ARCH 672 MCGILL SCHOOL OF ARCHITECTURE
MORE THAN WASTE Reclamation Collective de La Mitis Team D Yasaman Arjomand, Genna Kalvaitis, Daniel Kuzev, Joshua MacDonald, Timothy Perkins, & Keyan Ye
ARCH 672
2
“Waste is material without identity” T.M. Rau Chairmain of the Madaster Foundation
RECLAMATION COLLECTIVE
INDEX Table of Contents
Illustrated Glossary
4
THESIS
8
01 RISK
10
07 BUILDING COMMUNITIES
104
12 14 16 18 20 22
Wood Harvesting Practice Tree Processing Fabrication Guide - Wood Fabrication Guide - Plastic
106 108 114 122
Climate Risk Transportation Risk Waste Land Risk Technical Landfill Location Waste Management in Canada Regional Map 02 SHORT LOOPS POLICY
24
Short Loops Policy Pre-Policy Regional Map Post-Policy Regional Map
26 34 36
03 RECLAMATION STRATEGY
38
04 SYNCING DESIGN WITH PULSING CYCLES Syncing Design with Pulsing Cycles Disturbance Pulsing Cycles (Concrete, Wood, Plastic) 05 SYNCING DESIGN WITH BUOYANCY VENTILATION Illustrated Glossary Climate Risk & Thermal Mass Thermal Mass Selection (Concrete, Wood, Plastic) Thermal Mass Comparison
40 42 44 50 52 56 58 60
68 70 72 74 82
06 RECLAMATION COLLECTIVE DE LA MITIS
84
Brownfields Building Rehearsal Short Span Scalability and Thermal Mass
86 88 96
98 100 102
08 WASTED POTENTIALS
128
Wasted Transportation Wasted Time Wasted Heat Wasted Material
130 131 132 133
Appendix
134 3
Locating Recovery Sites Recovery Site Operation Triage Sequence (Concrete, Wood, Plastic) Reclamation Collective Transportation Impact (Wood, Plastic)
Thermal Mass Details Assemblage of People Assemblage of Things
ARCH 672
ILLUSTRATED GLOSSARY Waste management terminology
PGMR Each MRC is required, in accordance with the Environment Quality Act, establish its Residual Materials Management Plan (Plan de gestion des matières résiduelles - PGMR). The PGMR is therefore a legal document that plans the management of residual materials for a period of five years.
Plan de gestion des matières résiduelles MRC de La Mitis 2016 – 2020 MRC de La Mitis
LET
4
Solid waste landfill site with seepage-proof walls and a treatment system for contaminated liquid called leachate. These burial sites must follow a specific protocol established by the Ministry of Environment and are a new generation of landfills replacing previous open-air dumps.
Ecocenter Physical space where users voluntarily bring residual materials, bulky items such as wood, green waste, metal, small and large appliances, etc., to the site. As much as possible, the materials brought in are redirected towards reuse, recycling or valorization, otherwise they are eliminated.
SÉMER Natural treatment of organic waste which leads to a combined production of gas convertible into energy (biogas), resulting from the biological decomposition of organic matter in an air-scarce environment (called “anaerobic fermentation”) and a digestate, which can be used raw or after treatment (dehydration and composting, hygienization) as compost.
300, avenue du Sanatorium Mont-Joli (Québec) G5H 1V7 Tél. : (418) 775-8445 Télécopieur : (418) 775-9303 Courriel : mrcmitis@mitis.qc.ca
Adoption le 14 septembre 2016 En vigueur le 21 janvier 2017
Plan de Gestion des Matières Résiduelles - MRC de La Mitis
2016-2020
RECLAMATION COLLECTIVE
Non-scalability Progress itself has often been defined by its ability to make projects expand without changing their framing assumptions. This quality is “scalability.” But it takes hard work to make knowledge and things scalable, and the nonscalability theory shows that ignoring nonscalable effects is a bad idea. (Anna Lowenhaupt Tsing)
Brownfield
Site remediation Is the process of removing contaminated or polluted soil, sediment, grey water in order to minimize negative impacts on people or the environment. The revalue potential of TAD brownfields in Bas-Saint-Laurent is calculated based on vegetation cover, topography, stoniness, area and contiguous land use.
Triage at source Operations involving the separation of waste in categories based on type, size, processing techniques, etc by the waste producers themselves. This system takes place close to the source and the moment of production.
5
In Bas-Saint-Laurent, devalued agriculture land (TAD) is a type of brownfield where agriculture activities have stopped for one year to over ten years. The region is facing an accentuation of agriculture land decline, despite a certain dynamism in the industry. Most of these brownfields are in an advanced state of abandonment.
ARCH 672
ILLUSTRATED GLOSSARY Construction and reclamation terminology
Small span The typological and structural configuration of the reclamation collective La Mitis building consist of a long span and short span structures, the latter nested in the former. Their material, structural and heat relationships contribute to accommodation of future uses. Small span = 5-8 meters
6
Long span The typological and structural configuration of the reclamation collective La Mitis building consist of a long span and short span structures, the latter nested in the former. Their material, structural and heat relationships contribute to accommodation of future uses. Long span = 20-30 meters
Live edge Is the natural edge of the wood that has been intentionally left on the piece of lumber as a design decision. This portion of the tree is often seen as a wood residue in conventional woodworking.
Embodied carbon The amount of carbon absorbed by the material in comparison with the carbon emissions required for manufacturing, processing and transporting the material determines if it is a carbon emitter or absorber.
RECLAMATION COLLECTIVE
Glossary
List of important expressions
DfD Design for deconstruction/disassembly is a practice that (DfD) Design for deconstruction/disassembly focuses on design solutions that facilitate substitution, List of expressions is a practice that focuses on design solutions that List of important important expressions removal and reuse of building and materials List ofcomponents important expressions facilitate substitution, removal and reuse in of building List of important components and expressions materials in aofbuilding a building system. DfD solutions regard all levels detailsystem. DfD solutions regard all levels of detail in the building, from in the building, from distinct components, sub-assemblies, distinct components, sub-assemblies, assemblies assemblies to the whole building systems. to the whole building systems (Fig. 1.01). A similar Design for deconstruction/disassembly (DfD)
Glossary Glossary Glossary
BAMB is a project developing strategies for the circular economy in the built environment by creating ways to increase the value of building materials. Major tools enabling this are the Materials Passports and Reversible Building Design. 6
Fig. 1.01 — Design for disassembly,
Fig. own Fig. 1.01 1.01 — — Design Design for for disassembly, disassembly, own illustration illustration 1.02 — Design for disassembly, reuse, own illustration Fig. 1.01 own illustration Fig. 1.01 — Design for disassembly,
Fig. Fig. 1.02 1.02 — — Design Design for for reuse, reuse, Fig. 1.02 — Design for reuse,
own illustration
own own illustration illustration own illustration
Fig. for downcycling reuse, ownand illustration Fig. 1.02 1.03 — — Design Recycling, upcycling symbols, own illustration
Fig. Fig. 1.03 1.03 — — Recycling, Recycling, downcycling downcycling and and upcycling upcycling symbols, symbols, Fig. 1.03 — Recycling, downcycling and upcycling symbols, own illustration own illustration Recycling Downcycling own illustrationUpcycling Fig. and upcycling Fig. 1.03 1.04 — — Recycling, Reuse and downcycling disposal symbols, own symbols, illustration own illustration
Reuse
Disposal
Fig. Fig. 1.04 1.04 — — Reuse Reuse and and disposal disposal symbols, symbols, Fig. 1.04 — Reuse and disposal symbols,
own own illustration illustration own illustration
Fig. 1.04 — Reuse and disposal symbols,
own illustration
Fig. 1.05 — Building As Material Banks,
own illustration
Fig. Fig. 1.05 1.05 — — Building Building As As Material Material Banks, Banks, Fig. 1.05 — Building As Material Banks,
own own illustration illustration own illustration
Fig. 1.05 — Building As Material Banks,
own illustration
Appendix A — Towards zero-waste buildings: Building design for reuse and disassembly 6 6 6 6
own illustration
7
Design for deconstruction/disassembly (DfD) Design for deconstruction/disassembly (DfD) expression used: Reversible building design. is a practice that focuses on design solutions Design for deconstruction/disassembly (DfD)that is a practice that focuses on design solutions that is a practice that focuses on design solutions that Design for reuse facilitate facilitate substitution, substitution, removal removal and and reuse reuse of of building building facilitate substitution, removal and reuse of building components and materials in a building system. is a practice that focuses on design solutions thatDfD Is intended asand applying suchindesign principles components materials a building system. DfD components and materials in a and building system. DfD Design for reuse solutions regard levels of in the building, facilitate substitution, removal ofreuse building that aim for usingall materials and offrom solutions regard allreclaimed levels of detail detail inreuse the building, from solutions regard all levels of detail in the building, from distinct components, sub-assemblies, assemblies components and materials in a building system. DfD components and materials. Design forassemblies reuse applied distinct components, sub-assemblies, distinct components, sub-assemblies, assemblies to the whole building systems (Fig. 1.01). A similar solutions regard all levels of detail in the building, together withbuilding the DfD systems principles ensures the to the whole (Fig. 1.01).reaching A similarfrom to the whole building systems (Fig. 1.01). A similar Is intended as applying such design principles that aim for expression used: Reversible building design. distinct components, sub-assemblies, assemblies circular economy in the built environment. expression used: Reversible building design.