1 minute read

Fastener Engineering

This area has long been one of the most read and sought after by our engineering audience! From screws to bolts and adhesives to springs, these critical but often overlooked components are the key to every successful design.

FastenerEngineering.com will serve readers in the mechanical design engineering space, providing news, product developments, application stories, technical how-to articles, and analysis of engineering trends. This site will focus on key issues facing the engineering markets around fastener technology, along with technical background on selected components.

ADDITIONAL RESOURCES:

• Special print section in select issues of Design World

• Fastener Engineering monthly newsletter

Connectors

60 GHz wireless data slip ring

A millimeter wave data interface slip ring has been suggested using frequencies from 57 to 64 GHz for industrial applications. The silicon-germanium (SiGe) transceiver was developed for small-cell backhaul systems but can also support industrial slip ring designs (Figure 3). Using an integrated synthesizer, the SiGe chipset can be tuned in discrete frequency steps of 250, 500, or 540 MHz from 57 to 64 GHz. An external signal can also be used to control the modulation, coherency, and phase noise needs of specific applications.

The transceiver includes support for modulation schemes like on-o keying (OOK), quadrature amplitude modulation (QAM), frequency shift keying (FSK), and minimum shift keying (MSK). It has a maximum output power of 15 dBm and a maximum modulation bandwidth of 1.8 GHz and can be monitored using an integrated detector. The chipset features adjustable low-pass and high-pass baseband filters, a low noise figure, and flexible digital or analog IF/RF gain control.

The receiver signal chain includes an integrated amplitude modulation (AM) detector that simplifies the demodulation of signals like OOK that use amplitude modulation. While the transceiver supports several modulation schemes, OOK is especially suited for control applications like slip rings since it can be implemented without high-speed data converters, which can add to cost and power consumption. In addition, OOK does not require complicated modulation and demodulation stages and can support the low latency needed for real-time industrial control applications.

Summary

Slip rings are important components in various industrial, green energy, and medical applications. Many contact and contactless slip ring technologies include mercury wetted, wireless, inductive, capacitive, and FORJ. In addition to transmitting electric data and power in rotating machines, slip rings send gases and liquids between the rotating sections. DW

This article is from: