Lyapunov-type inequalities for a fractional q, -difference equation involving p-Laplacian operator

Page 1

International Journal of Modern Research in Engineering & Management (IJMREM) ||Volume|| 2||Issue|| 1||Pages|| 26-36 || January 2019|| ISSN: 2581-4540

Lyapunov-type inequalities for a fractional q,  -difference equation involving p-Laplacian operator 1, 1,2,

Yawen Yan, 2,Chengmin Hou

(Department of Mathematics, Yanbian University, Yanji, 133002, P.R. China)

----------------------------------------------------ABSTRACT------------------------------------------------------In this paper, we present new Lyapunov-type inequalities for a fractional boundary value problem of fractional q,  -difference equation with p-Laplacian operator. The obtained inequalities are used to obtain a lower bound for the eigenvalues of corresponding equations.

KEYWORDS: Lyapunov-type inequality; fractional derivative; eigenvalues; boundary value problem --------------------------------------------------------------------------------------------------------------------------------------Date of Submission: Date, 10 January 2018

Date of Accepted: 14. January 2019

---------------------------------------------------------------------------------------------------------------------------------------

I.

INTRODUCTION

The p-Laplacian operator arises in different mathematical models that describe physical and natural phenomena (see, for example, [1-6]). In this paper, we present some Lyapunov-type inequalities for a fractional q,  -difference equation with p-Laplacian operator. More precisely, we are interested with the nonlinear fractional boundary value problem

 a Dq, ( p ( a Dq, u (t ))) +  (t ) p (u (t )) = 0, a  t  b,       u (a) = Dq , u (a) = Dq , u (b) = 0, a Dq , u (a)= a Dq , u (b) = 0, where 2  

(1.1)

 3 , 1    2 , a Dq, , a Dq, are the Riemann-Liouville fractional derivatives of orders

 ,  ,  p ( s) = s

p −1

, p  1 , and

 : a, b → R

is a continuous function. Under certain assumptions

imposed on the function g , we obtain necessary conditions for the existence of nontrivial solutions to (1.1). Some applications to eigenvalue problems are also presented. For completeness, let us recall the standard Lyapunov inequality [7], which states that if u is a nontrivial solution of the problem

u (t ) +  (t )u (t ) = 0, a  t  b,  u ( a ) = u (b) = 0, where a  b are two consecutive zeros of u , and

b

a

 (t ) dt 

 : a, b → R

4 . b−a

is a continuous function, then

(1.2)

Note that in order to obtain this inequality, it is supposed that a and b are two consecutive zeros of u . In our case, as it will be observed in the proof of our main result, we assume just that u is a nontrivial solution to (1.1). Inequality (1.2) is useful in various applications, including oscillation theory, stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.

www.ijmrem.com

IJMREM

Page 26


Lyapunov-type inequalities for a fractional q,  -difference… Several generalizations and extensions of inequality (1.2) to different boundary value problems exist in the literature. As examples, we refer to [8-13] and the references therein. The rest of this paper is organized as follows. In Section 2, we recall some basic concepts on fractional q,  -calculus and establish some preliminary result be used in Section 3, where we state and prove our main result. In Section 4, we present some applications of the obtained Lyapunov-type inequalities to eigenvalue problem.

II.

PRELIMINARIES

For the convenience of the reader, we recall some basic concepts on fractional q,  -calculus to make easy the analysis of (1.1). For more details, we refer to [19]. Let C[a, b] be the set of real-valued and continuous functions in [ a , b ] . Let f  C[a, b] . We define the fractional q,  -derivative of Riemann-Liouville type by

(

(

a

Dq,

)

 a I q−, f ( x),   0,   f ( x) =  f ( x),  = 0,   Dq, a I q,− f ( x),   0,

)

(

 

Where

denotes the smallest integer greater or equal to

.

q (m) = qm + (1 − q)a . For any positive integer k , we have

Define a q-shifting operator as

a

qk (m)= a qk −1 ( a q (m))

and

a

)

a

q0 (m) = m .

We also define the new power of q-shifting operator as k −1

(n − m) (a0) = 1 , (n − m) (ak ) =  (n − a  qi (m)) , k  N  . i =0

More generally, if   R , then

( n − m) with

a

( ) a

n− a  qi (m)

i =0

n− a  qi + (m)

=

,

q (m) = q  m + (1 − q  )a ,   R .

For any

 , n  R , we have s − 0 )  n − 0  = (n − c)  , 1+ i + s −  0 i =0 1− q ( ) n − 0 1 − q i +1 (

(n− 0  q ( s))(0)

and

Dq , ( x − a)0 = [ ]q ( x − a) (0−1) .

www.ijmrem.com

IJMREM

Page 27


Lyapunov-type inequalities for a fractional q,  -difference… Definition 2.1. Let v  0 and f be a function defined on [ a , b ] . The fractional integration of Riemann-Liouville type is given by

a

I qv, f (t ) =

1 t (t − 0  q ( s))( v0−1) f ( s)d q , s, v  0, t  [a, b]. q (v) a

Theorem 2.2. [19] Let

 ,   R + . The Hahn’s fractional integration has the following semi-group property

a

I q a I q f ( x) =

(

a

(

a

)

I q +  f ( x),

)

Dq, a Dq , f ( x) =

(

a

(0  a  x  b).

)

Dq,+1 f ( x),

(0  a  x  b).

Lemma 2.3. Let f be a function defined on an interval

(

a

)

Dq, a I q, f ( x) = f ( x) ,

Theorem 2.4. Let

( 0 , b )

and

  R + . Then the following is valid

(0  a  x  b).

  ( N − 1, N ] . Then for some constants ci  R, i = 1,2, , N , the following equality

holds:

(

a

)

I q, a Dq, f ( x) = f ( x) + c1 ( x − a) (0 −1) + c2 ( x − a) (0 −2) +  + c N ( x − a) (0 − N ).

Now, in

order to obtain an integral formulation of (1.1), we need the following results. Lemma 2.5. Let

2    3 , and y  C[a, b] . Then the problem  a Dq, u (t ) + y (t ) = 0, a  t  b,   u (a) = Dq , u (a) = Dq , u (b) = 0.  

has a unique solution b

u (t ) =  G (t , s ) y ( s )d q , s , a

where

(

)

(

)

 b −   q ( s ) ( − 2 ) 0 (t − a ) (0 −1) ,  1  (b − a )( − 2 ) G (t , s ) =  ( − 2 ) q ( )  b − 0  q ( s ) (t − a ) (0 −1) − (t − 0  q ( s ))(0 −1) ,  (b − a )( − 2 ) 

a  t  s  b, Proof

a  s  t  b.

from Theorem 2.4 we have

u(t ) =− a I q, y(t ) + c1 (t − a) (0 −1) + c2 (t − a) (0 −2) + c3 (t − a) (0 −3) . The condition u ( a ) = 0 implies that c3 = 0 . Therefore,

www.ijmrem.com

IJMREM

Page 28


Lyapunov-type inequalities for a fractional q,  -difference…

(

)

Dq , u (t ) = − a I q,−1 y (t ) + c1 [ − 1]q (t − a) (0 −2) + c2 [ − 2]q (t − a) (0 −3) t 1 =− (t − 0  q ( s))(0 −2) y ( s)d q , 0  q ( s)  q ( − 1) a

(

+ c1[ − 1]q (t − a )0

( − 2 )

The condition

+ c2 [ − 2]q (t − a ) (0 −3) .

Dq, u(a) = 0 implies that c2 = 0 . Then

Dq , u (b) = −

1

( − 2 )

b

(b−    ( − 1)  0

a

q

q

( s))

( − 2 )

+ c1 [ − 1]q (b − a) 0 Since

)

0

y ( s)d q , s

.

.

Dq, u(b) = 0 , we get

c1 =

1 q ( )(b − a) (0 − 2)

b

a

(b− 0  q ( s ))

( − 2 )

0

y ( s )d q , s .

