Molecular Plant Pathology Editor in Chief: Gary D. Foster
Virtual Issue: Challenges for molecular plant pathology over the next 10 years, and plant diseases that changed the [add worldcover]
Introduction Introduction
Challenges for molecular plant pathology over the next ten years, and plant diseases that changed the world This virtual issue of Molecular Plant Pathology contains reviews in two broad areas; challenges for molecular plant pathology over the next ten years, and plant diseases that changed the world. These reviews are ideal for research and teaching purposes. The reviews describe the recent work in comparative genomics, post-translational protein modification and transcriptomics, and how these technologies impact on scientific research. Horizontal gene transfer and the evolution of virulence and pathogenicity in plant pathogen populations are also discussed. Several important plant diseases are featured. Potato blight caused by Phytophthora infestans and the Ergot-induced madness of Claviceps sclerotia are well known examples which have had huge sociological and scientific impact. Research has shown that plant pathogens are formidable foe. Their genome plasticity renders them extremely versatile and their interactions with transmission vectors such as insects are complex. These reviews describe the immense impact plant disease has on agriculture. Understanding the interactions between pathogen and host are crucial in developing the best crop varieties to take forward in agricultural production.
Article
Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host– parasite interactions John T. Jones, Maurice Moens, Manuel Mota, Hongmei Li, Taisei Kikuchi
Most Bursaphelenchus species are fungal feeding nematodes that colonize dead or dying trees. However, Bursaphelenchus xylophilus, the pine wood nematode, is also a pathogen of trees and is the causal agent of pine wilt disease. B. xylophilus is native to North America and here it causes little damage to trees. Where it is introduced to new regions it causes huge damage. The most severely affected areas are found in the Far East but more recently B. xylophilus has been introduced into Portugal and the potential for damage here is also high. As incidence and severity of pine wilt disease are linked to temperature we suggest that climate change is likely to exacerbate the problems caused by B. xylophilus and, in addition, will extend (northwards in Europe) the range in which pine wilt disease can occur. Here we review what is currently known about the interactions of B. xylophilus with its hosts, including recent developments in our understanding of the molecular biology of pathogenicity in the nematode. We also examine the potential developments that could be made by more widespread use of genomics tools to understand interactions between B. xylophilus, bacterial pathogens that have been implicated in disease and host trees.
Read Online
Article
The evolution of virulence and pathogenicity in plant pathogen populations Soledad Sacristán, Fernando García-Arenal
The term virulence has a conflicting history among plant pathologists. Here we define virulence as the degree of damage caused to a host by parasite infection, assumed to be negatively correlated with host fitness, and pathogenicity the qualitative capacity of a parasite to infect and cause disease on a host. Selection may act on both virulence and pathogenicity, and their change in parasite populations can drive parasite evolution and host–parasite co-evolution. Extensive theoretical analyses of the factors that shape the evolution of pathogenicity and virulence have been reported in last three decades. Experimental work has not followed the path of theoretical analyses. Plant pathologists have shown greater interest in pathogenicity than in virulence, and our understanding of the molecular basis of pathogenicity has increased enormously. However, little is known regarding the molecular basis of virulence. It has been proposed that the mechanisms of recognition of parasites by hosts will have consequences for the evolution of pathogenicity, but much experimental work is still needed to test these hypotheses. Much theoretical work has been based on evidence from cellular plant pathogens. We review here the current experimental and observational evidence on which to test theoretical hypotheses or conjectures. We compare evidence from viruses and cellular pathogens, mostly fungi and oomycetes, which differ widely in genomic complexity and in parasitism. Data on the evolution of pathogenicity and virulence from viruses and fungi show important differences, and their comparison is necessary to establish the generality of hypotheses on pathogenicity and virulence evolution.
Read Online
Article
Post-translational modification of host proteins in pathogen-triggered defence signalling in plants Iris J. E. Stulemeijer, Matthieu H. A. J. Joosten
Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling depends on post-translational modification (PTM) of components essential for defence signalling. We discuss different types of PTMs that play a role in mounting plant immunity, which include phosphorylation, glycosylation, ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and glycosylphosphatidylinositol (GPI)-anchoring. PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate protein stability, activity and localization. Here, we give an overview of PTMs that modify components essential for defence signalling at the site of signal perception, during secondary messenger production and during signalling in the cytoplasm. In addition, we discuss effectors from pathogens that suppress plant defence responses by interfering with host PTMs.
