¿y es ese el cielo? for large ensemble - Wingel Mendoza

Page 1

ÂżY es ese el cielo que tenemos que mirar? (Based on a true story, 2014)

Wingel Gilberto PĂŠrez Mendoza


Instrumentation: -

Flute 1 Flute 2 Oboe 1 Oboe 2 Clarinet in Bb 1 Clarinet in Bb 2 Horn in F I Horn in F II Horn in F III Trumpet in C 1 Trumpet in C 2 Trombone 1 Trombone 2 Tuba Percussion 1 (Crotales, GĂźiro, Snare Drum, Temple blocks and celesta). Percussion 2 (Vibraphone, Bass Drum, Bongos, Claves, 2 Wood blocks). Percussion 3 (Xilophone, Bass drum, Congas, Egg shaker, Whip). Bass Clarinet in Bb 1 Bass Clarinet in Bb 2 Bass Clarinet in Bb 3 Violin I (1, 2). Violin I (3, 4). Violin II (1, 2). Violin II (3, 4). Viola (1, 2). Violoncello (1, 2). Double bass (1).


Positioning of the performers:


Program Note: Light of the moon Moves west, flowers' shadows Creep eastward. Yosa Buson (1716 - 1784)

General Instructions: Microtones:

Flutes: W. t. = Whistle tones

Stings: s. t. = Sul tasto s. p. = sul ponticello s. t. e. = sul tasto extreme s. p. e. = sul ponticello extreme Pressure of the bow (distortion sound graph):

Higher line: A little pressure, diffused sound with a little noise.

Middle line: Normal pressure of the bow. Lower line: A completely distorted sound. Depending on the region of the string the sound is produced (s. t., s. p. e., etc.), and the dynamic level, the bowing should be irregular to make the sound discontinues.


¿Y es ese el cielo que tenemos que mirar? (Based on a true story) 18 04 " 0. 1t i . 0 1 H=

 q

Wingel Pérez Mendoza (2014) wingel82@gmail.com

 



 

 

 

 

Oboe I

Trumpet in C I

ppp

ppp

t h ge i t au r t m s

Flute I

 

 

 

t h gt e i au r t m s

Trombone I

ppp

ppp

e n o h p a r b i V

   sfz 

Percussion II



 

3:2



sfz

3:2

             f        



p

pp

o t s a t l u s



o l o s 1

    

 f

p

 o t i b u s

 (1, 2)Violin I 

. c s e r c

 

   . D . B o T

o t i b u s

Bass Clarinet in Bb I

p i h W

Percussion III

o t s a t l u s

f



p

 o t i b u s

o l o s 1

(1, 2)Violin II

    



o t s a t l u s o l o s 1

(1, 2)Viola

o t i b u s

 f



p



o t s a t l u s

(1, 2)Violoncello

o l o s 1

   





p

(1)Double Bass

 

sfz


 

  

 

 

 



e* l t s e i n ho wt

pp

e r p m e s

Fl.

  

e* l t s e i n ho wt

4

pp

Ob. 1



Hn. I

 





 3:2

 

Hn. II



3:2

 

Hn. III



ppp

  

p

 

ppp

 

ppp



e r p m e s

Fl. 2

  

p

 

  

p

. d r o s n o c

C Tpt.1





ppp

 

3:2



C Tpt. 2

 



 



ppp

ppp

p

3:2

. d r o s n o c

Tbn. 1

. d r o s n o c

ppp

ppp

  

  

p

   

p

. d r o s n o c

Tbn. 2

Tba.

 

mf

6:4

6:4

f

    p mf



ppp

 ppp

. t n o p l u s

(1, 2)Vla.



. t n o p l u s

(1, 2)Vc.

y r a s s e c e n

2

k c i t s m a T m a T e s u *

s ' t i n e h w h t a e r B *

 

  3:2

ppp

  

p

3:2 3:2 3:2     

ppp

3:2   

3:2  

3:2   

3:2  

pp

3:2    

pp

ppp



. t n o p l u s

(1, 2)Vln. II

                . t n o p l u s

 (1, 2)Vln. I 

mf

* *

B. Cl. 1 soli

  

3:2  

 m u r D s s a B



o r i u G

Vib.

. o r G o T

s e l a t o r C

 Crot. 

m a t m a T . t . T o T

ppp

  

p

. d r o s n o c

ppp

ppp

 ppp


 

 

e l i m i s

9

Fl.

 

Fl. 2



T.-t.



 





e l i m i s

 

. o r G o T

    p

3:2

m u r D s s a B

. D . B o T

s k c o l B d o o W

. B . W o T

B. D.



3:2

 

p

 

m u r D s s a B

. D . B o T

B. D.

o l o s 1

f

7:4

  

o t i b u s

p

         

o l o s 2

. t . s



. t . s

 (1, 2)Vln. I 

p

o l o s 3

(3, 4)Vln. I

        

f

p

p

o l o s I I

 

. t . s

o l o s 1t . . s

(1, 2)Vln. II





o t i b u s

f

f

o l o s 1 t . . s

(1, 2)Vc.

(1)Db.

  

    p







p

. t o. l os s 1

(1, 2)Vla.



