Background and prehistory:
The French mathematician Henri Poincaré offered a statement known as “Poincaré’s conjecture” without a proof. It states that any 4-dimensional ball is equivalent to 3-dimensional Euclidean space topologically: a continuous mapping exists so that it maps the former ball into the latter space one-to-one.
At first glance, it seems to be too paradoxical for the following mismatches: the former is 4-dimensional and as if “closed” unlike the latter, 3-dimensional and as if “open” according to common sense. So, any mapping seemed to be necessarily discrete to be able to overcome those mismatches, and being discrete impies for the conjecture to be false.
Anyway, nobody managed neither to prove nor to reject rigorously the conjecture about one century. It was included even in the Millennium Prize Problems by the Clay Mathematics Institute.
It was proved by Grigory Perelman in 2003 using the concept of information.
Physical interpretation in terms of special relativity: