Q U AY O L A : I C O N O G R A P H I E S
A characteristic aspect of Western visual culture has been the effort to isolate the formal principles of works of art and to define these principles rationally through language or mathematics. The tendency to dissect images and forms according to their geometry, proportions, contrast of light and dark, color, composition, and so forth, has shaped our approach to art for more than two millennia, hugely influencing the creative process along the way. One of the most recent expressions of this attitude – in this case based more on empathy and intuition rather than intellect – was the approach toward form taught at the Bauhaus in the early 1920s. As part of the “preliminary course” set up by Johannes Itten, the mystic first master of the school, students were asked to understand the Old Masters in terms of their essential formal or expressive principles. Thus, paintings were analyzed and redrawn according to geometrical patterns, proportions, contrast, color, rhythm, and so on. The aim was to make the students fully aware of the fundamentals of all visual expression and liberate their creative forces in the direction of formal abstraction. Itten looked through the historical – narrative, meaning, iconography, style – to find what he perceived as timeless abstract laws. While responding to similar principles, Quayola works with a different set of tools. The method is detached, and in many ways, the opposite of Itten’s empathic approach. Quayola uses algorithms generated by computer programs to analyze Renaissance and Baroque paintings according to a series of fixed parameters. Familiar images are read exclusively according to their hue, tone, saturation, and contrast of light and dark. Paintings with well-known iconographies, such as Judith and Holofernes or the Adoration of the Magi, are thus stripped of any content and transformed into abstract, rocky landscapes in which the memory of the original figurative image is almost
completely gone. These formal metamorphoses are the result of an exercise in restraint in which images are reduced to their skeletal components, ultimately in a way similar to Itten’s. That which is instinctively recognizable is abandoned in favor of mathematical relationships expressed in space. The process of rational transformation of the familiar into something new and uncanny is one of the most fascinating aspects of Quayola’s images. Even more fascinating is the fact that, somehow, an echo of the original organic shapes is still trapped in the grid of impersonal relationships. What these images also reveal is the inevitable degree of alteration and loss involved in any process of translation. The relationship between word and image is well known to be a difficult one as the two languages respond to different rules and conventions. Words often reveal their limited nature when trying to render and evoke complex and elusive forms. Less obvious is the relationship between images and the mathematical language hidden behind any of their digital reproductions. If, for millennia, painting and sculpture constituted the primary forms of visual experience, our current relationship with images is almost completely mediated by the digital medium. Quayola’s abstractions intentionally exasperate and exacerbate the artificial aspects of digital images, subtly revealing their tendency to decontextualize, fragment and inevitably simplify the original. Serial numbers given to the works seem to further stress their impersonal nature as if these images had been randomly generated by a program that could produce an infinite number of outcomes from any given prototype. A working method that apparently aims at erasing any trace of artistic creation through a rigid rational approach – compared to which Itten’s looks organic. But in many ways the opposite is true, since Quayola does not leave the selection of the final images to the inflexible inner logic of the machine, but relies instead upon his own eye and aesthetic judgment.
I C O N I C A B S T R AC T I O N S : O N Q U AY O L A’ S I C O N O G R A P H I E S This simple act reveals that the creative process is ultimately based on principles that cannot be rationally quantified or reduced and which, as Vasari and many other theoreticians of the Renaissance never grew tired of reaffirming, constitute the real essence of visual expression. Adriano Aymonino
Process of Iconographies #81-02, Adoration after Botticelli, 2015
Learning how to see is unlearning how to recognize, said Lyotard in 1971. Quayola’s digitally formed works take iconographic representations of the theme of Judith and Holofernes to re-synthetize the pictorial language as a new abstraction. This is not a digital reinterpretation that would seek to subvert cultural meanings and iconographies, and thus rehabilitate the discourse of the image. The artist’s digital instructions and alterations morph into iconic algorithmic reconstructions that reveal the figural and specific power of the digital. Any emulation of art historical references is transformed into a figurative modulation where optical forces resist the construction of stable codes and paradigms. Different in their aspect, these structures of visualization emphasize the tensions inherent to all representations and force the viewer to shift seeing away from the visual and rhetorical figures of the recognizing gaze. The complexity of the figures emerging with and against the backgrounds breaks with the reality of the ‘originals’. Intense and dramatic, the figures dissolve into a language of code, deviation, and transition that explores the dynamic tensions between the ‘original’ and the digital. These algorithmic images are programmed to articulate the structural nodes and disrupt the grammar of electronic sight, building upon historical variations in the artistic representations of Judith and Holofernes. Empirical observation and subject knowledge are turned into experiential observation – we gaze at the images to observe different constructions of the image, adapt our seeing, and reclaim the sight of our own eyes. While the vivification of movement and its dynamics reveals the virtual vitality of figuration, the digital canvas moves beyond the formal boundaries. In Iconographies, light and the net of articulating nodes construct images as irregular diamonds of intersections and cross-divisions, recalling pictorial techniques that extend from Rubens to Cézanne, the Cubists or the Futurists, and translated by Quayola into a distinct software language with altered rules and parameters. Do the ‘originals’
and Quayola’s iterations legitimize each other, lending each other historical authority? Perhaps more importantly, we ought to ask ourselves what we would see in these iterations if we didn’t know they were inspired by classic iconographic representations? What do our eyes look for? Where do they linger? On what does a computer pause? What does it think when it sees? How does it understand? Quayola’s digital abstractions derive their force from the regime of seeing they create. The cuts, alterations and recompositions that characterize this regime escape formal discipline to produce resonance and depth. They reflect on the vitality of seeing itself and the potential for visual variation. Yet the pictorial qualities of the works reveal ideas in matter rather than in the mind, echoing the Spinozist notion of ‘thought’ as the attribute proper to substance or matter. The re-appropriation of the pictorial calls forth a material transformation of both thinking and seeing. Quayola’s visual concretions reform the gaze and reclaim the subtlety of a divided, stratified and plastic perception. By enveloping the image within its folds, the artist reveals an expressive relief where the pictorial is reassembled as infinite plasticity – and where the cultural institution of a pictorial language is replaced by a purely abstract process of construction. The digital iterations focus on the visual transcription of the ‘original’ paintings, not their inherited subject, to produce an iconic difference where image is both object and process. The extensive symbolism of the paintings morphs into material and analysis, revealing how iconicity is a matter of degree, not essence and, thus, a matter of intensity. While algorithmic abstractions are open to error and structural variation, Quayola’s iterations are not anomalies or hybrid images bound to consecrated forms of knowledge. The relations between foreground and background, the distribution of colors, and the dynamics of movement are the interpretation of the computer’s eye, with its underlying codes and decoding patterns. In his attempt to overcome the binary logics of discourse, Quayola creates calculated representations, that is, pure visual abstractions of the image itself. The abstraction of iconographic elements results in a composition inhabited
by electronic relations, colors, and nodes. As the figures become matters of volume, density, and plasticity, they form an iterated landscape that challenges perspectivist space and generates a specific visual meaning. It resists subordination to the references underlying the ‘original’ paintings only to show that learning how to ‘read’ Quayola’s images means ceasing to treat them as textual references. The digital volume increases the intensity of the gaze and the scrutiny of a nonhuman thought to surpass both recognizing and visualizing seeing. If meaning in visuality emerges as the outcome of spatial and temporal arrangements that constitute the imageobject, here it is subordinated to the tensions and dynamics of forms, not as a matter of emulation, but as a matter of modulation. In Iconographies, the expressive potential of digital reliefs is the locus of procedural abstraction that informs an intensive perception freed from the claims of an anthropomorphic perspective. The algorithmic medium produces such distinct eyes and such distinct manners of thinking that it must lead to a complete revisiting of modernism itself. That is, ultimately, what is at stake at this current point in time in both language and thinking. Quayola’s Iconographies need to be seen not as they are for us but as they are in their peculiar manners of perception. The indeterminate and ambiguous forms surpass modernist avant-gardes and challenge historical considerations of culture and context. As the beholder becomes aware of the infinitely active and subjective nature of seeing, these abstractions and the non-human thinking that produces them lead to sheer immanence, distinct image formations, and a new visual language of contingent relationships.
