België 120,0 Terminal Internal Heat Gains: m3
9000 Gent
120
2012 46 1 43 120,0 14 2,4 1
Specific Demands with Reference to the Treated Floor Area Cooling Load:
84,0 Applied:
the results of these values were used to determine the exact postioning of windows and necessary sunshading
We confirm that the values given herein have been Specific Space Heat Demand: 13 determined following the PHPP methodology and based on the characteristicPressurization values of theTest building. The calculations Result: 0,2 with PHPP are attached to this application. Specific Primary Energy Demand (DHW, Heating, Cooling, Auxiliary and Household Electricity):
kWh/(m2a) kWh/(m2a) 2 kWh/(m a) 3
m
W/m2 % kWh/(m2a)
3,5
over
25
°C W/m2
°C
15 kWh/(m2a)
PH Certificate:
Fulfilled?
Yes
h
0,6 h
Yes
-1
Specific Primary Energy Demand Energy Conservation by Solar Electricity:
43
kWh/(m2a)
14 1
W/m2 % kWh/(m2a)
We confirm that the values given herein have been determined following the PHPP methodology and based on the characteristic values of the building. The calculations with PHPP are attached to this application.
Internal Heat Gains:
Issued on: 2 15 kWh/(m a) 17/06/12
kWh/(m2a)
Cooling Load:
20,0
kWh/(m2a)
46
Specific Useful Cooling Energy Demand:
Interior Temperature:
m
kWh/(m a)
Heating Load:
Yes
120 kWh/(m2a)
Annual Method
120
Frequency of Overheating:
W/m2
2 W/m 2
Specific Primary Energy Demand
(DHW, Heating and Auxiliary Electricity):
°C
3,5
2,4 Ghent Port of J. Kennedylaan 32 9000 Gent 84,0 Pereira m2 Margarida – Thomas – Lise De Vandamme Pauw – -Hannes Vandamme M. Margarida Pereira - Thomas de Roeck Deroeck - Lise De Pauw - Hannes Thomas Depreitere Applied: PH Certificate: Fulfilled? Hoogstraat 51 Annual Method 9000 Gent 2 2 15 kWh/(m a) Yes kWh/(m a) 13 TMLHT -1 -1 0,6 h Yes 0,2 51 h Hoogstraat
Specific Useful Cooling Energy Demand:
Treated Floor Area:
20,0
signed:
-1
Thomas Depreitere
120 kWh/(m a)
2
2
over
25
Yes
a more in detail calculation has been done separately from the PHPP worksheets due to the variable use of the building (see previous pages about summer and winter / week and weekend conditions)
°C
15 kWh/(m2a)
W/m2 Issued on: 17/06/12
signed:
Thomas Depreitere
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere PHPP 2007, Verification
the threated floor area has been reduced to reach the necessary values: the module of the toilets has excluded from the heated space (see previous pages about zoning and temperatures)
ZEB_G_INT_1_(Thomas_Depreitere).xls
39
SUMMMARY 1/2 ZEB RIGAKAAI GHENT
opening of the roof in summer condition
overcapacity of electricity goes to neighbouring companies and is used for the lightning of the storage hall
7 PV panels (angle: 30°)
2 m² vacuum sun collector
skystream windmill concrete water tank 10.000 (inside storage hall), water evacuation of the square by water infiltration (gravel), excessive water flows to the pond
ventilation system D with heath recovery
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
40
Estimated loss due to angular reflectance effects: 3.1% Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9%
SUMMARY 2/2 ZEB RIGAKAAI GHENT Performance of Grid-connected PV
INPUT
SYSTEM
OUTPUT
SURPLUS
PVGIS estimates of solar electricity generation Location: 51°3'12" North, 3°43'49" East, Elevation: 0 m a.s.l.,
+ ~ 1810 kWh/year
Nominal power of the PV system: 2.1 kW (crystalline silicon) Estimated losses due to temperature: 12.3% (using local ambient temperature) Estimated loss due to angular reflectance effects: 3.1% Other losses (cables, inverter etc.): 8.0% Combined PV system losses: 21.9%
Total electricity use devices: - 896,1 kw/year
solar panels
lighting
weba 7 x 300 Wp Sunpower
work complementary Grid
+ ~ 2971 kWh/year
windmill
Skystream 3.7 Ed: Average daily electricity production from the given system (kWh) ~4 m/s windspeed Average 3.7Em: diameter blades monthly electricity production from the given system (kWh) 15 m height
Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modulesextra of the given system (kWh/m2) after heating
2 m²
Total electricity use hot water: - 1500 kw/year
+ 710 kWh/year
sun boiler
+ 40 000 l/year, or more...
rain collector
for hot water
boiler 100 L
sun collector efficiency 50 % = 2,3 kWh/day
700 mm/year
Ed: Average daily electricity production from the given system (kWh) Em: Average monthly electricity production from the given system (kWh) Hd: Average daily sum of global irradiation per square meter received by the modules of the given system (kWh/m2) Hm: Average sum of global irradiation per square meter received by the modules of the given system (kWh/m2)
- 21228 l/year
Total water use toilet:
for car/boat washing harbour activities
wc
ELECTRICITY
Wind and solar energy work complementary!
10 000 L Rain falling on 1 roof shell = (0,8 x 700 mm x 72 m²)/12 = 3360 l/mnd
WAT
137 x 2828 watts-hours/day = 387,4 Kwh/year 127 x 2583 watts-hours/day = 328 Kwh/year 13 x 4867 watts-hours/day = 63,3 Kwh/year 26 x 4517 watts-hours/day = 117,4 Kwh/year
7% 43,2 %
average speed 4,5
36,6 %
wind
TOTAL: -2500kWh + 5500kWh = 3000kWh surplus (theoretical average!)
137 x 127 x 13 x 26 x
13,2 %
Total electricity use/year:
2,8
Tota Tota
896,1 kWh/year
137 x 127 x 13 x 26 x
~ 80 liter hot water/day = 5,12 kWh/day Total: 1500 kWh/year
Wind and solar energy work complementary!
Tota jan
wind & solar energy work complementary
feb
ma
apr
mai
jun
jul
aug
sep
oct
nov
open space module
dec technical module
4,5
modular construction
wind
kwh use hot water/heating kwh use devices
comparisation
171
23300
open space module
hours
average speed
kWh/year
152
21800
132
public toilet module
18500 108
200
2,8
13150
77
OUR ZEB COMBINATION
8300
sun
50
34
longer...
43
2400
jan
feb
ma
apr
mai
jun
jul
aug
sep
oct
nov
dec
jan
feb
ma
apr
mai
jun
jul
aug
sept
oct
nov
dec OTHER COMBINATIONS
http://www.p
http://www.easyswitch.nl/energie/energie-begrippen/energieverbruik
hours
200
unheated...
M. Margarida Pereira - Thomas de Roeck - Lise De Pauw - Hannes Vandamme - Thomas Depreitere
41