Thus, ( −1) t 1 ( t −  ( s )) y ( s)d q , s 0 q 0 q ( ) a . ( − 2 ) (t − a) (0 −1) b + (b− 0  q ( s)) y ( s)d q , s. 0 q ( )(b − a) (0 − 2) a

u (t ) = −

For the uniqueness, suppose that

u1 and u 2 are two solutions of the considered problem. Define

u = u1 − u 2 . By linearity, u solves the boundary value problem.  a Dq, u (t ) = 0, a  t  b,     u (a) = Dq , u (a) = Dq , u (b) = 0. which

has

a

unique

solution

u = 0 . Therefore, u1 = u 2

and

the

uniqueness

follows.

 Lemma 2.6. Let y  C[ a, b] ,

2    3 , 1    2 , p  1 , and

 a Dq, ( p ( a Dq, u (t ))) + y (t ) = 0,     u (a) = Dq , u (a) = Dq , u (b) = 0,

1 1 + = 1 . Then the problem p g

a  t  b,   a Dq , u ( a ) = a Dq , u (b) = 0.

(1.1) has

a

unique solution

www.ijmrem.com

IJMREM

Page 29


Lyapunov-type inequalities for a fractional q,  -difference… b b u (t ) = − G(t , s)   H ( s, ) y( )d q , d q , s , a  g a

(

)

(

)

 b −   q ( s ) (  −1) 0 0  (t − a ) ( 0 −1) , (  −1) 1  (b − a )0 H (t , s ) =  (  −1) q (  )  b − 0  q ( s )  0 (t − a ) ( 0 −1) − (t − 0  q ( s ))( 0 −1) , (  −1)   (b − a )0

a  t  s  b, Proof

a  s  t  b.

from Theorem 2.4 we have

 p ( a Dq, u(t )) =− a I q, y(t ) + c1 (t − a) (  −1) + c2 (t − a)(  −2) , 0

0

where ci , i = 1,2 , are real constants. The condition conditions

c1 =

a

a

Dq, u (a) = 0 implies that  p

Dq, u (b) = 0 implies that  p 1 (  -1)

(b − a ) 0

 ( ) 

b

a

q

(

a

(

a

)

Dq, u(a) = 0 . which yields c2 = 0 . The

)

Dq, u (b) = 0 . which yields

(b − 0  q ( s ))( 0 -1) y ( s )d q , s .

Therefore,

 p ( a Dq, u(t )) = − +

t 1 (t − 0  q ( s))( 0 -1) y ( s)d q , s  q (  ) a

(t − a) ( 0 -1) (  -1)

(b − a) 0

b

(b−    ( )  q

0

a

q

( s))( 0 -1) y ( s)d q , s ,

that is,

 p ( a Dq, u (t ) ) =  H (t , s ) y ( s )d q , s . b

a

Then we have a

b Dq, u (t ) −  g   H (t , s) y ( s)d q , s  = 0 .  a 

Setting b ~ y = − g   H (t , s) y ( s)d q , s  .  a 

We obtain

 a Dq, u (t ) + ~ y (t ) = 0, a  t  b,    u (a) = Dq , u (a) = Dq , u (b) = 0. Finally, we applying Theorem2.4, we obtain the desired result.

www.ijmrem.com

IJMREM

Page 30


Lyapunov-type inequalities for a fractional q,  -difference… The following estimates will be useful later. Lemma 2.7. We have

0  G(t , s)  G(0 q (s), s),

(t , s)  [a, b]  [a, b].

Proof From the respect of G (t , s ) , set

(b−

g1 (t , s) =

0

 q ( s) )( −2)

(b − a )

( − 2 )

(t − a) (0 −1) , a  t   (s)  b , 0 q

and

(b−

g 2 (t , s) =

0

 q ( s) )( −2)

(b − a )

( − 2 )

 (t − a) (0 −1) − (t − 0  q ( s))(0 −1) , a  (s)  t  b . 0 q

Clearly,

g1 (t , s)  0 ,

a  t 0 q (s)  b .

On the other hand,

(b−

0

 q ( s) )( −2)

(b − a )

( − 2 )

(t − a) (0 −1) − (t − 0  q ( s))(0 −1)  0 , a  s  t  b,

which yields

g 2 (t , s)  0 , a  s  t  b . So G (t , s )  0 for all (t , s )  [ a, b]  [ a, b] , which yields

0  G(t , s)  G(0 q (s), s),

(t , s)  [a, b]  [a, b] . 

The proof is complete. Lemma 2.8. We have

0  H (t , s)  H (0 q (s), s), Proof

(t , s)  [a, b]  [a, b] .

(

)

(

)

 b −   q ( s ) ( − 2 ) 0 (t − a ) (0 − 2 ) ,  [ − 1] q  (b − a )( − 2 )  ( − 2 ) t Dq , G (t , s ) = q ( )  b − 0  q ( s ) (t − a ) (0 − 2 ) − (t − 0  q ( s ))(0 − 2 ) ,  (b − a )( − 2 )  e that H (t , s ) = G (t , s ) , for

www.ijmrem.com

a  t  s  b, Observ

a  s  t  b.

 − 2 =  − 1 , Then, from the proof of Lemma 2.8 we have IJMREM

Page 31


Lyapunov-type inequalities for a fractional q,  -difference…

H (t , s)  0, (t , s)  [a, b]  [a, b] . On the other hand, for all s  [ a, b] , we have

H (t , s)  H (0 q (s), s) . Now, we are already to state and prove our main result.

III. MAIN RESULT Our main result is following Lyapunov-type inequality. Theorem 3.1. Suppose that

2    3 , 1    2 , p  1 , and  : a, b → R is a continuous function.

If (1.1) has a nontrivial continuous solution, then b

 (b− 

( s))( 0 -1) ( 0  q ( s ) − a) (  -1)  ( s ) d q , s (  -1) 1− p (3.1) p −1 (b − a ) 0 .  b ( - 2) ( -1)   q (  ) q ( ) ( b −  ( s )) (  ( s ) − a ) d s  0 q 0 0 q 0 q ,  (b − a) (0 -2)  a 0

a

q

u

Proof We endow the set C[a, b] with the Chebyshev norm

u

given by

= maxu(t ) : a  t  b, u  C[a, b] .

Suppose that u  C[ a, b] is a nontrivial solution of (1.1). From Lemma 2.8 , Lemma 2.9 we have b b u (t ) = − G(t , s)   H ( s, ) ( ) p (u ( ))d q , d q , s , t  a, b . a  g a

Let

t  a, b be fixed. We have b b u (t )   G (t , s )    H ( s, ) ( ) p (u ( ))d q ,  d q , s a  g a b

  G (t , s ) a b

b

a

H ( s, ) ( ) p (u ( ))d q ,

g −1

d q , s

  G (t , s )  ( s )d q , s. a

where

 (s)=   H (s, )  ( ) u( ) b

a

p −1

d q ,  

g −1

,s

a, b.

Using Lemma 2.8 and Lemma 2.9, we obtain b b u (t )  u    G( 0 q ( s), s)d q , s   H ( 0 q ( s), s)  ( s) d q, s   a  a 

g −1

.

Since the last inequality holds for every t  [ a, b] , we obtain

www.ijmrem.com

IJMREM

Page 32


Lyapunov-type inequalities for a fractional q,  -difference… b b 1    G( 0 q ( s), s)d q , s   H ( 0 q ( s), s)  (s) d q , s  a a   

g −1

, 

which yields the desired result.

2    3 , 1    2 , p  1 , and  : a, b → R is a continuous function.