  

o t i b u s

7:4     

. t . s

o l o s 3

(3, 4)Vln. II

p

 

o t i b u s

        5:4 

  p

 

sfz 3


12

Fl.

  

Fl. 2

Hn. I

 

 

Hn. III

C Tpt.1

C Tpt. 2

Tbn. 1

Tbn. 2

 f    f

 3:2   

 



   3:2

f





  

f

 

3:2

3:2

 

 

   3:2

 

 3:2 



3:2   

mf



3:2

 

   3:2



 (1, 2)Vln. I 



3:2

 

 

 



  3:2

 

 

  3:2

mf

 

 

  

sfz

sfz

  

sfz

3:2

 

f

 

 

3:2

mf

mf

sfz

mf

 

 

f

 

 

mf

3:2

 

f



 





 

 





 

3:2 3:2





3:2

   

o l o s 4 , 3

    

mp

3:2

3:2

 

mp

(1, 2)Vc.

(1)Db. 4



 



 

sfz

 

 

3:2

mp

3:2

                 6:4

5:4

o d n a t u a l f



o l o s 2 , 1

(1, 2)Vla.



o l o s 4 , 3

  3:2    mp           3:2 o d n a t u a l f

(3, 4)Vln. II

3:2

o l o s 2 , 1 o d n a t u a l f

(1, 2)Vln. II

mf

  

o d n a t u a l f

(3, 4)Vln. I

p i h W o T

B. D.



. t . T o T

o r i u G

B. D.

    

mp

  

3:2

3:2

  

 3:2   



f

 Gro. 

3:2            

     

3:2

f

 

 

mp

f

Tba.

 

f

3:2          

mp



Hn. II

 

mp

 

 

Ob. 1

Cl. 1

 

 


Fl.

 

Fl. 2

Ob. 1

Ob. 2

  



                       

mp





 



p

mp

3:2



mp

 



 

Tbn. 1

     



3:2

    

3:2



     

mp



3:2

 

. d r o s a z n e s

3:2

. d r o s a z n e s

mp

3:2

. d r o s a z n e s

 

h a w h a w

C Tpt. 2

mp



h a w h a w

C Tpt.1

p

Cl. 2

mp



Hn. I





Cl. 1

 

. c c i P o T

15









    

5:4





5:4







5:4

. d r o s a z n e s

mp



Tba.

 

mp

Gro.

 

 





 

 

 

 

. m y C o T

 

 



 (1, 2)Vln. I 

                                           

B. D.

mp

p i h W o T

B. D.

p

 

 

mp

o l o s 2

I I I

mp

                   3:2

(3, 4)Vln. I

(1, 2)Vln. II

(1, 2)Vla.

(1, 2)Vc.

(1)Db.

    6:4        

 

3:2

   

3:2

    6:4        

5:4

    

(3, 4)Vln. II

3:2

 

 

5:4

  

 

 

 

 

 

 

      

        5:4   

mp

 

 

sfz

      3:2 3:2                 

mp

      

 

5:4

   3:2



3:2

   

sfz

 

 

5:4

 

 3:2            3:2

  

5


 

A 

 

 mp

 

                   7:4



5:4





 

 3:2





6:4

   

   



6:4

 





 3:2

 mf

Hn. I

 

Hn. III

 

 



  

 

 

 



 

 

mf





 6:4

mp

 



 

mf

 

 

 

 

. c s e r c





 



5:4



. c s e r c

3:2

5:4





 

. c s e r c

Tbn. 1

mf

C Tpt. 2

3:2

3:2



. c s e r c

C Tpt.1

  mp

. c s e r c

mp

. c s e r c

Hn. II

  

5:4





   

 7:4

. c s e r c



6:4

f

Cl. 2

 

7:4

 3:2

3:2

  

   

. c s e r c

Cl. 1

mp

  5:4



. c s e r c

Ob. 2

mp



 

3:2

. c s e r c

Ob. 1

  

. c s e r c

 

3:2

mp

Fl. 2



. c s e r c

 Picc. 

o l o c c i P

16

3:2

mf . d r o s a z n e s

Tba.

 

 

mp

 

  

  

 

6

(1, 2)Vc.

(1)Db.

 

 

 

 

 

 

 

. l y X o T

m u r D s s a B

 (1, 2)Vln. I 

(1, 2)Vla.

 

 

mf

 

B. D.

  mf

. c s e r c

. c s e r c

Tbn. 2

f


 

B

17

Picc.

 

 

Cl. 1

Cl. 2



Hn. I

 

Hn. II

Hn. III



Tbn. 2

Tba.

 

ff

ff

  ff  

 



  

ff

  ff  

 

 

ff



ff

ff

 



ff

 

  



3:2

  p

 3:2      3:2

 p

 

e n o h p o l y X

  

 

  









)





2 , 1





4 , 3

(

)

2 , 1

(

)

4 , 3

(1, 2)Vln. II

(

 

(3, 4)Vln. II

(

(1, 2)Vc.

 

)







3:2



3:2

p

 

p

 

 

 3:2    

 

 

  

3:2

o t s a t l u S s g n i r t s e h t l l A *

 

3:2

r o f s i c i h p a r * g * n o i t r o t s i d e h T * *

 

)

2 , 1

(

(1, 2)Vla.

 

    

pp

2 , 1 *

(3, 4)Vln. I

p

   ( ) 

B. Cl. 1 soli

 

p

p

(1)Db.



(1, 2)Vln. I

Xyl.

B. Cl. 3 soli

Cym.

B. Cl. 2 soli

3:2

o c r a

ff

sfz

s e l a t o r C

o c r a

3:2

. t o r C o T

 

3:2 5:4

  

l a b m y C d e d n e p s u S

sfz

3:2

   

ff

 



m a t m a T

 

sfz

5:4

 

Tbn. 1



ff

C Tpt. 2

  

 

ff

C Tpt.1

 

Ob. 2

3:2

ff

Ob. 1

ff

Fl. 2

T.-t.



pp

)

d n a

(

2 , 1

)

c V ,

2 , 1 . a b l V D

. w o b p u e s u d n a

(

 7


        p

7:4

. l F o T

20

 Picc. 

 

 

f

      



Crot.

 







Cym.

Fl. 2

p

6:4

f . t . T o T

. b i V o T

Xyl.



      

 

f

B. Cl. 1 soli



B. Cl. 2 soli

B. Cl. 3 soli



 

   

3:2

 

   

 

f

f

p

3:2

  

p

   3:2

p 3:2

f

 

  

 



  

 

   

 

 

  

 





  

 

 





   

 

(1, 2)Vln. II

 





    

 

(3, 4)Vln. II

 





    

 

(1, 2)Vln. I

 

(3, 4)Vln. I

w o b l l u f

 

. v i d

(1, 2)Vla.

  

   

 

   

 

 

sfz

w o b l l u f

(1)Db. 8

 

. v i d

(1, 2)Vc.

     sfz   sfz

   



 


23

Ob. 1

 

 

 

  

 

 

f

Ob. 2

    

 

 

f

Cl. 1

 

 

  

 

    

f

Cl. 2



 

 

f

. d r o s n o c

Tbn. 1

 

p

mf

. d r o s n o c

 

Tbn. 2

p

mf

. d r o s n o c

Tba.

Xyl.

 

  

 

n

 

n

   

n

 



 



 

 

p

 

 

p

 

p

 

  

 

    

(

)

I n l V

4 , 3 , 2 , 1

   

n

 

 (1, 2)Vln. I 

mf

n

f

soli

n

 B. Cl. 1 

B. Cl. 3 soli

p

 

B. Cl. 2 soli

  f

(

)

I I n l V



4 , 3 , 2 , 1

(3, 4)Vln. I

f

 

  9


Fl. 1

  

Fl. 2

Ob. 1

Ob. 2

 

e t u l F

25

C

        

p 3:2

3:2

           

  



3:2

         3:2

3:2 3:2 3:2         

 

  

3:2

3:2

   3:2    3:2   

3:2

 

  

3:2

3:2

  

3:2

3:2

3:2

3:2   

p

 

 

 

 

mf

 

f

 

 

ff



ff

Cl. 1

Cl. 2



            ff



ff h a w h a w

    C Tpt.1 

  f

h a w h a w

mf

   

C Tpt. 2

 

Tbn. 1

f

. d r o s a z n e s

mf

. d r o s a z n e s

Tbn. 2

f

. d r o s a z n e s

mf

Tba.

f



Xyl.

B. Cl. 1 soli



 

ff

  

p

p



6:4

(1, 2)Vln. II

 

 

ff



ff

(

  

10



)

2 , 1

mp

mp

)



p

p

   

(

(1, 2)Vc.

6:4

2 , 1

(1, 2)Vla.

p

I n l V

  

4 , 3 , 2 , 1

(1, 2)Vln. I

)

p

   

                     6:4 6:4



 (

 6:4 6:4                                    p   

  

p

B. Cl. 3 soli

B. Cl. 2 soli

ff

      

. D . B o T

    

s o g n o B s o g n o B o T

  

e n o h p a r b i V

Vib.

f

. D . T o T

m a t m a T

T.-t.

mf


     Fl. 1  28

  

fff

3:2

Fl. 2

Ob. 1

Ob. 2

Hn. I

  

Hn. III

C Tpt.1

C Tpt. 2

 

fff

5:4

3:2

   

3:2

mf

   3:2      

  5:4 

5:4

mf







5:4

  



  

mf

5:4

  

3:2

mf

     3:2

 

3:2

5:4    

    mf

5:4





 

fff

fff



  



   5:4

    3:2    3:2    

f fff

     

     

I n l V

)

  fff

 

 



3:2

 

  

 

  ff

ff

  

5:4

mf

5:4

  

3:2

 

mf





   

fff

3:2

 

fff

  

fff

 

fff

5:4

     3:2

5:4

        5:4

 5:4

5:4

    

     

3:2

 

3:2

  3:2



mf

   

 3:2  

 

5:4

mf

  

mf

. m i d

3:2

  3:2  

fff

4 , 3 , 2 , 1



3:2

(

    

p i h W o T

  f

   

. m y C o T

  

5:4

fff

m u r D s s a B

  

mf

    

5:4

m u r D s s a B

. D . B o T

 

 (1, 2)Vln. I 

  3:2  3:2   

fff

 

fff

B. Cl. 1 soli

(1)Db.