(Fig. 1.02) used: Reversible building design. to thereuse whole building systems (Fig.and 1.01). A similar using reclaimed materials expression and of components Design for reuse expression used: Reversible building design. Recycling, Downcycling Design for Upcycling, reuse for reuse materials. Design for reuseDesign applied together with the DfD Is intended as applying such principles Are forms of reprocessing recycling Is intended asmaterial applying such design designwhere principles Design for reuse Is intended as applying such materials design principles principles ensures reaching the circular economy in the built that aim using reclaimed and reuse represents preservation value and quality, unlike that aim for forthe using reclaimedof materials and reuse of of that aim for using reclaimed materials and reuse of components and materials. Design for reuse Is intended as applying such design principles environment. downcycling,and thatmaterials. is associated withfor a loss of applied these components Design reuse applied components and materials. Design for and reuse applied together with the principles ensures reaching the that aim for using reclaimed materials reuse ofby properties. The lastDfD term upcycling is represented together with the DfD principles ensures reaching the together withand thematerials. DfD principles ensures reaching the circular economy in the built environment. (Fig. 1.02) components Design for reuse applied creativeeconomy solutions in where the material use results in circular the built environment. (Fig. 1.02) circular economy in theprinciples built environment. (Fig. 1.02) together with the DfD ensures reaching the a product with higher value, than the original, often Recycling, Upcycling, Downcycling circular economy in use the built environment. (Fig. 1.02) Recycling, Upcycling, Downcycling associated with the of waste as a resource. Recycling, Upcycling, Downcycling Are material reprocessing recycling Commonly used symbols are shownwhere in (Fig. 1.03). Are forms forms of of material reprocessing where recycling Recycling, Upcycling, Downcycling Are forms of material reprocessing wherequality, recycling represents the represents the preservation preservation of of value value and and quality, unlike unlike Recycling, Upcycling,Buildings Downcycling represents preservation of value quality, unlike Material Banks downcycling, that with aaand loss of Are forms As ofthe material reprocessing downcycling, that is is associated associated withwhere lossrecycling of these these downcycling, that isterm associated withisaand lossquality, of these properties. The last upcycling represented by represents the preservation of value BAMB is a project strategies for the unlike properties. The lastdeveloping term upcycling is represented by properties. Thethat lastwhere term upcycling isarepresented by creative solutions the material use results in downcycling, is associated with loss of these Are forms of material reprocessing where recycling represents circular the built environment by creating creativeeconomy solutions in where the material use results in creative solutions where the than material use results inby aways product with higher value, the original, often properties. The last term upcycling is represented to increase the value ofthan building materials. Major a product withunlike higher value, the original, often the preservation of value and quality, downcycling, aassociated product with higher value, than theresource. original, often with the use of waste as creative solutions where material use results in tools enabling are Materials and associated withthis the usethe ofthe waste as aaPassports resource. associated with the usevalue, ofare waste as ain resource. Commonly used symbols shown (Fig. 1.03). that is associated with a loss of these properties. The last aCommonly product with higher than the often Reversible Building Design. BAMB (2016). used symbols are shown inoriginal, (Fig. Title: 1.03). Commonly usedthe symbols are shown (Fig. 1.03). associated with use of waste as ain resource. About Retrieved from www.bamb2020.eu/ term upcycling is represented byBAMB, creative solutions where the Buildings As Material Banks Commonly used symbols are shown in (Fig. 1.03). Buildings As Material Banks about-bamb/ Buildings As Material Banks material use results in a product with higher value, than the BAMB is project developing strategies BAMB is aaAs project developing strategies for for the the Buildings Material Banks BAMB iseconomy ause project developing strategies for thecreating circular in the built environment original, often associated with the of waste as a resource. circular economy in the built environment by by creating circular economy in the built environment ways value materials. Major BAMB a projectthe developing strategies forby thecreating ways to toisincrease increase the value of of building building materials. Major ways to economy increase the value of environment building materials. Major tools enabling this are the Materials Passports and circular in the built by creating tools enabling this are the Materials Passports and tools enabling this are the Materials Passports and Reversible Building Design. BAMB (2016). Title: ways to increase the value of building materials. Reversible Building Design. BAMB (2016). Title:Major Reversible Building Design. BAMB (2016). Title: About BAMB, from www.bamb2020.eu/ tools enabling this are the Materials Passports and About BAMB, Retrieved Retrieved from www.bamb2020.eu/ About BAMB, Retrieved fromBAMB www.bamb2020.eu/ Reversible Building Design. (2016). Title: Buildings as Material about-bamb/ Banks about-bamb/ about-bamb/ About BAMB, Retrieved from www.bamb2020.eu/ about-bamb/
Contextual map of la municipalité (MRC) de La Mitis
MRC de La Mitis
THESIS Inland, reaching from the southern banks of le Fleuve Saint-Laurent, across crop fields and unsettled forest territory, la municipalité (MRC) de la Mitis is home to over eighteen thousand inhabitants. Situated 550 kilometers north of Montreal, the realities of remoteness pose many challenges to the regional communities. The steady risk of localized erosion is fueled by the global climate crisis. This condition amplifies the urgency to design robust waste systems. Eventual inland retreat is a harsh reality, and the fate of vulnerable infrastructure requires thoughtful care. Wasted systems and materials lack purpose and are left idle. They are not, however, devoid of usefulness. This project aims to design localized reclamation strategies, expanding on the municipalities ambitious waste management plan, to tap the unharnessed potential of three main waste streams: concrete, wood, and plastic.