Corollary3.2. Suppose that

If (1.1) has a nontrivial continuous solution, then

b

 ( s) d q , s  (b −  0 )

a

1− 

( 0 − a)

1− 

q (  ) q ( )

p −1

(b − a) ( 0 -1) (b − a) (0 -2)

b    (b− 0  q ( s))(0 -2) ( 0  q ( s) − a) (0 -1) d q , s   a 

Proof

1− p

(3.2)

Let

 (s) = (b− q (s))(  -1) ( q (s) − a) (  -1) 0

0

0

s − 0 s − 0 ) 1 − q i +1 ( )  b − 0 a − 0  −1  −1 = (b −  0 )  ( 0 − a )  s − 0 1+ i +  s −  0 i =0 i =0 1− q ( ) 1 − q 1+i + ( ) b − 0 a − 0  (b −  0 )  −1 ( 0 − a )  −1 

Observe that the function

1 − q i +1 (

has a maximum. That is,

= (b − 0 )  −1 (0 − a)  −1 , s  [a, b] .

The desired result follows immediately from the last equality and inequality (3.1).  For p = 2 , problem (1.1) becomes

 a Dq, ( a Dq, u (t )) +  (t )u (t ) = 0,     u (a) = Dq , u (a) = Dq , u (b) = 0,

  a Dq , u ( a ) = a Dq , u (b) = 0,

(3.3)

2    3 , 1    2 , and  : a, b → R is a continuous function. In this case, taking p = 2

where

in Theorem 3.1, we obtain the following result. Corollary3.3. Suppose that

2    3 , 1    2 , p  1 , and  : a, b → R is a continuous function.

If (3.3) has a nontrivial continuous solution, b

 (b− 

( s))( 0 -1) ( 0  q ( s) − a) (  -1)  ( s) d q , s −1 then (b − a) ( 0 -1)  b ( - 2) ( -1)   q (  )q ( ) ( b −  ( s )) (  ( s ) − a ) d s  0 q 0 0 q 0 q ,  .  (b − a) (0 -2)  a a

0

q

Taking p = 2 in Corollary3.2, we obtain the following result.

www.ijmrem.com

IJMREM

Page 33


Lyapunov-type inequalities for a fractional q,  -difference…

2    3 , 1    2 , p  1 , and  : a, b → R is a continuous function.

Corollary3.4. Suppose that

If (3.3) has a nontrivial continuous solution, then

b

a

 ( s) d q , s  (b −  0 )

 −1

( 0 − a)

 −1

q (  )q ( )

(b − a) ( 0 -1) (b − a) (0 -2)

−1

b    (b− 0  q ( s))(0 -2) ( 0  q ( s) − a) (0 -1) d q , s  .  a 

IV.

APPLICATIONS TO EIGENVALUE PROBLEMS

In this section, we present some applications of the obtained results to eigenvalue problems.

Corollary 4.1. Let

be an eigenvalue of the problem

 a Dq, ( p ( a Dq, u (t ))) +  p (u (t )) = 0, 0  t  1,       u (0) = Dq , u (0) = Dq , u (1) = 0, a Dq , u (0)= a Dq , u (1) = 0,

(4.1)

2    3 , 1    2 , and p  1 . Then

where

q (2 )  q ( )q ( + 1)      q (  )  q ( − 1)  Proof Let

p −1

.

(4.2)

be an eigenvalue of (4.1). Then there exists a nontrivial solution u = u  to (4.1). Using

Theorem 3.1 with ( a, b) = (0,1) and

 (s) =  , we obtain

1

  (1−   q ( s))(  -.1) (   q ( s)) (  -1) d q , s 0

0

0

 q (  ) q ( )

0

p −1

1− p (1 − 0) ( 0 -.1)  1 ( - 2) ( -1)  . ( 1 −  ( s )) (  ( s )) d s  0 q 0 . 0 q 0 . q ,  (1 − 0) (0 -.2)  0

Observe that 1

 (1−   0

0

q

( s ))( 0 -.1) ( 0  q ( s )) (  -1) d q , s = Bq (  ,  ) ,

q

( s ))(0 -.2) ( 0  q ( s ))(0 -.1) d q , s = Bq ( - 1, ) ,

and 1

 (1−   0

Where

0

Bq is the beta function defined by? 1

B q ( x, y ) = 

0

(

0

 q ( s) )x −1 (1−   q ( s) )y −1 d q , s, x, y  0. 0

Using the identity

Bq ( x, y) =

q ( x)q ( y) q ( x + y)