  

fff

(1, 2)Vc.





(1, 2)Vla.

fff

Xyl.

(1, 2)Vln. II

fff

B. Cl. 3 soli

fff

 Bongos 

B. Cl. 2 soli

fff

 

fff

Tbn. 2

fff

Tbn. 1

  3:2     

  

 

Hn. II

Tba.

Cl. 1

Cl. 2

 3:2   3:2     5: 4  

. m i d

    3:2

 

11


32

 Fl. 2 

 

mf



5:4



   

. m i d 3:2

      . m i d

mf

 

Tbn. 2

Tba.

5:4

5:4

3:2

 

3:2

 

3:2

 

5:4

3:2

   

5:4

5:4

      3:2

p

p

  

3:2

 

p

5:4

  

  3:2

5:4

p

     p

    

3:2



 5:4

    

  3:2     p

   

5:4

3:2

 . m i d

 . m i d

mf

12

p

  

 

     3:2

pp

mf

3:2

  

  

   (1, 2)Vln. I 

(1)Db.

5:4

3:2

 



  

5:4

  

     

 

(1, 2)Vc.

 3:2 

   

  

5:4

d e ds nl ea pb sm uy SC

B. D.

 

3:2

3:2

. m i d

Tbn. 1

   

mf

 

  

3:2

mf

C Tpt. 2

5:4

     

    

C Tpt.1

5:4

. m i d

Hn. III

5:4



    

mf

  

3:2

 

3:2

  

Hn. II

   

. m i d

Hn. I





mf

Cl. 2



p

  

Cl. 1



5:4

. m i d

Ob. 1



 

p

3:2

  

p

 3:2

3:2

  

5:4



 5:4

    5:4

      3:2

p

 3:2

3:2

 

  


 

D 35

Fl. 1

   

Fl. 2

    5:4

 

 

Ob. 1

 

 

Ob. 2

 

 

Cl. 1

 

 

Cl. 2

 

 

Hn. I

  

 

Hn. II

 

 

Hn. III

 

 

C Tpt.1

 

 

C Tpt. 2

 

 

Tbn. 1

 

 

Tbn. 2

 

 

 

 

 

   

 

Tba.

T.-t.

  5:4

3:2

          3:2

. ss aa cg an r o ac md on Ta

p i h W

Cym.

 

3:2

p

3:2

3:2

3:2

3:2

3:2

            

   

B. Cl. 1 soli

 

 

B. Cl. 2 soli

 

 

B. Cl. 3 soli

  

 

(1, 2)Vln. I

  

 

(3, 4)Vln. I

 

 

(1, 2)Vln. II

 

 

(3, 4)Vln. II

 

 

(1, 2)Vla.

 

 

 

 

  

(1)Db.

ff



s a g n o C

(1, 2)Vc.

s a c a r a M

 

Whip

  

p

fff

  

 

 

 

 

 

13


Fl. 1

 

 









. t . w

mp



m u r D r o n e T

Fl. 2

 

. t . w

39

3:2

3:2

3:2

3:2

3:2

mp

3:2

3:2

3:2

3:2

3:2

3:2

3:2

3:2

3:2

3:2

3:2

3:2

Cym.

Perc.



                            p                           

3:2

        

p

p

 B. Cl. 1 

soli

B. Cl. 2 soli B. Cl. 3 soli

(1)Db.

Tbn. 2

Tba.

T. D.

 

 

mf

   

    

p

   

mp3:2

3:2

3:2

3:2

3:2

3:2

3:2

3:2

  

3:2

3:2

3:2

3:2

  

ppp

14

 





 



(

(

 

(

(

(

)

)

)

)

)

3:2  

3:2

 

   

 

 

 

  

 

 



( )

p

 

e r p m e s

(1)Db.

)

2 , 1

(1, 2)Vc.

(

2 , 1

(1, 2)Vla.

  

. l f

(3, 4)Vln. II

f

4 , 3

(1, 2)Vln. II

 

1

(3, 4)Vln. I

 

2 , 1

           

4 , 3

f

5:4

2 , 1

 (1, 2)Vln. I 

f

          5:4

n

ppp

n



7:4

n

B. Cl. 3 soli

ppp

7:4

3:2

n

B. Cl. 2 soli



3:2

              

3:2

3:2

3:2

         3:2

 p

pp

 

n

              

f

3:2

f

n



 

f

B. Cl. 1 soli

3:2 3:2       

3:2

mp3:2

  3:2  3:2   

. c . r l y e X P o T



   

3:2

   

   3:2   3:2    

3:2

mp

 

 

   

 

. . m b y i V C o T

Perc.



mf

Cym.

f







 

  

mp

 

. t . w

Fl. 2

 

mp

. c c i P o T

44

Fl. 1



mp

 

. t . w



        

 T. D.

        

 

 


Hn. I

  

Hn. II

Hn. III

C Tpt.1

C Tpt. 2

Tbn. 2

Tba.

 

mf

 

6:4

     

 

 

6:4

mf

mf

   

6:4

     

      

mf

6:4

mf

e n o h p a r b i V e n o h p o l y X

f

Xyl.



 B. Cl. 1  soli

B. Cl. 2 soli

B. Cl. 3 soli

                                                f

f

3:2

6:4

)

 

 

 

                   

  f

3:2

        

     

  

6:4

      

     

  

 

p

 

 

 

     3:2      

p



 

  

    

   

 



p

      

pp

 



  

 

ff

3:2





p

 

 3:2    

3:2     3:2

mp

e l i m i s

(1)Db.

 

ff

   

6:4 3:2

6:4

      

 

 

2 / 1 ., l f

2 , 1

(

   6:4         3:2     3:2    

ff

6:4

               

f

6:4

        6:4   f 3:2           

   (1, 2)Vln. II  (1, 2)Vc.

6:4

e r p m e s

                                               

 

e r p m e s d e P

3:2

3:2

        

 T. D.  Vib.

E  

       6:4                        

6:4

mf

mf

mf

  6:4      

 

s k c o l B e l p m e T

< x = x > q

. l B . T o T

Tbn. 1

 

2 7 =

49

 

 3:2     

3:2

3:2

 . l t B o r . T C o T

56

T. Bl.

Vib.  

    3:2

 



 

  

ppp 3:2

(1)Db.

      3:2

 

   

 ppp

 

   

   

 

   



  p

 

p

3:2 3:2

p

3:2

   

5:4       

   

p

p

5:4

  3:2      

 

  

p

  

  

 e l i m i s

 

   

5:4 6:4    7:4                         mp mf 

( )



2 / 1 ., l f

   

1

(1, 2)Vc.

  p              

soli

B. Cl. 3 soli

 

p

 B. Cl. 1  B. Cl. 2 soli

     

 3:2       3:2 3:2

    3:2

15


s e l a t o r C

61

T. Bl.



Vib.   B. Cl. 1 soli



n

               3:2

 



mf

  

p

 

    f

  3:2   5:4                               3:2 6:4 mf p

3:2

   

 

3:2

 

3:2

3:2

    (1)Db.  

3:2

 

3:2





(

     

 

 

) 3:2

3:2

    

3:2

3:2

 

3:2



)



3:2 3:2

 

3:2



(

   

 

2 , 1

    

   

2 , 1

2 , 1

(

(1, 2)Vc.

3:2

1

( )

3:2

 

f

5:4

 (1, 2)Vla. 

 

  f 

p

 

7:4

mp



 



2 / 1 ., l f

 

n

B. Cl. 3 soli

     

  

B. Cl. 2 soli

 

) 3:2

      3:2 3:2

    

 

3:2

3:2

66

 Cl. 1 

 

6:4

5:4

    

p i h W o T

mf

Crot.

 

 

 B. Cl. 1 

B. Cl. 2 soli B. Cl. 3 soli

  (1, 2)Vla.  

  

3:2

       3:2

(1, 2)Vc.

3:2 3:2

     (1)Db.   16

3:2

 3:2

  

3:2

 

     

3:2

mf

     

3:2

 

 

3:2

  

3:2

     3:2

3:2 3:2

     3:2

 

 3:2

   

  

     

 

  

  

3:2

3:2

 



 

3:2

3:2

 3:2

   

 

  

     

 

  



mf

3:2

 



mf

 3:2

 

6:4



n

soli

n

Vib.

  

3:2

3:2

     3:2 3:2

     3:2

 

 



 

        mf

6:4


 

o l o c c i P



71

. m i d

mf



Fl. 2



3:2

 Picc.  



 

3:2

. m i d

    

mf

   

Ob. 2

3:2

3:2  

3:2

 

3:2

   3:2   mf 3:2        

Ob. 1

3:2      

3:2

 

3:2

Hn. II

Hn. III



f

3:2



f

 

     f

3:2

3:2

ff

ff

 

ppp



3:2

  3:2

ff

Tbn. 1

Tbn. 2

f

Tba.

f

(

  

(1, 2)Vla.

(1, 2)Vc.

(1)Db.

 

3:2

)

3:2



3:2

 

 

3:2





 

3:2



 

3:2

 

 

 

f

 

3:2

3:2

    

3:2

3:2

 3:2    3:2

    

3:2



3:2

 

  

5:4

      



3:2

 

 3:2        3:2  3:2           3:2

3:2

3:2

  

3:2

3:2

3:2

ff

3:2

 3:2     

 3:2        

     ff     



  3:2        

3:2

 

   

 3:2      3:2   

 

   

3:2

f

f

  

 3:2        3:2



 

7:4



f

ff

  

3:2

   

f

3:2

3:2

   

mp

 3:2      

  

 

3:2 3:2

3:2

 

 

 

  3:2

2 , 1

      (

 

)

2 , 1 )

3:2

. d r o

(3, 4)Vln. II

  (

)



4 , 3

(1, 2)Vln. II

   (

 3:2

3:2

  

3:2

)

2 , 1

 

)

4 , 3

  (1, 2)Vln. I  

(

 

2 , 1

(

(3, 4)Vln. I

 

        

f

. c s e r c

 . c s e r c

B. Cl. 2 soli B. Cl. 3 soli

 

. D . B o T



mp

 

 

. c s e r c

B. Cl. 1 soli

p



       

   

f

. D . B o T

Xyl.

    

3:2

  

  f   f  

 Vib.  