Read Online
Article
Horizontal gene transfer: sustaining pathogenicity and optimizing host–pathogen interactions Clarence I. Kado
Successful host–pathogen interactions require the presence, maintenance and expression of gene cassettes called ‘pathogenicity islands’ (PAIs) and ‘metabolic islands’ (MAIs) in the respective pathogen. The products of these genes confer on the pathogen the means to recognize their host(s) and to efficiently evade host defences in order to colonize, propagate within the host and eventually disseminate from the host. Virulence effectors secreted by type III and type IV secretion systems, among others, play vital roles in sustaining pathogenicity and optimizing host–pathogen interactions. Complete genome sequences of plant pathogenic bacteria have revealed the presence of PAIs and MAIs. The genes of these islands possess mosaic structures with regions displaying differences in nucleotide composition and codon usage in relation to adjacent genome structures, features that are highly suggestive of their acquisition from a foreign donor. These donors can be other bacteria, as well as lower members of the Archaea and Eukarya. Genes that have moved from the domains Archaea and Eukarya to the domain Bacteria are true cases of horizontal gene transfer. They represent interdomain genetic transfer. Genetic exchange between distinct members of the domain Bacteria, however, represents lateral gene transfer, an intradomain event. Both horizontal and lateral gene transfer events have been used to facilitate survival fitness of the pathogen.
Read Online
Article
Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology Kar-Chun Tan, Simon V. S. Ipcho, Robert D. Trengove, Richard P. Oliver, Peter S. Solomon
Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.
Read Online
Review
Citrus tristeza virus: a pathogen that changed the course of the citrus industry Pedro Moreno, Silvia Ambrós, Maria R. Albiach-martí, José Guerri,leandro Pena
Citrus tristeza virus (CTV) (genus Closterovirus, family Closteroviridae) is the causal agent of devastating epidemics that changed the course of the citrus industry. Adapted to replicate in phloem cells of a few species within the family Rutaceae and to transmission by a few aphid species, CTV and citrus probably coevolved for centuries at the site of origin of citrus plants. CTV dispersal to other regions and its interaction with new scion varieties and rootstock combinations resulted in three distinct syndromes named tristeza, stem pitting and seedling yellows. The first, inciting decline of varieties propagated on sour orange, has forced the rebuilding of many citrus industries using tristeza-tolerant rootstocks. The second, inducing stunting, stem pitting and low bearing of some varieties, causes economic losses in an increasing number of countries. The third is usually observed by biological indexing, but rarely in the field. CTV polar virions are composed of two capsid proteins and a single-stranded, positive-sense genomic RNA (gRNA) of ~20 kb, containing 12 open reading frames (ORFs) and two untranslated regions (UTRs). ORFs 1a and 1b, encoding proteins of the replicase complex, are directly translated from the gRNA, and together with the 5′ and 3′UTRs are the only regions required for RNA replication. The remaining ORFs, expressed via 3′-coterminal subgenomic RNAs, encode proteins required for virion assembly and movement (p6, p65, p61, p27 and p25), asymmetrical accumulation of positive and negative strands during RNA replication (p23), or suppression of post-transcriptional gene silencing (p25, p20 and p23), with the role of proteins p33, p18 and p13 as yet unknown. Analysis of genetic variation in CTV isolates revealed (1) conservation of genomes in distant geographical regions, with a limited repertoire of genotypes, (2) uneven distribution of variation along the gRNA, (3) frequent recombination events and (4) different selection pressures shaping CTV populations. Measures to control CTV damage include quarantine and budwood certification programmes, elimination of infected trees, use of tristeza-tolerant rootstocks, or cross protection with mild isolates, depending on CTV incidence and on the virus strains and host varieties predominant in each region. Incorporating resistance genes into commercial varieties by conventional breeding is presently unfeasible, whereas incorporation of pathogen-derived resistance by plant transformation has yielded variable results, indicating that the CTV–citrus interaction may be more specific and complex than initially thought. A deep understanding of the interactions between viral proteins and host and vector factors will be necessary to develop reliable and sound control measures.
Read Online
Article
Phytophthora infestans: the plant (and R gene) destroyer William Fry
Phytophthora infestans remains a problem to production agriculture. Historically there have been many controversies concerning its biology and pathogenicity, some of which remain today. Advances in molecular biology and genomics promise to reveal fascinating insight into its pathogenicity and biology. However, the plasticity of its genome as revealed in population diversity and in the abundance of putative effectors means that this oomycete remains a formidable foe.
Read Online
Article
Progress towards the understanding and control of sugar beet rhizomania disease Graham R. D. Mcgrann, Michael K. Grimmer, Effie S. MutasagĂśttgens, Mark Stevens
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate rootinfecting parasite Polymyxa betae. BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1, has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.
Read Online
Article
Ergot: from witchcraft to biotechnology
Thomas Haarmann, Yvonne Rolke, Sabine Giesbert, Paul Tudzynski
The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.
Read Online