SE GSA 2011

Page 1

Barrier Evolution in Response to Inlet Closure: An Example from a Paraglacial Barrier System

Christopher Hein and Duncan FitzGerald Geological Society of America Southeastern Section Meeting 24 March 2011


In Tribute to Bill Cleary


Study Site: Plum Island, MA

Merrimack River

Gulf of Maine

Plum Island Essex Inlet

N 0

2 km

Cape Ann


Massachusetts Post-Glacial Sea Level History

Modified from Oldale et al., 1993, Quat. Res.


Paraglacial Sediment Inputs

(FitzGerald et al., 1993)


Data Collection

N 0

2 km

• 20 km of ground-penetrating radar, 100 & 200 MHz antenna (blue lines) • 7 vibracores, max. 4 m depth (green dots) • 12 Geoprobe cores, max. 15 m (red dots) • 11 auger drill cores, max. 38 m (yellow dots)


Evolution of Plum Island Barrier System 0 50 100 -5

150 200

0

50 m

Spit Platform

250

-10

• Deltaic and braid plain sediments deposited during regression • Reworked onshore during transgression as sand shoals (12-4 ka) • Shallow shoals are pinned to glacial deposits • Vertical accretion: 30% Spit elongation: 60% Inlet fill processes: 10%

(Hein et al., in review, Marine Geology)

Depth (m)

TWT (nS)

1 MHW

Spit Progradation


Evolution of Plum Island Barrier System


Evolution of Plum Island Barrier System

0

MHW

100 150

-4

200 250

-8

Depth (m)

TWT (nS)

50

1


Evolution of Plum Island Barrier System

Inlet Base 14C Date: 3.3 cal ka BP


Topic: Barrier Island Response to Tidal Inlets 30-50% of barrier length in wave dominated settings (Moslow and Tye, 1985)

Scientific Question: how does a change in tidal fluxes affect island development? Essex Inlet, MA

FitzGerald et al., in press


Stratigraphic Database Merrimack River

Stratigraphic Data Sources:

N

0

2 km

• McIntire & Morgan, 1963, LSU Technical Report • USGS Water Supply Paper, 1963 • McCormick, 1968, Ph.D. Thesis • Hartwell, 1970, ONR Report • Rhodes, 1971, USACE Technical Memo

Parker River

• Anderson-Nichols, 1987, unpub. cores Rowley River

• Som, 1990, MS Thesis • Mass. State Boring Data

Parker River Inlet Castle Neck

• Hein et al., cores

Topographic / Bathymetric Data Sources: • US Coast & Geodetic Survey Hydrographic Survey Soundings (19531954) • Mass GIS DTM Files (2003)


Plum Island Stratigraphy 0 Median Grain Size Mean Grain Size

Barrier

Depth (m)

5

10

Backbarrier 15

20

Glaciomarine Clay (Presumpscot) 0

5

Grain Size (ÎŚ)

10

Well Sorted

Poorly Sorted

Sorting

Very Poorly Sorted


Plum Island Stratigraphy: Backbarrier Sediments N 2 km

3m+ Elevation with respect to MLW (m)

0

-15 m

Merrimack River Parker River Rowley River Ipswich River


Plum Island Stratigraphy: Backbarrier Base N 2 km

3m Elevation with respect to MLW (m)

0

-15 m (-)

Merrimack River Parker River Rowley River Ipswich River


Backbarrier Sediment Thickness N 2 km

18 m Thickness of Backbarrier Sediments (m)

0

Paleo-Parker Inlet

0m

NET VOLUME: 8.5 x 108 m3


Northern Massachusetts Calibrated Sea Level Curve

Base of inlet sequence: 3.3 ka


Backbarrier Backstripping If Mo-BBo=0; BB1=BBar*T1 If Mo-BBo>3; BB1=BBo If Mo-BBo<3; (T1-(Mo- BBo)*Mar)*BBar Mo: modern marsh level M1: marsh level at time T1 BBo: modern backbarrier sediment BBo: backbarrier sediment at T1 BBar: mean BB sed acc rate (0.28 cm/yr) Mar: mean marsh acc rate (0.12 cm/yr)

Volume Sediment Removed: 660 x 106 (Âą 60 x 106) m3 Backbarrier at 3.3 ka

Tidal Prism: 155 x 106 (Âą 11 x 106) m3


Merrimack Inlet X-C Area: 1900 TP: 25 x 106 m3

m2

Combined Modern Inlets: Combined TP: 88 x 106 m3 Combined X-C Area: 6700 m2

Parker Inlet X-C Area: 3100 m2 TP: 40 x 106 m3

Essex Inlet

Backbarrier: Tidal Prism: 155 x 106 m3 Equivalent Inlet X-C Area: 13,100 m2

X-C Area: 1700 m2 TP: 23 x 106 m3

Residual: Tidal Prism: 67 x 106 m3 Equivalent Inlet X-C Area: 5300 m2


Paleo-Plum Island Inlet 1 MHW

0

100 150

-4

Depth (m)

TWT (nS)

50

200 -8

250 0

1

100

200

1300

300

m2

-7

-11 400

50 m

-15

Depth (m)

TWT (nS)

-3


Conclusions • Sediment Sources: paraglacial offshore & fluvial • Plum Island Barrier Evolution: onshore migration, vertical accretion, spit elongation, inlet closure, & progradation • Influence of Backbarrier Infilling: delivery of sediment to backbarrier crucial driving process behind barrier evolution: Transgressive Sediment Input Backbarrier Infilling Tidal Prism Reduction Inlet Closure • The Problem: 1300 m2 << 5300 m2


Acknowledgements Funding: NSF Graduate Research Fellowship Program, US Minerals Management Service, GSA Graduate Student Research Grant, AAPG Student Grant, AGU Tilford Field Studies Scholarship Field / Lab Assistants: Byron Stone (USGS), Emily Carruthers, (WHOI), Mary Ellison (U. of New Orleans), Nicholas Cohn, Jeff Grey (USGS), Britt Argow (Wellesley College) Parker River National Wildlife Refuge Staff


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.