3:2

6:4

f

 



   6:4

   

 

6:4 6:4



6:4

ppp

   

ff

C Tpt. 2

6:4

3:2

ppp

      

C Tpt.1

         3:2

ppp



 

3:2

3:2



ff

  

 

f

3:2

  



ff

 3:2

3:2



3:2

f

3:2    3:2      Cl. 1            mf3:2 3:2 3:2      Cl. 2       3:2       3:2   mf   Hn. I 

mf

3:2



f



 



3:2

 

 

 

3:2



3:2



 



 

3:2



 

3:2

 

 

 

  

 

3:2 3:2

3:2

3:2

 

3:2

 

3:2

3:2

 

ff

 



3:2

 

 



3:2

 

 

 

 

3:2 3:2

 3:2

3:2

3:2

3:2

 

3:2

 

3:2

   

 

3:2

   

3:2





 

3:2

  

3:2

 

 

17


76

 Picc.  

Fl. 2

Ob. 1

 

     sfz  





sfz

   sfz      sfz 



Cl. 2





Hn. I

 



Hn. II

Hn. III



C Tpt.1

C Tpt. 2

Tbn. 1

Tbn. 2

Tba.

p i h W

Whip

  B. Cl. 1 

B. D.

soli

B. Cl. 2 soli B. Cl. 3 soli

(1, 2)Vln. I



(1, 2)Vla.

(1, 2)Vc.

  





   sfz     sfz     sfz      sfz        sfz       sfz       sfz        sfz      sfz        sfz       sfz

6:4

    

mp



ppp

  

 

     

  

            

( )

mf

( )

6:4

mf

f

  

  

  

2

(3, 4)Vln. II

sfz

2

  

(1, 2)Vln. II

(1)Db.

     

(3, 4)Vln. I

18

m u r D s s a B

Vib.

  sfz      sfz     sfz    sfz     sfz     sfz    sfz     sfz     sfz   sfz    

 

. D . S o T



. m y C o T

ppp

         

h c t a r c s

Cl. 1

  

m a t m m u a r T D s s a B



. t . T o T

Ob. 2

 

F

5:4

          

mp

5:4

f


82

Picc.

 

Ob. 1

  

7:4

   3:2

p 3:2

  3:2

    

         3:2

3:2

3:2

5:4

. t . w

Fl. 2

           

p

         5:4

5:4

  

3:2

p



 

Ob. 2

Cl. 1

Hn. III

5:4

   

5:4   

 

5:4 5:4 5:4                    5:4

3:2

    

p

3:2

 

p

 

 

ppp

pp

. d r o s n o c

Tba.

 



mf

 

ppp

 

ppp

soli

B. Cl. 2 soli

B. Cl. 3 soli

p

 

mp



 

. t . s

   

           

  

3:2

    

 

 (1, 2)Vln. II 

p

(1, 2)Vla.

3:2

    3:2

  p

    3:2

p

3:2

3:2

   

3:2

3:2

 

     5:4

5:4

7:4

3:2

 5:4  5:4  5:4  5:4  5:4                                

  

3:2

  



p

p

. t o r C o T m

 B. Cl. 1 

a ht c t am r a c s T

 

. t . T o T

. l B . T

t oo Th s aa sv s oo BN

m u r D e r a n S

T.-t.

 



 5:4            5:4

  

p

3:2

 3:2   . p . s

 3:2   

(1, 2)Vc.

p

(1)Db.

 19


86

Picc.

 

 

 

  

. t . w

p

 

Fl. 2

p

Cl. 2

p

Cl. 1

3:2

 3:2



3:2



p

  

p

  

5:4

5:4

. d r o s n o c

Tba.

  

     

p

3:2

. d r o s n o c

Tbn. 2

. d r o s n o c

 p

p

. d r o s n o c

. d r o s n o c

p

5:4



3:2

    

 C Tpt.1 

Tbn. 1

5:4

p



C Tpt. 2

p

   

Ob. 2



5:4

Ob. 1

  

 

(

)

3:2

   



p

s e l a t o r C

B. D.



 



  



e n o h p o l y X

   mp

. l y X o T

s o g n o B o T

B. D.

w o b h t i w

      mp

s l a b m y C

Crot.



( )

  

p

p 3:2

 

mp

6:4

 

p 3:2

( )

  

p

p 3:2

5:4

  

  

 ( )      

( )

p

 

 3:2 

. l f

3:2  p    



mp

2

  

. l f

2

( )

 

   mf

. l f 1



. l f 4

  

. l f 2

( )

5:4 . l f

4

5:4

. d r .o l f

    

. l f 2

(1, 2)Vc.

( )

(1, 2)Vla.

p

(3, 4)Vln. II

20

(1, 2)Vln. II

(1)Db.

(3, 4)Vln. I

( )

 

   mf

2

 (1, 2)Vln. I 

n

  . l f

B. Cl. 2 soli



   

n

B. Cl. 1 soli

p

5:4

 3:2       p    3:2

5:4

 

 

   


91

Fl. 2

 

Cl. 1

Hn. I



 

7:4

p

7:4



  

         7:4

p

p

6:4

   

p

 

 

 3:2    

 

 

 

pp

Hn. II

6:4

    



 

p

Ob. 2

Cl. 2

 

pp

 

 

    

 

p

3:2

p

. l B . T o T

Crot.

