
3 minute read
Hydrological Modeling and Climate Change
Bibliography
- Carrillo-Bastos, A., Islebe, G. A. y Torrescano-Valle, N. (2013). 3800 Years of Quantitative Precipitation Reconstruction from the Northwest Yucatan Peninsula. Plos One, 8(12), e84333. - Ertsen, M. W. y Wouters, K. (2018). The drop that makes a vase overflow: Understanding Maya society through daily water management. WIREs Water, 5, e1281. - French, K. D. y Duffy, C. J. (2014) Understanding ancient Maya water resources and the implications for a more sustainable future. WIREs Water, 1, 305-313. - Gallareta, T. (2000) Sequía y colapso de las ciudades mayas del Puuc. I’inaj (INAH Yucatán), 11, 13-18. - Haug, G.H., Günther, D., Peterson, L.C., Sigman, D.M., Hughen, K.A. y Aeschlimann, B. (2003). Climate and the Collapse of Maya Civilization. Science, 299,1731-1735. - Instituto Nacional de Antropología e Historia. (2017). Boletín N° 393. Recuperado de https://www.inah.gob.mx/attachments/article/6660/20171108_boletin_393.pdf - Lentz, D. L., Hamilton, T. L., Dunning, N. P., Scarborough, V. L. Luxton, T. P., Vonderheide, A., Tepe, E. J., Perfetta, C. J., Brunemann, J., Grazioso, L., Valdez, F., Tankersley, K. B. y Weiss, A. A. (2020). Molecular genetic and geochemical assays reveal severe contamination of drinking water reservoirs at the ancient Maya city of Tikal. Scientific Reports, 10, 10316. - Luzzadder-Beach, S., Beach, T. y Dunning, N. P. (2012). Wetland fields as mirrors of drought and the Maya abandonment. Proc. Nat. Acad. Sci., 109(10), 3646-3651 - Nalda, E. (2005). Clásico terminal (750-1050 d. c.) y posclásico (1050-1550 d. c.) en el área maya. Colapso y reacomodos. Arqueología Mexicana, 76, 30-39.
- Márquez Morfín L., Hernández Espinoza P. O. (2013) Los mayas del clásico tardío y terminal. Una propuesta acerca de la dinámica demográfica de algunos grupos prehispánicos: Jaina, Palenque y Copán. Estudios de Cultura Maya, 42, 55-86. -Marx, W., Haunschild, R. y Bornmann, L. (2017). The role of climate in the collapse of the Maya civilization: a bibliometric analysis of the scientific discourse. Climate, 5(4), 88. - Reindel, M. (2002). El abandono de las ciudades Puuc en el norte de Yucatán. Estudios de Cultura Maya, 22, 125-136. - Roman, S. Palmer, E. y Bredea, M. (2018). The dynamics of human–environment interactions in the collapse of the classic Maya. Ecological Economics, 146, 312-324. - Stahle, D. W., Villanueva, J., Burnette, D. J., Cerano Paredes, J., Heim, R. R., Fye, F. K., Acuna Soto, R., Therrell, M. D., Cleaveland, M. K. y Stahle, D. K. (2011). Major Mesoamerican droughts of the past millennium. Geophysical Research Letters, 38, L05703. - Turner B. L. (2010). Unlocking the ancient Maya and their environment: Paleo-evidence and dating resolution. Geology, 38, 575-576. - Turner, B. L. y Sabloff, J. A. (2012). Classic Period collapse of the Central Maya Lowlands: Insights about human-environment relationships for sustainability. Proc. Nat. Acad. Sci., 109(35), 13908-13914.
DEFORESTATION IN MEXICO: REACHING THE FUTURE WITH SHAME
Pedro Andrés Sánchez Gutiérrez
Forests are more than just trees; they are a source of food, water, and livelihood and are essential to the global ecosystem. When managed sustainably, forests can increase resilience and provide economic services, a variety of environmental services, and employment opportunities. In addition, forests absorb and store carbon dioxide and provide habitats for a large number of species (Food and Agriculture Organization of the United Nations, 2016).
Forests play a comprehensive role in water cycle management. In a healthy ecosystem, rain is absorbed by the soil and surrounding trees. Some of the absorbed water returns to the atmosphere through transpiration, the release of water from plant leaves during photosynthesis. Transpired water contributes to the formation of rain clouds that distribute the water back to the forest. When trees are removed from an ecosystem, less water is released into the atmosphere, and less rain falls in the surrounding areas (Mongabay, 2020).