, 

We get the desired result.

www.ijmrem.com

IJMREM

Page 34


Lyapunov-type inequalities for a fractional q,  -difference…

Corollary 4.2. Let

be an eigenvalue of the problem

 a Dq, ( a Dq, u (t )) + u (t ) = 0, 0  t 1       u (0) = Dq , u (0) = Dq , u (1) = 0, a Dq , u (0)= a Dq , u (1) = 0, where

2    3 , 1    2 , and p = 2 . Then

 

q (2 ) q ( )q ( + 1) q (  )

q ( − 1)

.

Proof It follows from inequality (4.2) by taking p = 2 .

REFERENCE 1.

Bognàr, G, Rontó, M: Numerical-analytic investigation of the radially symmetric solutions for some nonlinear PDEs.Comput. Math. Appl. 50, 983-991 (2005)

2.

Glowinski, R, Rappaz, J: Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. Math. Model. Numer. Anal. 37(1), 175-186 (2003)

3.

Kawohl, B: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1-22 (1990)

4.

Liu, C: Weak solutions for a viscous p-Laplacian equation. Electron. J. Differ. Equ. 2003, 63 (2003)

5.

Oruganti, S, Shi, J, Shivaji, R: Diffusive logistic equation with constant yield harvesting, I: steady-states. Trans. Am.Math. Soc. 354(9), 3601-3619 (2002)

6.

Ramaswamy, M, Shivaji, R: Multiple positive solutions for classes of p-Laplacian equations. Differ. Integral Equ.17(11-12), 1255-1261 (2004)

7.

Liapunov, AM: Probleme general de la stabilite du mouvement. Ann. Fac. Sci. Univ. Toulouse 2,203-407 (1907)

8.

Aktas, MF: Lyapunov-type inequalities for a certain class of n-dimensional quasilinear systems.Electron. J. Differ. Equ.2013, 67 (2013)

9.

Cakmak, D: On Lyapunov-type inequality for a class of nonlinear systems. Math. Inequal. Appl.16, 101 一 108 (2013)

10. Liapunov, AM: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse 2, 203-407 (1907) 11. Aktas, MF: Lyapunov-type inequalities for a certain class of n-dimensional quasilinear systems. Electron. J. Differ. Equ.2013, 67 (2013) 12. Çakmak, D: On Lyapunov-type inequality for a class of nonlinear systems. Math. Inequal. Appl. 16, 101-108 (2013) 13. Hartman, P, Wintner, A: On an oscillation criterion of Liapounoff. Am. J. Math. 73, 885-890 (1951) 14. Arifi, Nassir Al, et al. "Lyapunov-type inequalities for a fractional p-Laplacian equation."Journal of Inequalities&Applications2016.1(2016):189. 15. Cabrera, I, Sadarangani, K, Samet, B: Hartman-Wintner-type inequalities for a class of nonlocal fractional boundaryvalue problems. Math. Methods Appl. Sci. (2016). doi:10.1002/mma.3972 16. Jleli, M, Samet, B: A Lyapunov-type inequality for a fractional q-difference boundary value problem. J. Nonlinear Sci.Appl. 9, 1965 一 1976 (2016)

www.ijmrem.com

IJMREM

Page 35


Lyapunov-type inequalities for a fractional q,  -difference… 17. O'Regan, D, Samet, B: Lyapunov-type inequalities for a class of fractional differential equations. J. Inequal. Appl. 2015,247 (2015) 18. Malinowska A B, Torres D F M. The Hahn Quantum Variational Calculus. J. Journal of Optimization Theory & Applications, 2010, 147(3):419-442. 19. Yizhu Wang,Yiding Liu,Chengmin Hou. New concepts of fractional Hahn's q,  -derivative of Riemann-Louville type and Caputo type and applications. J. Advances in Difference Equations. December 2018, 2018:292

www.ijmrem.com

IJMREM

Page 36


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.