 



         



p

s a g n o C o T

Xyl.

 B. Cl. 1  soli 

pp

       mf

7:4

      3:2



 

            7:4

3:2

 6:4        mp 1

 (1, 2)Vln. I 

( )

3

 7:4      

mp

1

      

. m i d

(3, 4)Vln. II

( )

(1, 2)Vla.

( )

p

(1, 2)Vc.

6:4

 

6:4

   p





7:4

  

                6:4

7:4

 21


94

Picc.

 

Ob. 2

Cl. 1

Hn. I

 

  

    

mf

sfz

    

mf

sfz

 

 

p

mf

3:2

(

 

 

 

6:4

  

 

    

 

sfz

)

     

 

sfz

    

p

. b i V o T

s e l a t o r C

. t o r C o T

      

p

s o g n o B

 

p i h W

p i h W o T

 

 

p 3:2

. l y X o T

B. Cl. 3 soli

5:4

m u r D s s a B

B. Cl. 2 soli

p

    p

    

n

  

  

 

 

n

B. Cl. 1 soli

 

. D . B o T

s a g n o C

Congas





ppp

mf





    

ppp

mf



    

ppp

mf

 

 2 / 1 ,

   5:4      

(1, 2)Vla.

(1, 2)Vc. 22

 



 



  mf



mf

           

. l f

 (1, 2)Vln. I 

     3:2

p

mf

Bongos

 



s k c o l B e l p m e T

T. Bl.

 

p

 

. d r o s n o c

Tbn. 2

 

p

 

 


100

Picc.

Cl. 1

 

 

 

 

 

e n o h p a r b i V

3:2

  

     

p

     

 

p

p

e n o h p o l y X 

  



p

 p

 

   

3:2               3:2

3:2

            mp 

n

3:2

n

 B. Cl. 2  soli 

 . t o r C o T



(1, 2)Vla.

. v l C o T

o r i u G

. o r G o T

(1, 2)Vln. I

ppp

 Crot. 

B. D.

 

ppp



Bongos

 



p

3:2  3:2                 

ppp

p

105

Picc.







   mf

 



    3:2

    5:4

pp

  p

 



sfz

   sfz 

p

p

 

  

     

  

 

 

  

sfz

     

      

(1, 2)Vla.

  p









 

f

   

    

sfz

3:2

fp

 (1, 2)Vln. I 

3:2    

. b i V o T

B. Cl. 3 soli



 

sfz

s e v a l C

Clv.

sfz

p



  

s e l a t o r C

p

 . d r o s a z n e s

      

 

7:4

 Tbn. 2  Gro.

 

p

Cl. 1

Cl. 2

 

 

fp

   

 

sfz

 

sfz

23


Clv.

 

    

    

  

 

f

 

 

. D . B o T

Xyl.



3:2

. D . B o T

e n o h p a r b i V

111

f

 

   

3:2

fp

fp

 (1, 2)Vln. II 

         3:2



n

  

n

B. Cl. 3 soli

f

  3:2    

mf

    

 3:2

6:4              

115

Picc.

 

 

3:2

     

 

              

Cl. 2



   mf



   mf

 

mf

  

3:2

mp 3:2

mf

p



Cl. 1

          3:2

mp

Ob. 1

mf

 3:2           

mf

 

  

p

mf

 

  mf

 

p

Tbn. 2

 

 

 

p

Fl. 2



 

  p

mf

. t . T o T

Crot.

 

   . l f

1

( )

p

 

 f

 (1, 2)Vln. I 

(1, 2)Vln. II

  



p

1

(1, 2)Vla. 24

( )

 p

   mf

 


119

Fl. 2

 

3:2

 

  pp





   pp

(1, 2)Vln. I

p



 

    

5:4



3:2

3:2  

pp



 mp

 

 

mp





 

mp



. c s e r c

 

. c s e r c



. c s e r c

    

 . c s e r c



. c s e r c

(3, 4)Vln. II



p





. c s e r c

. c s e r c

 

p

(1, 2)Vln. II

  p

ppp

(3, 4)Vln. I

 

. c s e r c

Cl. 2

. c s e r c

Cl. 1

. c s e r c

Ob. 2

ppp



. c s e r c

Ob. 1

3:2

. c s e r c

 Picc. 

 



 25


122

 Picc.  

Fl. 2

Ob. 1

Ob. 2

 

Cl. 1



Hn. I

 



















 

. c s e r c

Cl. 2

f

Hn. III

 

  

mf

  f

. c s e r c

 

. c s e r c

Hn. II

. d r o s a z n e s

f

C Tpt. 2

 . d r o s a z n e s

 

mf

mf

 

mf

(1, 2)Vln. I

   

(3, 4)Vln. I

 

. c s e r c

 

     

. d r o s a z n e s

Tba.

. c s e r c

Tbn. 2

. c s e r c

Tbn. 1

. d r o s a z n e s

 

. c s e r c

C Tpt.1

 





 

 

    





(3, 4)Vln. II

    





   mf

  

(1, 2)Vc.

   mf

(1)Db. 26

 

mf

  

. c s e r c

. c s e r c

(1, 2)Vla.

. c s e r c

(1, 2)Vln. II

 


 

125

Picc.

Ob. 1

Ob. 2

Cl. 2

Hn. I

 

 

fff

   fff  

 

 

 

fff

fff

  fff   

  fff  

Cl. 1



 

fff fff

fff

fff

 

Hn. II

fff

C Tpt.1

fff

 

 

fff

Tbn. 1

Tbn. 2

Tba.

ff

(1, 2)Vc.

(1)Db.

ff

     

 

 

 

ppppp

ppppp

ppppp

 fff

    

   

   

  

      fff      fff    

   

fff

(1, 2)Vla.

fff

(3, 4)Vln. II



 

fff

(1, 2)Vln. II

ff

  (1, 2)Vln. I  (3, 4)Vln. I

 

   sffz

  

s a g n o C o T

B. Cl. 3 soli

fff

sffz

 



B. Cl. 2 soli

fff

. v l C o T

B. Cl. 1 soli



   

  

m a t m a T

B. D.

fff

m u r D s s a B

B. D.

fff m u r D s s a B

 Crot. 

 

 

     sffz       sffz     

 

fff

 

. D . T o T

  sffz 

fff

  

 

     sffz

 

fff

 

sffz

fff

   fff   

C Tpt. 2

 

     sffz      

 

fff

 

 

sffz

fff

  

Hn. III

  sffz    sffz     sffz    sffz     sffz    

fff

fff

. l F o T

    fff   Fl. 2  fff  

G  

fff

fff

fff

fff

   fff   

fff

fff

  

fff

 

 sffz    sffz    sffz     sffz     sffz   sffz    sffz

                 

                     27


128

B. Cl. 1 soli



 

 





p

B. Cl. 2 soli

B. Cl. 3 soli

3:2



 

3:2



 

3:2

ppp

p



 

ppp

p

ppp







p





p



p



 

 

3:2

 

B. Cl. 1 soli

     

  

3:2

    

3:2



mp

3:2

          3:2  3:2

3:2 3:2 3:2             

3:2

3:2

              3:2

  

f

    

 

                 

f

3:2

3:2

mp

           3:2

 

3:2

3:2

B. Cl. 2 soli

B. Cl. 3 soli



  mp                      

r e k a h S g g E

6:4    Congas     

mp

e n o h p a r b i V

mp

 

. S . E o T

s a g n o C

 

. b i V o T

s e v a l C

Clv.

   

mp

 

s e l a t o r C

T. D.

 

. t o r C o T

m u r D r o n e T

 

131

3:2

            f

          

3:2

3:2

3:2

3:2

f

    Vib.  134

B. Cl. 3 soli

 



 



p

 

3:2

3:2

       

         

mf

mp

             5:4

7:4

p

                    

p

5:4

p

3:2

5:4

 

 

e n o h p o l y X

B. Cl. 2 soli

 

 

 . l y X o T

B. Cl. 1 soli

p

 

 E.S.  

5:4

3:2

 

mf

137

Fl. 2

 

 

 

 

p

            Vib.    6:4

5:4

Xyl.

28

 f

(

2 , 1

 (1, 2)Vln. I 

f

)

 

. t .. l f s



 

 

p

  7:4

 

     

         3:2

f

   



3:2

3:2

             3:2

3:2

3:2


139

Crot.

 

 

                                   

Vib.

 

         3:2

3:2

 3:2  3:2       

  

mp

         mp

5:4

        

6:4          

p

p

                  3:2

mf                    3:2

3:2

3:2

mf

3:2

3:2

3:2

3:2

5:4

mp

  3:2  3:2       

. D . B o T

 3:2  3:2         3:2  3:2       

. m y C o T



s a g n o C

B. Cl. 2 soli B. Cl. 3 soli





s o g n o B

B. Cl. 1 soli



 

 

3:2

p

. S . E o T

E.S.



   

s o g n o B o T

142

  

3:2

n

 



n

(1, 2)Vln. I

3:2

7:4

 

r e k a h S g g E

 

Clv.

                   



B. Cl. 2 soli

p

. S . E o T

3:2

Xyl.

 

s e v a l C

 

 

. v l C o T

Fl. 2

  

p

   

f

(1, 2)Vln. II

 

(3, 4)Vln. II



   



 e t u l F . t . w

146

3:2  Fl.   



    p



 Crot. 

 3:2  



 B. Cl. 1 

  

  

. t . w

p

3:2

Fl. 2

w o b h t i w

s l a b m y C

Bongos

        

f

soli

B. Cl. 2 soli

w o b h t i w



f

 B. Cl. 3    soli 

5:4

    

e l i m i s

3:2

   

 

(3, 4)Vln. II

   

 

e l i m i s

(1, 2)Vln. II

       

ff

     ff

  

     

ff

   

      

   

  

   3:2

       

     

5:4

 

 

 

 

 

 

29


151

 Fl.  

    Crot.  

Fl. 2



 

    B. Cl. 1  soli   B. Cl. 2   soli   B. Cl. 3    soli 

30

m u r D s s a B

B. D.

m u r D s s a B

. D . B o T

Cym.

3:2

 

p

           

 3:2

 

mp

       

3:2

 

3:2

 

mf

 

ff

fff

   

3:2

f

   

   

3:2

ff

 

fff


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.