Sabin Bors
R O U R K E O N Q U AY O L A The algorithm harbors no aesthetic. It doesn’t care about human bodies, nor their fate. It analyzes the figure of Judith, and the severed head of General Holofernes, the bloody folds of the bed linin, the splintered crisscross of the basket, the reflection on the sword, and the trees on the mountain through the window with indifferent, neutral attention, then weaves everything together as a polyhedral fabric. This fractal web of relationships gestures to larger scales than a single painting can capture, and smaller dimensions than any paintbrush is capable of rendering. Distinguished by these intricate fragmentations, human forms become topologies containing within themselves the necessary complexity required for scores of clouds, coastlines, and stained-glass crystals to leap into the imagination. As well as the fractal dimensions within each image, Davide Quayola’s Iconographies series opens up thematic schemes across a sequence of paintings. At this scale we can envisage the paintings of Judith and Holfernes as a topos: a site bound by common features, within which a question remains contested. To a contemporary audience, Judith is a brave and exemplary woman who steps forward at a time of crisis, using guile to sever the head of the patriarch. For the original audience of these paintings, though, and indeed their painters, the depiction of Judith and Holfernes was much more ambiguous. The same act could be read as an expression of a woman’s power, or a warning that all men, whatever their status, may be struck down by the “deceits and wiles” of women.1 The iconographic elements of the paintings remain rooted in traditions removed from a contemporary audience: a severed head on a platter, an ornate sword, the servant maid, and Judith’s indefinite glance. But the topos – that the power of women is not a simple matter – retains its ability to provoke. As Umberto Eco notes, through the work of Erwin Panofsky: Even simply from an aesthetic point of view, the painting will be judged in a completely different way depending on whether it is seen as the representation of a courtesan who is carrying the head of a saint or as that of a heroine, protected by God, who is holding the head of a sinner. 2
When the geometric eye of the algorithm reunites the body of Holfernes, and renders further connections between the General and the assassin Judith, we are confronted afresh with the concept of a united body of human kind. Again, the algorithm cares not for tradition. In myths told the world over we contemplate The Creation as the instant when a unity was separated into being. Only through differentiation can the formless become distinct. The calm of the void cracking open to reveal an array of fractal forms, tumbling into existence. The algorithm seems to wrestle with these distinctions, plotting points, forging connections, and warping painterly perspective with simple mathematical tricks. Part of the power of Quayola’s images is to continually refocus the universe from the point of the viewing subject. Scales of the vast and the impossibly miniature are switched in their place as the eye wanders. For as the ‘inside’ of each painting splits asunder and spills forth its colorful polygons, so the ‘outside’ world becomes a mere frame for the new inner-infinity of the image. This thrilling waltz with perspective renders human scales of vision elastic. Quayola’s works highlight the stunning capacity of all new technologies to mutate the things they frame forever, hijacking and warping preconceived notions of time and space. In the 19th century it was the steam train, a technology characterized through the “annihilation of space and time”3 that rendered us subjects on a tiny spinning orb in space, long before Albert Einstein incorporated it into his radical thought experiments. In the 20th century, perhaps the most profound technology of perception was cinema, which gave “common standard of measurement to things which do not have one,” framing “long shots of countryside and close-ups of the face, an astronomical system and a single drop of water”4 within a single perceptual apparatus. With the computer and its constantly extending, roving eyes we have repositioned the human and the earth once more. Satellites and drones map the planetary in the three dimensions of space, and one of time, and compress those four distinct dimensions into patterns of light, or the flicker of electricity coursing across silicon chips. That computers have changed the present, and speed us ever faster toward the future is beyond question. In Quayola’s
work we are also confronted with our pasts anew: a grand compositional realignment that quivers like the long note of an orchestra on every human subject who entertains it.
Iconographies asks the viewer to slash and sunder, to cut and separate, to hack and cleave, to slit, rive, rip, dissect, and disunite with our wandering eyes and reactivated minds. Left to its devices, the computer would wrap the whole world under its fractal fabric. Perspective requires a perceiver who stands in a place and time uniquely his own. Each viewer is handed Holfernes’ sword and implored to make the first incision. Daniel Rourke
Process of Iconographies #26, Judith & Holofernes after Artmesia Gentileschi, 2015
1
Margaret Schaus, Women and Gender in Medieval Europe: An Encyclopedia, New York, Taylor & Francis, 2006, 44–845.
2
Umberto Eco, The Open Work, Cambridle, Harvard University Press, 1989, 263.
3
Schivelbusch, The Railway Journey: The Industrialization and Perception of Time and Space, Berkeley, Calif, University of California Press, 1992, 33.
4
Gilles Deleuze, Cinema 1, London, Continuum, 2005, 6.
A
R
T
W O
R
K
S
ICONOGRAPHIES #26 JUDITH & HOLOFERNES, AFTER ARTEMISIA GENTILESCHI, 2015 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #32 J U D I T H & H O L O F E R N E S A F T E R C A R AVAG G I O, 2 0 1 5 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #43 J U D I T H & H O L O F E R N E S A F T E R G U E R C I N O, 2 0 1 5 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #44 JUDITH & HOLOFERNES AFTER GUIDO RENI, 2015 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #54 J U D I T H & H O L O F E R N E S A F T E R L AV I N I A F O N TA N A , 2 0 1 5 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #56 J U D I T H & H O L O F E R N E S A F T E R L I O N E L L O S PA DA , 2 0 1 5 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #60 J U D I T H & H O L O F E R N E S A F T E R L U C A DA R E G G I O, 2 0 1 5 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #67 J U D I T H & H O L O F E R N E S A F T E R M AT T I A P R E T I , 2 0 1 5 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #70 JUDITH & HOLOFERNES AFTER ORAZIO GENTILESCHI, 2015 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #73 JUDITH & HOLOFERNES AFTER BOTTICELLI, 2015 Quayola Engraving on anodized aluminum, 42 x 58 cm
ICONOGRAPHIES #81-01 A D O R AT I O N A F T E R B O T T I C E L L I , 2 0 1 5 Quayola Ditone print, 103 x 180 cm
ICONOGRAPHIES #81-02 A D O R AT I O N A F T E R B O T T I C E L L I , 2 0 1 5 Quayola Ditone print, 103 x 180 cm
ICONOGRAPHIES #81-03 A D O R AT I O N A F T E R B O T T I C E L L I , 2 0 1 5 Quayola Ditone print, 103 x 180 cm
ICONOGRAPHIES #81-20 A D O R AT I O N A F T E R B O T T I C E L L I , 2 0 1 5 Quayola Ten Ditone prints, 24 x 33 cm each
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" width="2874" height="2874" overflow="auto" viewBox="-2874, -2874, 5748, 5748" preserveAspectRatio="none" VVVVBackgroundColor="0;0;0;1"> <g transform="matrix(1, 0, 0, 1, 0, 0)"> <polygon points="-1102.418 -1662.452 -1425.751 -1838.689 -1095.73 -1935.804 " fill="#4C4D3D" stroke-width="3.456" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2714.065 239.9678 2864.275 -598.8916 2874 958.0073 " fill="#413A25" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2808.614 1137.084 -2873.649 966.2957 -2775.11 1100.707 " fill="#87713A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 -958.0018 -2857.599 -1957.434 -2821.595 -1653.561 " fill="#B3B8A1" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2846.153 1779.761 -2808.614 1137.084 -2803.834 1755.247 " fill="#6E572A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2777.215 810.7245 2714.065 239.9678 2874 958.0073 " fill="#887251" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2841.121 1202.689 2815.872 1134.782 2874 958.0073 " fill="#62512D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2865.734 1617.721 2841.121 1202.689 2874 958.0073 " fill="#4A3D28" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2815.872 1134.782 2617.05 821.2494 2874 958.0073 " fill="#6F5F35" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2873.649 966.2957 -2874 958.0073 -2837.426 965.9229 " fill="#867642" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2617.05 821.2494 2777.215 810.7245 2874 958.0073 " fill="#826D3E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="1386.338 2826.375 2027.228 2715.732 2874 2874 " fill="#A99F7E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2835.858 1765.465 2865.734 1617.721 2874 2874 " fill="#554C2E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2846.153 1779.761 -2779.758 1847.778 -2747.657 2333.897 " fill="#21230F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 2874 -2846.153 1779.761 -2808.658 2423.622 " fill="#725E3A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="2788.102 2516.417 2835.858 1765.465 2874 2874 " fill="#343420" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2846.153 1779.761 -2803.834 1755.247 -2779.758 1847.778 " fill="#705828" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2857.248 -601.627 -2839.399 -555.1667 -2838.303 115.7301 " fill="#6B5F39" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2808.658 2423.622 -2846.153 1779.761 -2747.657 2333.897 " fill="#766030" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2873.649 966.2957 -2837.426 965.9229 -2775.11 1100.707 " fill="#6C5E29" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2857.599 -1957.434 -2721.389 -2037.292 -2711.653 -1879.912 " fill="#8B8558" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2857.248 -601.627 -2874 -958.0018 -2815.762 -781.2164 " fill="#B7A980" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2752.744 617.4609 -2661.222 519.0421 -2641.97 636.5483 " fill="#978960" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 -958.0018 -2821.595 -1653.561 -2757.568 -1523.776 " fill="#7D7148" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2637.453 -1302.183 -2527.95 -1295.577 -2524.88 -1182.319 " fill="#B6AE89" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2713.101 2530.318 -2808.658 2423.622 -2702.97 2427.481 " fill="#514F3F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2846.153 1779.761 -2873.649 966.2957 -2808.614 1137.084 " fill="#443A23" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2785.459 309.9145 -2838.303 115.7301 -2700.164 174.4119 " fill="#756A49" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 958.0073 -2838.303 115.7301 -2785.459 309.9145 " fill="#776D48" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2747.043 627.6898 -2752.744 617.4609 -2641.97 636.5483 " fill="#908156" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 958.0073 -2752.744 617.4609 -2747.043 627.6898 " fill="#594B23" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2199.749 567.9501 -2100.551 445.2911 -2000.521 537.5375 " fill="#564C24" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2785.459 309.9145 -2668.677 398.1263 -2661.222 519.0421 " fill="#81764C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2821.595 -1653.561 -2857.599 -1957.434 -2784.144 -1682.932 " fill="#A7A786" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 -2874 -2783.661 -2800.063 -2725.906 -2479.645 " fill="#8B9070" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2775.11 1100.707 -2837.426 965.9229 -2618.42 933.0107 " fill="#6D5B25" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2784.144 -1682.932 -2857.599 -1957.434 -2711.653 -1879.912 " fill="#9C976E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2837.426 965.9229 -2874 958.0073 -2747.043 627.6898 " fill="#52431A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2752.744 617.4609 -2785.459 309.9145 -2661.222 519.0421 " fill="#53421F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2570.488 -778.8318 -2570.094 -947.6743 -2569.173 -947.5153 " fill="#B8B190" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2808.658 2423.622 -2747.657 2333.897 -2702.97 2427.481 " fill="#675B4D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2838.303 115.7301 -2839.399 -555.1667 -2757.218 36.12317 " fill="#706942" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2607.369 2503.129 -2491.157 2187.25 -2436.91 2145.458 " fill="#5D5744" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2607.369 2503.129 -2654.994 2446.821 -2588.907 2282.807 " fill="#5B5348" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 958.0073 -2785.459 309.9145 -2752.744 617.4609 " fill="#5E4C20" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2718.407 -2704.582 -2783.661 -2800.063 -2700.734 -2872.114 " fill="#8F8A67" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2588.907 2282.807 -2682.71 2277.589 -2491.157 2187.25 " fill="#524224" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2483.57 593.9334 -2373.453 538.9298 -2332.888 701.0023 " fill="#ABA179" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2623.113 -1753.953 -2711.653 -1879.912 -2564.305 -2035.999 " fill="#A2A07F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2728.099 -2148.33 -2857.599 -1957.434 -2725.906 -2479.645 " fill="#989E8A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2857.599 -1957.434 -2874 -2874 -2725.906 -2479.645 " fill="#9EA18F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2757.218 36.12317 -2701.655 31.08615 -2700.164 174.4119 " fill="#756D48" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2857.599 -1957.434 -2728.099 -2148.33 -2721.389 -2037.292 " fill="#A5A582" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2838.303 115.7301 -2757.218 36.12317 -2700.164 174.4119 " fill="#6F6846" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2702.97 2427.481 -2747.657 2333.897 -2682.71 2277.589 " fill="#727141" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 2874 -2808.658 2423.622 -2713.101 2530.318 " fill="#3E311B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2783.661 -2800.063 -2874 -2874 -2700.734 -2872.114 " fill="#96906B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2725.906 -2479.645 -2706.391 -2563.746 -2688.06 -2514.739 " fill="#B1C1AE" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2527.95 -1295.577 -2292.104 -1580.457 -2212.378 -1521.364 " fill="#A09972" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2757.568 -1523.776 -2643.943 -1471.436 -2637.453 -1302.183 " fill="#483715" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2821.595 -1653.561 -2784.144 -1682.932 -2708.321 -1660.643 " fill="#918A64" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2757.568 -1523.776 -2821.595 -1653.561 -2708.321 -1660.643 " fill="#989270" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2725.906 -2479.645 -2783.661 -2800.063 -2706.391 -2563.746 " fill="#8A8969" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2783.661 -2800.063 -2718.407 -2704.582 -2706.391 -2563.746 " fill="#646448" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2647.671 93.81964 -2571.409 -136.0583 -2419.807 173.3868 " fill="#AAA175" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="958.0018 2874 1386.338 2826.375 2874 2874 " fill="#9D8A4D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2702.97 2427.481 -2682.71 2277.589 -2654.994 2446.821 " fill="#75705C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2570.181 -608.5422 -2638.155 -726.5143 -2537.861 -663.9103 " fill="#A29D77" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2747.657 2333.897 -2779.758 1847.778 -2682.71 2277.589 " fill="#15160C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 -958.0018 -2757.568 -1523.776 -2637.453 -1302.183 " fill="#433A1E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2524.88 -1182.319 -2527.95 -1295.577 -2212.378 -1521.364 " fill="#A59C74" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2637.453 -1302.183 -2643.943 -1471.436 -2583.951 -1409.887 " fill="#A1966D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2700.164 174.4119 -2701.655 31.08615 -2647.671 93.81964 " fill="#7A704C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2757.568 -1523.776 -2708.321 -1660.643 -2643.943 -1471.436 " fill="#786D3D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2682.71 2277.589 -2779.758 1847.778 -2658.415 1865.188 " fill="#4E2712" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2713.101 2530.318 -2702.97 2427.481 -2654.994 2446.821 " fill="#63614D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2747.043 627.6898 -2641.97 636.5483 -2618.42 933.0107 " fill="#42351C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2785.459 309.9145 -2700.164 174.4119 -2668.677 398.1263 " fill="#726844" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2569.173 -947.5153 -2534.967 -1043.215 -2524.222 -800.6436 " fill="#BFB490" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2837.426 965.9229 -2747.043 627.6898 -2618.42 933.0107 " fill="#4D4D24" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2779.758 1847.778 -2803.834 1755.247 -2658.415 1865.188 " fill="#9B4D29" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2272.37 863.2393 -2278.51 863.1516 -2257.504 859.7749 " fill="#957F4D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2278.51 863.1516 -2332.888 701.0023 -2257.504 859.7749 " fill="#8B7744" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2638.155 -726.5143 -2570.488 -778.8318 -2537.861 -663.9103 " fill="#9E9671" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2815.762 -781.2164 -2874 -958.0018 -2570.094 -947.6743 " fill="#8F8256" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2643.943 -1471.436 -2708.321 -1660.643 -2623.113 -1753.953 " fill="#A1996F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2654.994 2446.821 -2682.71 2277.589 -2588.907 2282.807 " fill="#6A644F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2570.488 -778.8318 -2569.173 -947.5153 -2524.222 -800.6436 " fill="#B0A982" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2537.861 -663.9103 -2570.488 -778.8318 -2524.222 -800.6436 " fill="#B1A985" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2839.399 -555.1667 -2857.248 -601.627 -2638.155 -726.5143 " fill="#3B3318" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2857.248 -601.627 -2815.762 -781.2164 -2638.155 -726.5143 " fill="#42381D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2537.861 -663.9103 -2524.222 -800.6436 -2507.689 -622.9509 " fill="#9D9775" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2784.144 -1682.932 -2711.653 -1879.912 -2623.113 -1753.953 " fill="#9C9769" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2708.321 -1660.643 -2784.144 -1682.932 -2623.113 -1753.953 " fill="#A4976D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2570.181 -608.5422 -2537.861 -663.9103 -2507.689 -622.9509 " fill="#968F6B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2341.615 -2581.539 -2315.698 -2585.782 -2293.595 -2550.688 " fill="#99B7AC" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2538.256 -2565.916 -2718.407 -2704.582 -2413.272 -2671.823 " fill="#6F7258" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2571.409 -136.0583 -2570.181 -608.5422 -2507.689 -622.9509 " fill="#98906C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-1437.658 2048.804 -1334.119 1583.866 -1225.493 1815.326 " fill="#4F472E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2713.101 2530.318 -2654.994 2446.821 -2607.369 2503.129 " fill="#645343" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 2874 -2713.101 2530.318 -2607.369 2503.129 " fill="#382F1D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2757.218 36.12317 -2839.399 -555.1667 -2571.409 -136.0583 " fill="#726942" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2701.655 31.08615 -2757.218 36.12317 -2571.409 -136.0583 " fill="#7A744C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2688.06 -2514.739 -2706.391 -2563.746 -2538.256 -2565.916 " fill="#A3C2B7" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2647.671 93.81964 -2701.655 31.08615 -2571.409 -136.0583 " fill="#A09970" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2682.71 2277.589 -2658.415 1865.188 -2491.157 2187.25 " fill="#2E210F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2706.391 -2563.746 -2718.407 -2704.582 -2538.256 -2565.916 " fill="#97B7AA" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2324.819 -1860.189 -2348.193 -2042.884 -2271.142 -2044.923 " fill="#BBD0C3" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2571.409 -136.0583 -2839.399 -555.1667 -2570.181 -608.5422 " fill="#A59B72" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2839.399 -555.1667 -2638.155 -726.5143 -2570.181 -608.5422 " fill="#453A1A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2570.488 -778.8318 -2638.155 -726.5143 -2570.094 -947.6743 " fill="#A9A07A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2638.155 -726.5143 -2815.762 -781.2164 -2570.094 -947.6743 " fill="#5C4D26" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2711.653 -1879.912 -2721.389 -2037.292 -2564.305 -2035.999 " fill="#A4A278" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2721.389 -2037.292 -2728.099 -2148.33 -2564.305 -2035.999 " fill="#939587" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2534.967 -1043.215 -2637.453 -1302.183 -2524.88 -1182.319 " fill="#B9B590" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2491.157 2187.25 -2658.415 1865.188 -2436.91 2145.458 " fill="#532810" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2513.478 917.5742 -2483.57 593.9334 -2332.888 701.0023 " fill="#CBBD90" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2718.407 -2704.582 -2700.734 -2872.114 -2413.272 -2671.823 " fill="#6B7451" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2569.173 -947.5153 -2570.094 -947.6743 -2534.967 -1043.215 " fill="#A49B71" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2637.453 -1302.183 -2583.951 -1409.887 -2527.95 -1295.577 " fill="#A29971" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2874 -958.0018 -2637.453 -1302.183 -2534.967 -1043.215 " fill="#A0996C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2570.094 -947.6743 -2874 -958.0018 -2534.967 -1043.215 " fill="#9D946A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2513.478 917.5742 -2641.97 636.5483 -2483.57 593.9334 " fill="#675F3C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2641.97 636.5483 -2661.222 519.0421 -2483.57 593.9334 " fill="#70623F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-1993.811 963.2917 -2141.248 824.5823 -1993.724 922.6612 " fill="#55471C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2775.11 1100.707 -2618.42 933.0107 -2513.478 917.5742 " fill="#778061" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2618.42 933.0107 -2641.97 636.5483 -2513.478 917.5742 " fill="#6D714D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2424.323 -2522.83 -2538.256 -2565.916 -2413.272 -2671.823 " fill="#98B5AA" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2607.369 2503.129 -2588.907 2282.807 -2491.157 2187.25 " fill="#5E5244" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2661.222 519.0421 -2668.677 398.1263 -2483.57 593.9334 " fill="#6E623B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-1914.436 672.9579 -1860.847 597.2115 -1849.62 742.7731 " fill="#C19A83" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2700.164 174.4119 -2647.671 93.81964 -2419.807 173.3868 " fill="#A9A177" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2668.677 398.1263 -2700.164 174.4119 -2419.807 173.3868 " fill="#A59B75" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2424.323 -2522.83 -2341.615 -2581.539 -2293.595 -2550.688 " fill="#A1BDB2" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2725.906 -2479.645 -2688.06 -2514.739 -2424.323 -2522.83 " fill="#A6B5A6" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2564.305 -2035.999 -2728.099 -2148.33 -2424.323 -2522.83 " fill="#85887B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2688.06 -2514.739 -2538.256 -2565.916 -2424.323 -2522.83 " fill="#A7C3B6" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2728.099 -2148.33 -2725.906 -2479.645 -2424.323 -2522.83 " fill="#8E9484" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2436.91 2145.458 -2658.415 1865.188 -2327.802 1946.186 " fill="#3E2616" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2413.272 -2671.823 -2346.001 -2660.783 -2341.615 -2581.539 " fill="#95B3A6" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2424.323 -2522.83 -2413.272 -2671.823 -2341.615 -2581.539 " fill="#9AB8AE" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2167.955 622.4055 -2199.749 567.9501 -2000.521 537.5375 " fill="#766A40" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2643.943 -1471.436 -2623.113 -1753.953 -2383.233 -1721.315 " fill="#A49A72" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-2583.951 -1409.887 -2643.943 -1471.436 -2383.233 -1721.315 " fill="#9D966E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> <polygon points="-1933.161 -2101.066 -2271.142 -2044.923 -1930.443 -2154.294 " fill="#949C8C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" />
<polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon
points="-684.4037 322.3361 -767.2435 268.851 -672.7277 261.0121 " fill="#727E6E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1005.852 -567.0181 -1141.952 -650.1402 -991.0073 -945.5474 " fill="#423516" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1204.509 1041.812 -1199.028 887.0519 -1069.966 927.4412 " fill="#801F29" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1150.569 1099.436 -1204.509 1041.812 -1069.966 927.4412 " fill="#80212D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1194.686 839.1198 -1197.186 823.157 -1069.966 927.4412 " fill="#7F252B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1091.63 -2301.029 -1150.372 -2369.024 -1058.279 -2353.829 " fill="#99AEA0" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="2027.228 2715.732 2227.179 2708.452 2874 2874 " fill="#A69E7C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="576.0411 -1625.878 381.5387 -1674.095 577.7322 -1984.284 " fill="#BDD2C0" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1069.966 927.4412 -1197.186 823.157 -922.9681 784.8727 " fill="#732027" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1502.824 419.4393 -1376.328 124.3967 -1044.355 207.7407 " fill="#6A3A1B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1376.328 124.3967 -1303.904 78.05832 -1044.355 207.7407 " fill="#4D1E1A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1099.501 -1642.652 -1035.343 -1685.421 -1032.23 -1433.223 " fill="#CACFBB" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-804.1245 -1345.044 -405.6473 -1657.837 -385.5623 -1652.815 " fill="#544A27" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1141.952 -650.1402 -1192.756 -828.6387 -991.0073 -945.5474 " fill="#352B17" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1086.192 1128.884 -903.1901 1102.769 -863.6998 1111.715 " fill="#652229" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-979.408 624.4995 -1044.355 207.7407 -828.1344 436.4107 " fill="#50201C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1248.231 -1365.436 -1099.501 -1642.652 -1032.23 -1433.223 " fill="#BCBEA0" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1189.204 -1276.309 -1248.231 -1365.436 -1032.23 -1433.223 " fill="#483922" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1192.756 -828.6387 -1008.79 -1115.459 -991.0073 -945.5474 " fill="#4E3F1E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1008.79 -1115.459 -1189.204 -1276.309 -996.8837 -1129.892 " fill="#372D16" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1192.756 -828.6387 -1189.204 -1276.309 -1008.79 -1115.459 " fill="#3C3016" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1032.23 -1433.223 -1035.343 -1685.421 -804.1245 -1345.044 " fill="#A29A73" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1502.824 419.4393 -1044.355 207.7407 -979.408 624.4995 " fill="#5E1E20" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1189.204 -1276.309 -1032.23 -1433.223 -996.8837 -1129.892 " fill="#463A21" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-991.0073 -945.5474 -804.1245 -1345.044 -794.3012 -717.4174 " fill="#423318" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1115.859 2536.151 -1343.679 2374.944 -897.4672 2458.53 " fill="#46352E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-710.5076 -18.39922 -487.9608 -278.9784 -444.4469 -54.46774 " fill="#352917" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1197.186 823.157 -1502.824 419.4393 -979.408 624.4995 " fill="#672422" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1005.852 -567.0181 -794.3012 -717.4174 -761.4767 -402.9996 " fill="#6C312A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-968.9708 -432.3049 -1005.852 -567.0181 -761.4767 -402.9996 " fill="#874737" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-2346.001 -2660.783 -2700.734 -2872.114 -958.0073 -2874 " fill="#999A77" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1583.033 -2518.401 -2346.001 -2660.783 -958.0073 -2874 " fill="#9A9975" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1150.503 -2615.986 -1583.033 -2518.401 -958.0073 -2874 " fill="#A2A181" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="2227.179 2708.452 2372.543 2691.218 2874 2874 " fill="#AAA27F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-996.8837 -1129.892 -1032.23 -1433.223 -804.1245 -1345.044 " fill="#776646" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1334.119 1583.866 -1086.192 1128.884 -863.6998 1111.715 " fill="#5C2E1A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1343.679 2374.944 -1225.493 1815.326 -897.4672 2458.53 " fill="#151C2D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1086.192 1128.884 -1069.966 927.4412 -903.1901 1102.769 " fill="#632923" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1225.493 1815.326 -1334.119 1583.866 -863.6998 1111.715 " fill="#553221" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-828.1344 436.4107 -1044.355 207.7407 -767.2435 268.851 " fill="#421D1B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-794.3012 -717.4174 -804.1245 -1345.044 -646.7114 -574.4404 " fill="#392F16" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-646.7114 -574.4404 -804.1245 -1345.044 -385.5623 -1652.815 " fill="#4F4827" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1044.355 207.7407 -865.7609 145.145 -767.2435 268.851 " fill="#453D28" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1044.355 207.7407 -1136.317 -167.15 -865.7609 145.145 " fill="#66271F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1096.695 -2150.632 -1048.324 -2312.529 -802.6554 -2227.267 " fill="#A09A79" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1136.317 -167.15 -761.4767 -402.9996 -710.5076 -18.39922 " fill="#452E17" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-865.7609 145.145 -1136.317 -167.15 -710.5076 -18.39922 " fill="#703A29" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-991.0073 -945.5474 -996.8837 -1129.892 -804.1245 -1345.044 " fill="#41321D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1035.343 -1685.421 -1095.73 -1935.804 -809.8035 -1809.34 " fill="#AFAB87" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1048.324 -2312.529 -1058.279 -2353.829 -802.6554 -2227.267 " fill="#A29B75" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1080.666 -2401.585 -942.6804 -2733.997 -759.0647 -2237.901 " fill="#918965" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-802.6554 -2227.267 -1058.279 -2353.829 -759.0647 -2237.901 " fill="#838059" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1136.317 -167.15 -968.9708 -432.3049 -761.4767 -402.9996 " fill="#40362C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1058.279 -2353.829 -1080.666 -2401.585 -759.0647 -2237.901 " fill="#9CA07A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-828.1344 436.4107 -767.2435 268.851 -684.4037 322.3361 " fill="#7C8572" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1005.852 -567.0181 -991.0073 -945.5474 -794.3012 -717.4174 " fill="#6E4D1B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-863.6998 1111.715 -903.1901 1102.769 -775.8826 1020.017 " fill="#878D77" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-903.1901 1102.769 -1069.966 927.4412 -775.8826 1020.017 " fill="#7D8670" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1069.966 927.4412 -922.9681 784.8727 -775.8826 1020.017 " fill="#712A27" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-405.6473 -1657.837 -684.5791 -1868.883 -402.0513 -1727.411 " fill="#84784F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-809.8035 -1809.34 -707.5695 -2064.032 -684.5791 -1868.883 " fill="#5E5A40" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-385.5623 -1652.815 -405.6473 -1657.837 -369.5995 -1705.834 " fill="#81784D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-684.5791 -1868.883 -707.5695 -2064.032 -402.0513 -1727.411 " fill="#A2956A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-487.9608 -278.9784 -646.7114 -574.4404 -415.5911 -272.3949 " fill="#2F2711" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-809.8035 -1809.34 -1095.73 -1935.804 -707.5695 -2064.032 " fill="#8C8561" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-166.0468 22.59771 -258.5015 -190.0649 -123.7443 -197.9792 " fill="#291C0A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-802.6554 -2227.267 -759.0647 -2237.901 -707.5695 -2064.032 " fill="#8E997F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1095.73 -1935.804 -1096.695 -2150.632 -707.5695 -2064.032 " fill="#A29D79" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1096.695 -2150.632 -802.6554 -2227.267 -707.5695 -2064.032 " fill="#494B35" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-672.7277 261.0121 -710.5076 -18.39922 -444.4469 -54.46774 " fill="#7F7D5D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-958.0073 2874 -897.4672 2458.53 -550.9896 2773.838 " fill="#37290C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-78.41737 121.8148 -167.9188 63.48517 -51.77073 72.19974 " fill="#6A6656" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-761.4767 -402.9996 -794.3012 -717.4174 -646.7114 -574.4404 " fill="#413315" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-767.2435 268.851 -865.7609 145.145 -672.7277 261.0121 " fill="#798674" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-865.7609 145.145 -710.5076 -18.39922 -672.7277 261.0121 " fill="#7A836D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-922.9681 784.8727 -979.408 624.4995 -634.7832 535.1255 " fill="#555445" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-979.408 624.4995 -828.1344 436.4107 -634.7832 535.1255 " fill="#878863" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="225.137 2073.318 212.2947 1526.9 265.7072 2074.283 " fill="#553B10" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-828.1344 436.4107 -684.4037 322.3361 -634.7832 535.1255 " fill="#6D7A62" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-775.8826 1020.017 -922.9681 784.8727 -634.7832 535.1255 " fill="#30281A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-51.77073 72.19974 -15.46119 42.67382 -10.22084 62.93563 " fill="#917256" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-322.0675 2647.364 -550.9896 2773.838 -317.1065 2599.476 " fill="#77561A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-710.5076 -18.39922 -761.4767 -402.9996 -487.9608 -278.9784 " fill="#2A180B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-761.4767 -402.9996 -646.7114 -574.4404 -487.9608 -278.9784 " fill="#2A210F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-804.1245 -1345.044 -809.8035 -1809.34 -405.6473 -1657.837 " fill="#625A37" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-809.8035 -1809.34 -684.5791 -1868.883 -405.6473 -1657.837 " fill="#948B5F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-405.6473 -1657.837 -402.0513 -1727.411 -369.5995 -1705.834 " fill="#8B8254" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-6.487787 442.5173 -55.25985 448.6021 0.9268229 174.1625 " fill="#7E552B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-295.8978 -41.01063 -351.1042 -191.238 -258.5015 -190.0649 " fill="#3A1F11" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-121.612 2195.1 -119.1753 2150.325 -111.5694 2227.639 " fill="#9E792D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-863.6998 1111.715 -775.8826 1020.017 -391.1755 1627.852 " fill="#342E18" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-897.4672 2458.53 -1225.493 1815.326 -391.1755 1627.852 " fill="#271C0E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-1225.493 1815.326 -863.6998 1111.715 -391.1755 1627.852 " fill="#432F13" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-369.5995 -1705.834 -402.0513 -1727.411 -254.3683 -1717.083 " fill="#746947" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-351.1042 -191.238 -415.5911 -272.3949 -258.5015 -190.0649 " fill="#4D3E18" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="186.421 -485.8339 -31.54182 -271.8604 192.3056 -545.6202 " fill="#4C3B17" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-444.4469 -54.46774 -487.9608 -278.9784 -351.1042 -191.238 " fill="#65521F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-487.9608 -278.9784 -415.5911 -272.3949 -351.1042 -191.238 " fill="#46391C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-550.9896 2773.838 -897.4672 2458.53 -317.1065 2599.476 " fill="#654B18" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-322.0675 2647.364 -317.1065 2599.476 -279.2498 2600.046 " fill="#94712F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-273.1706 2210.142 -897.4672 2458.53 -268.1109 2187.162 " fill="#60210E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-50.7388 94.82279 -51.77073 72.19974 -29.58142 95.83965 " fill="#944A3F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="416.967 2410.773 383.471 2274.563 497.6251 2230.753 " fill="#323840" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-254.3683 -1717.083 -402.0513 -1727.411 -27.74093 -2332.976 " fill="#3E3B25" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-232.8196 2022.272 -242.61 2028.85 -208.267 1957.851 " fill="#987538" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-444.4469 -54.46774 -351.1042 -191.238 -295.8978 -41.01063 " fill="#50542D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-242.61 2028.85 -391.1755 1627.852 -208.267 1957.851 " fill="#4F4121" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-6.487787 442.5173 0.9268229 174.1625 140.1518 340.8424 " fill="#7F6236" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-279.2498 2600.046 -317.1065 2599.476 -273.1706 2210.142 " fill="#83642E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-317.1065 2599.476 -897.4672 2458.53 -273.1706 2210.142 " fill="#5D1F0D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-78.41737 121.8148 -50.7388 94.82279 -29.58142 95.83965 " fill="#8E4A43" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-29.58142 95.83965 -51.77073 72.19974 -10.22084 62.93563 " fill="#7F4C3E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-444.4469 -54.46774 -295.8978 -41.01063 -193.6143 359.8969 " fill="#473C30" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-402.0513 -1727.411 -707.5695 -2064.032 -27.74093 -2332.976 " fill="#504728" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-51.77073 72.19974 -166.0468 22.59771 -15.46119 42.67382 " fill="#616C64" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-268.1109 2187.162 -897.4672 2458.53 -242.61 2028.85 " fill="#5D2613" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-897.4672 2458.53 -391.1755 1627.852 -242.61 2028.85 " fill="#5B2812" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-78.41737 121.8148 -51.77073 72.19974 -50.7388 94.82279 " fill="#824136" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-167.9188 63.48517 -295.8978 -41.01063 -166.0468 22.59771 " fill="#2F2414" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-634.7832 535.1255 -684.4037 322.3361 -194.2722 368.4483 " fill="#2C2414" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-295.8978 -41.01063 -258.5015 -190.0649 -166.0468 22.59771 " fill="#372A16" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-391.1755 1627.852 -775.8826 1020.017 -141.6312 1173.351 " fill="#342813" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-193.6143 359.8969 -167.9188 63.48517 -78.41737 121.8148 " fill="#68554B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-684.4037 322.3361 -672.7277 261.0121 -193.6143 359.8969 " fill="#392A14" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-194.2722 368.4483 -684.4037 322.3361 -193.6143 359.8969 " fill="#3B2C19" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-672.7277 261.0121 -444.4469 -54.46774 -193.6143 359.8969 " fill="#342E0B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-775.8826 1020.017 -634.7832 535.1255 -141.6312 1173.351 " fill="#2D2615" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-193.6143 359.8969 -295.8978 -41.01063 -167.9188 63.48517 " fill="#455152" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="147.6995 2463.66 164.8216 2311.707 176.5847 2341.878 " fill="#C4B588" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="177.7352 -216.136 -31.54182 -271.8604 186.421 -485.8339 " fill="#301E0E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-273.1706 2210.142 -121.612 2195.1 -111.5694 2227.639 " fill="#9C7729" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-279.2498 2600.046 -273.1706 2210.142 -111.5694 2227.639 " fill="#7B571C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-121.612 2195.1 -268.1109 2187.162 -119.1753 2150.325 " fill="#98742B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-273.1706 2210.142 -268.1109 2187.162 -121.612 2195.1 " fill="#876020" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-268.1109 2187.162 -242.61 2028.85 -119.1753 2150.325 " fill="#9D7B30" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-232.8196 2022.272 -208.267 1957.851 -119.1753 2150.325 " fill="#9E7626" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-194.2722 368.4483 -193.6143 359.8969 -55.25985 448.6021 " fill="#A76C55" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-242.61 2028.85 -232.8196 2022.272 -119.1753 2150.325 " fill="#A9812F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-279.2498 2600.046 -111.5694 2227.639 147.6995 2463.66 " fill="#6C5129" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-167.9188 63.48517 -166.0468 22.59771 -51.77073 72.19974 " fill="#5B6A6F" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-707.5695 -2064.032 -759.0647 -2237.901 -27.74093 -2332.976 " fill="#3B2B15" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-141.6312 1173.351 -634.7832 535.1255 -50.89229 488.4103 " fill="#805F4C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-194.2722 368.4483 -55.25985 448.6021 -50.89229 488.4103 " fill="#9D5947" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-634.7832 535.1255 -194.2722 368.4483 -50.89229 488.4103 " fill="#8B5343" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-254.3683 -1717.083 -27.74093 -2332.976 83.7504 -2266.154 " fill="#463E26" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-78.41737 121.8148 -29.58142 95.83965 -0.09197673 172.2877 " fill="#A46852" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="-123.7443 -197.9792 -31.54182 -271.8604 -15.46119 42.67382 " fill="#958448" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="480.7304 -1578.078 481.1607 -1594.424 576.0411 -1625.878 " fill="#D8D9C5" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="635.7808 902.3569 437.6934 656.0413 666.7142 743.2116 " fill="#2F3330" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" />
<polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon
points="1419.404 -2806.355 1379.875 -2858.794 1506.706 -2801.378 " fill="#666B67" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1218.669 -1318.661 1329.46 -1333.215 1340.215 -1085.463 " fill="#9B8B71" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1150.383 -1137.676 1218.669 -1318.661 1340.215 -1085.463 " fill="#85815A" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1238.326 -854.5947 1293.253 -1029.489 1347.555 -911.621 " fill="#8A8157" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1306.683 -843.7573 1238.326 -854.5947 1347.555 -911.621 " fill="#7A7247" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="2853.641 -1053.236 2737.746 -1439.982 2874 -2874 " fill="#BBD0C4" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1285.096 -409.7394 1361.237 -509.1833 1384.523 -349.8475 " fill="#9A7E3C" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1242.711 343.5449 1539.278 268.385 1650.392 668.726 " fill="#7B4439" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1306.173 -794.981 1402.86 -871.2481 1457.348 -683.5623 " fill="#857B4E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1293.253 -1029.489 1340.215 -1085.463 1365.754 -965.8626 " fill="#817853" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1347.555 -911.621 1293.253 -1029.489 1365.754 -965.8626 " fill="#7F7851" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1295.522 -525.6777 1232.817 -709.9622 1392.938 -552.1435 " fill="#7B723E" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1419.141 -2678.675 1506.706 -2801.378 1583.472 -2704.582 " fill="#636C64" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1205.233 128.7656 1364.022 -254.3011 1585.335 32.76698 " fill="#69291D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="1600.64 -833.0405 1575.304 -982.9437 1650.206 -909.686 " fill="#928460" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> points="958.0018 -2874 1379.875 -2858.794 1419.141 -2678.675 " fill="#65645B" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, 0)" /> point
ICONOGRAPHIES #16-01 VENUS & ADONIS, AFTER RUBENS, 2015 Quayola Ditone print, 124 x 217 cm Edition of 3
<polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon <polygon
points="-2846.153 1779.761 -2873.649 966.2957 -2808.614 1137.084 " fill="#443A23" stroke-opacity="0" transform="translate(0, 0 points="-2785.459 309.9145 -2838.303 115.7301 -2700.164 174.4119 " fill="#756A49" stroke-opacity="0" transform="translate(0, 0 points="-2874 958.0073 -2838.303 115.7301 -2785.459 309.9145 " fill="#776D48" stroke-opacity="0" transform="translate(0, 0) ro points="-2747.043 627.6898 -2752.744 617.4609 -2641.97 636.5483 " fill="#908156" stroke-opacity="0" transform="translate(0, 0) points="-2874 958.0073 -2752.744 617.4609 -2747.043 627.6898 " fill="#594B23" stroke-opacity="0" transform="translate(0, 0) ro points="-2199.749 567.9501 -2100.551 445.2911 -2000.521 537.5375 " fill="#564C24" stroke-opacity="0" transform="translate(0, 0 points="-2785.459 309.9145 -2668.677 398.1263 -2661.222 519.0421 " fill="#81764C" stroke-opacity="0" transform="translate(0, 0 points="-2821.595 -1653.561 -2857.599 -1957.434 -2784.144 -1682.932 " fill="#A7A786" stroke-opacity="0" transform="translate(0 points="-2874 -2874 -2783.661 -2800.063 -2725.906 -2479.645 " fill="#8B9070" stroke-opacity="0" transform="translate(0, 0) rot points="-2775.11 1100.707 -2837.426 965.9229 -2618.42 933.0107 " fill="#6D5B25" stroke-opacity="0" transform="translate(0, 0) points="-2784.144 -1682.932 -2857.599 -1957.434 -2711.653 -1879.912 " fill="#9C976E" stroke-opacity="0" transform="translate(0 points="-2837.426 965.9229 -2874 958.0073 -2747.043 627.6898 " fill="#52431A" stroke-opacity="0" transform="translate(0, 0) ro points="-2752.744 617.4609 -2785.459 309.9145 -2661.222 519.0421 " fill="#53421F" stroke-opacity="0" transform="translate(0, 0 points="-2570.488 -778.8318 -2570.094 -947.6743 -2569.173 -947.5153 " fill="#B8B190" stroke-opacity="0" transform="translate(0 points="-2808.658 2423.622 -2747.657 2333.897 -2702.97 2427.481 " fill="#675B4D" stroke-opacity="0" transform="translate(0, 0) points="-2838.303 115.7301 -2839.399 -555.1667 -2757.218 36.12317 " fill="#706942" stroke-opacity="0" transform="translate(0, points="-2607.369 2503.129 -2491.157 2187.25 -2436.91 2145.458 " fill="#5D5744" stroke-opacity="0" transform="translate(0, 0) points="-2607.369 2503.129 -2654.994 2446.821 -2588.907 2282.807 " fill="#5B5348" stroke-opacity="0" transform="translate(0, 0 points="-2874 958.0073 -2785.459 309.9145 -2752.744 617.4609 " fill="#5E4C20" stroke-opacity="0" transform="translate(0, 0) ro points="-2718.407 -2704.582 -2783.661 -2800.063 -2700.734 -2872.114 " fill="#8F8A67" stroke-opacity="0" transform="translate(0 points="-2588.907 2282.807 -2682.71 2277.589 -2491.157 2187.25 " fill="#524224" stroke-opacity="0" transform="translate(0, 0) points="-2483.57 593.9334 -2373.453 538.9298 -2332.888 701.0023 " fill="#ABA179" stroke-opacity="0" transform="translate(0, 0) points="-2623.113 -1753.953 -2711.653 -1879.912 -2564.305 -2035.999 " fill="#A2A07F" stroke-opacity="0" transform="translate(0 points="-2728.099 -2148.33 -2857.599 -1957.434 -2725.906 -2479.645 " fill="#989E8A" stroke-opacity="0" transform="translate(0, points="-2857.599 -1957.434 -2874 -2874 -2725.906 -2479.645 " fill="#9EA18F" stroke-opacity="0" transform="translate(0, 0) rot points="-2757.218 36.12317 -2701.655 31.08615 -2700.164 174.4119 " fill="#756D48" stroke-opacity="0" transform="translate(0, 0 points="-2857.599 -1957.434 -2728.099 -2148.33 -2721.389 -2037.292 " fill="#A5A582" stroke-opacity="0" transform="translate(0, points="-2838.303 115.7301 -2757.218 36.12317 -2700.164 174.4119 " fill="#6F6846" stroke-opacity="0" transform="translate(0, 0 points="-2702.97 2427.481 -2747.657 2333.897 -2682.71 2277.589 " fill="#727141" stroke-opacity="0" transform="translate(0, 0) points="-2874 2874 -2808.658 2423.622 -2713.101 2530.318 " fill="#3E311B" stroke-opacity="0" transform="translate(0, 0) rotate points="-2783.661 -2800.063 -2874 -2874 -2700.734 -2872.114 " fill="#96906B" stroke-opacity="0" transform="translate(0, 0) rot points="-2725.906 -2479.645 -2706.391 -2563.746 -2688.06 -2514.739 " fill="#B1C1AE" stroke-opacity="0" transform="translate(0, points="-2527.95 -1295.577 -2292.104 -1580.457 -2212.378 -1521.364 " fill="#A09972" stroke-opacity="0" transform="translate(0, points="-2757.568 -1523.776 -2643.943 -1471.436 -2637.453 -1302.183 " fill="#483715" stroke-opacity="0" transform="translate(0 points="-2821.595 -1653.561 -2784.144 -1682.932 -2708.321 -1660.643 " fill="#918A64" stroke-opacity="0" transform="translate(0 points="-2757.568 -1523.776 -2821.595 -1653.561 -2708.321 -1660.643 " fill="#989270" stroke-opacity="0" transform="translate(0 points="-2725.906 -2479.645 -2783.661 -2800.063 -2706.391 -2563.746 " fill="#8A8969" stroke-opacity="0" transform="translate(0 points="-2783.661 -2800.063 -2718.407 -2704.582 -2706.391 -2563.746 " fill="#646448" stroke-opacity="0" transform="translate(0 points="-2647.671 93.81964 -2571.409 -136.0583 -2419.807 173.3868 " fill="#AAA175" stroke-opacity="0" transform="translate(0, points="958.0018 2874 1386.338 2826.375 2874 2874 " fill="#9D8A4D" stroke-opacity="0" transform="translate(0, 0) rotate(0, 0, points="-2702.97 2427.481 -2682.71 2277.589 -2654.994 2446.821 " fill="#75705C" stroke-opacity="0" transform="translate(0, 0) points="-2570.181 -608.5422 -2638.155 -726.5143 -2537.861 -663.9103 " fill="#A29D77" stroke-opacity="0" transform="translate(0 points="-2747.657 2333.897 -2779.758 1847.778 -2682.71 2277.589 " fill="#15160C" stroke-opacity="0" transform="translate(0, 0) points="-2874 -958.0018 -2757.568 -1523.776 -2637.453 -1302.183 " fill="#433A1E" stroke-opacity="0" transform="translate(0, 0) points="-2524.88 -1182.319 -2527.95 -1295.577 -2212.378 -1521.364 " fill="#A59C74" stroke-opacity="0" transform="translate(0, points="-2637.453 -1302.183 -2643.943 -1471.436 -2583.951 -1409.887 " fill="#A1966D" stroke-opacity="0" transform="translate(0 points="-2700.164 174.4119 -2701.655 31.08615 -2647.671 93.81964 " fill="#7A704C" stroke-opacity="0" transform="translate(0, 0 points="-2757.568 -1523.776 -2708.321 -1660.643 -2643.943 -1471.436 " fill="#786D3D" stroke-opacity="0" transform="translate(0 points="-2682.71 2277.589 -2779.758 1847.778 -2658.415 1865.188 " fill="#4E2712" stroke-opacity="0" transform="translate(0, 0) points="-2713.101 2530.318 -2702.97 2427.481 -2654.994 2446.821 " fill="#63614D" stroke-opacity="0" transform="translate(0, 0) points="-2747.043 627.6898 -2641.97 636.5483 -2618.42 933.0107 " fill="#42351C" stroke-opacity="0" transform="translate(0, 0) points="-2785.459 309.9145 -2700.164 174.4119 -2668.677 398.1263 " fill="#726844" stroke-opacity="0" transform="translate(0, 0 points="-2569.173 -947.5153 -2534.967 -1043.215 -2524.222 -800.6436 " fill="#BFB490" stroke-opacity="0" transform="translate(0 points="-2837.426 965.9229 -2747.043 627.6898 -2618.42 933.0107 " fill="#4D4D24" stroke-opacity="0" transform="translate(0, 0) points="-2779.758 1847.778 -2803.834 1755.247 -2658.415 1865.188 " fill="#9B4D29" stroke-opacity="0" transform="translate(0, 0 points="-2272.37 863.2393 -2278.51 863.1516 -2257.504 859.7749 " fill="#957F4D" stroke-opacity="0" transform="translate(0, 0) points="-2278.51 863.1516 -2332.888 701.0023 -2257.504 859.7749 " fill="#8B7744" stroke-opacity="0" transform="translate(0, 0) points="-2638.155 -726.5143 -2570.488 -778.8318 -2537.861 -663.9103 " fill="#9E9671" stroke-opacity="0" transform="translate(0 points="-2815.762 -781.2164 -2874 -958.0018 -2570.094 -947.6743 " fill="#8F8256" stroke-opacity="0" transform="translate(0, 0) points="-2643.943 -1471.436 -2708.321 -1660.643 -2623.113 -1753.953 " fill="#A1996F" stroke-opacity="0" transform="translate(0 points="-2654.994 2446.821 -2682.71 2277.589 -2588.907 2282.807 " fill="#6A644F" stroke-opacity="0" transform="translate(0, 0) points="-2570.488 -778.8318 -2569.173 -947.5153 -2524.222 -800.6436 " fill="#B0A982" stroke-opacity="0" transform="translate(0 points="-2537.861 -663.9103 -2570.488 -778.8318 -2524.222 -800.6436 " fill="#B1A985" stroke-opacity="0" transform="translate(0 points="-2839.399 -555.1667 -2857.248 -601.627 -2638.155 -726.5143 " fill="#3B3318" stroke-opacity="0" transform="translate(0, points="-2857.248 -601.627 -2815.762 -781.2164 -2638.155 -726.5143 " fill="#42381D" stroke-opacity="0" transform="translate(0, points="-2537.861 -663.9103 -2524.222 -800.6436 -2507.689 -622.9509 " fill="#9D9775" stroke-opacity="0" transform="translate(0 points="-2784.144 -1682.932 -2711.653 -1879.912 -2623.113 -1753.953 " fill="#9C9769" stroke-opacity="0" transform="translate(0 points="-2708.321 -1660.643 -2784.144 -1682.932 -2623.113 -1753.953 " fill="#A4976D" stroke-opacity="0" transform="translate(0 points="-2570.181 -608.5422 -2537.861 -663.9103 -2507.689 -622.9509 " fill="#968F6B" stroke-opacity="0" transform="translate(0 points="-2341.615 -2581.539 -2315.698 -2585.782 -2293.595 -2550.688 " fill="#99B7AC" stroke-opacity="0" transform="translate(0 points="-2538.256 -2565.916 -2718.407 -2704.582 -2413.272 -2671.823 " fill="#6F7258" stroke-opacity="0" transform="translate(0 points="-2571.409 -136.0583 -2570.181 -608.5422 -2507.689 -622.9509 " fill="#98906C" stroke-opacity="0" transform="translate(0 points="-1437.658 2048.804 -1334.119 1583.866 -1225.493 1815.326 " fill="#4F472E" stroke-opacity="0" transform="translate(0, 0 points="-2713.101 2530.318 -2654.994 2446.821 -2607.369 2503.129 " fill="#645343" stroke-opacity="0" transform="translate(0, 0 points="-2874 2874 -2713.101 2530.318 -2607.369 2503.129 " fill="#382F1D" stroke-opacity="0" transform="translate(0, 0) rotate points="-2757.218 36.12317 -2839.399 -555.1667 -2571.409 -136.0583 " fill="#726942" stroke-opacity="0" transform="translate(0, points="-2701.655 31.08615 -2757.218 36.12317 -2571.409 -136.0583 " fill="#7A744C" stroke-opacity="0" transform="translate(0, points="-2688.06 -2514.739 -2706.391 -2563.746 -2538.256 -2565.916 " fill="#A3C2B7" stroke-opacity="0" transform="translate(0, points="-2647.671 93.81964 -2701.655 31.08615 -2571.409 -136.0583 " fill="#A09970" stroke-opacity="0" transform="translate(0, points="-2682.71 2277.589 -2658.415 1865.188 -2491.157 2187.25 " fill="#2E210F" stroke-opacity="0" transform="translate(0, 0) points="-2706.391 -2563.746 -2718.407 -2704.582 -2538.256 -2565.916 " fill="#97B7AA" stroke-opacity="0" transform="translate(0 points="-2324.819 -1860.189 -2348.193 -2042.884 -2271.142 -2044.923 " fill="#BBD0C3" stroke-opacity="0" transform="translate(0 points="-2571.409 -136.0583 -2839.399 -555.1667 -2570.181 -608.5422 " fill="#A59B72" stroke-opacity="0" transform="translate(0 points="-2839.399 -555.1667 -2638.155 -726.5143 -2570.181 -608.5422 " fill="#453A1A" stroke-opacity="0" transform="translate(0 points="-2570.488 -778.8318 -2638.155 -726.5143 -2570.094 -947.6743 " fill="#A9A07A" stroke-opacity="0" transform="translate(0 points="-2638.155 -726.5143 -2815.762 -781.2164 -2570.094 -947.6743 " fill="#5C4D26" stroke-opacity="0" transform="translate(0 points="-2711.653 -1879.912 -2721.389 -2037.292 -2564.305 -2035.999 " fill="#A4A278" stroke-opacity="0" transform="translate(0 points="-2721.389 -2037.292 -2728.099 -2148.33 -2564.305 -2035.999 " fill="#939587" stroke-opacity="0" transform="translate(0,
Q U AY O L A Widely acclaimed for his immersive multi-channel video installations, animated painting, and large-scale sculptures, London-based artist Quayola merges classical aesthetics with custom built software and computer algorithms to create a space for contemplation in the virtual realm. Often using iconic paintings, stained glass windows, or frescos as source material, the artist re-contextualizes original masterpieces by transforming brush strokes, sculpture, and architecture into algorithmically derived abstract geometry, moving image, and sound. Special commissions allowed the artist rare access to the art and architecture of churches, theaters and museums in Europe, including the Cathedral of Notre Dame and the Sistine Chapel, for the realization of his series of films, prints and installations entitled Strata. Quayola’s recent works include Captives, an ongoing series of digital and physical sculptures started in 2013 as a contemporary interpretation of Michelangelo´s Prigioni and his technique of “non finito”. The work, created through the use of complex mathematical functions, computer-generated geological formations, and industrial robots, explores the tension and equilibrium between form and matter, man-made objects of perfection and complex forms of nature, and received an honorary mention at the Ars Electronica 2014. Quayola has exhibited and performed his work internationally, and in 2013 was awarded the Golden Nica at Ars Electronica for the project Forms with co-author Memo Atken. Past displays of his work include a project for the 54th Venice Biennale at the Italian Cultural Institute in London and exhibitions at Paco Das Artes, Sao Paulo; National Art Center, Tokyo; Pushkin Museum, Moscow; Center for Fine Arts, Brussels; Museu Nacional d’Art de Catalunya, Barcelona; Victoria & Albert Museum, London; MU Artspace, Eindoven; the British Film Institute, London; bitforms gallery, New York; Gaîté Lyrique, Paris; Palais des Beaux Arts, Lille; Grand Theatre, Bordeaux; Church of Saint Eustache, Paris; and EMPAC, New York. Also a frequent collaborator on musical projects, Quayola has worked with composers, orchestras and musicians including Mira Calix, Plaid, Vanessa Wagner, the London Contemporary Orchestra, and the National Orchestra of Bordeaux.
A project by Quayola Produced by NOME Director: Luca Barbeni Managing Director: Manuela Benetton Artist: Quayola Press: Tabea Hamperl Design: BlackBoardBerlin, 515 Creative Shop Web design: Matteo Barbeni and Gorazd Gustin Engravings on anodized aluminum by Multitechnic Ditone prints by RECOMART Thanks to Daniel Fitzgerald (programming), Nikolay Matviev (programming), Caterina Rossato (assistant), BITFORMS, Vicente Matallana CATALOG Contributors: Adriano Aymonino, Sabin Bors, Daniel Rourke Graphic layout: BlackBoardBerlin, 515 Creative Shop Photography: Quayola and Bresadola+Freese/drama-berlin.de Editing: Laurie Schwartz Published by NOME Printed by Spree Druck, Berlin, 2016
N
O
M
E
P
R
O
J
E
C
T .
C
O
M