Climate change, architecture change (K. Moe)
1
RISK
ARCH 672
CLIMATE RISK Coastal erosion
12
The risk of global climate change is especially pronounced along the south shore of Le Fleuve SaintLaurent. This change is evident in fluctuating storm intensity and sea-level rise along the coast, resulting in rapid unpredictable movement of soil, or coastal erosion. The vulnerable settlements along the shoreline require thoughtful design for this precarious future.
High risk Medium risk Low risk MRC de La Mitis
RECLAMATION COLLECTIVE
13
Coastal homes in La Mitis
Inland agriculture land in La Mitis
ARCH 672
TRANSPORTATION RISK Long loops
14
Located 550 kilometers north of Montreal, the remoteness of la municipalité (MRC) de la Mitis poses many challenges for the local communities. Waste management facilities exist primarily outside of the MRC resulting in exported materials and jobs to other municipalities. Sourcing construction materials, even regional material such as lumber, are bound up in long transportation loops due to remote processing facilities.
SÉMER Riviere-du-Loup Technical landfill (LET) Mass timber manufacturer Roadways MRC de La Mitis
RECLAMATION COLLECTIVE
15
Highway 132 through Sainte-Luce
Lumber transportation truck
ARCH 672
WASTE LAND RISK Landfill siting and remote facility dependency
16
At present, the MCR de La Mitis transports around 5,350 tons annually to the technical landfill (LET) in Rivière-duLoup. While the transfer Ecocenter of La Mitis in Mont-Joli acts as a intermediary recovery point to divert waste material, the current reliance on burying waste material under the earth is unsustainable. This risk is further intensified considering the volatile effect of global climate change on the land in the region, particularly coastal land.
High risk Medium risk Low risk SÉMER Riviere-du-Loup Technical landfill (LET) Mass timber manufacturer MRC de La Mitis
RECLAMATION COLLECTIVE
17
LET Rivière-du-Loup (123km from Mont-Joli)
LET Rivière-du-Loup (123km from Mont-Joli)
ARCH 672
TECHNICAL LANDFILL LOCATION Proximity to coast and bodies of water
18
2013
LET Rivière-du-Loup (123km from Mont-Joli)
2013
LET Matane (59km from Mont-Joli)
2020
2020
RECLAMATION COLLECTIVE
19
LET Témiscouata (160km from Mont-Joli)
LET Rimouski-Neigette (40km from Mont-Joli)
2 KM
ARCH 672
WASTE MANAGEMENT IN CANADA Current statistics Current waste management practice in Canada is heavily reliant on landfill waste disposal. As of 2016, 73% of solid waste was disposed of in landfills or incinerated. Of the solid waste produced, both wood and plastic produce 11% and 13% of the national residual waste composition.
Textiles (degradable) 1% Yard and garden 4% Diapers and pet waste 6%
Rubber and leather 1% Other organics 7%
Plastics, 13% Wood 10% Non-degradable 36%
Paper 11%
Building materials, 9%
20
Metals, 3% Glass, 2% Food 23%
National average composition of residual waste by percentage (2016)
Use of materials and construction and demolition waste generation in the life cycle of buildings
Total other, 9% (including electronics, household hazardous, bulky objects)
RECLAMATION COLLECTIVE
“L’objectif, c’est la consommation dans un ciruit court et la disposition dans un circuit court”
Pierre D’Amours Amqui Mayor
21
“The goal is to contain consumption in a short loop and disposal in a short loop.”
ARCH 672
REGIONAL MAP External transportation flows
22
Key Map
RECLAMATION COLLECTIVE
23
Legend Waste facilities LET Ecocenter Industry Concrete Lumber Material deposits Existing deposits Recovery sites
Transportation flows Airport Ferry terminal Ferry pathway Railway Highway Secondary road MCR de La Mitis Municipality Agriculture land
5 KM
2e Rang E from Mont-Joli to Ste-Luce
2
SHORT LOOPS POLICY To rejuvenate land-based practices around landfills and end-of-life burial, a policy must be implemented to normalize reclamation of so-called ‘residual materials’ for the municipality. As stated by Amqui mayor Pierre D’Amours, “The goal is to contain consumption in a short loop and disposal in a short loop.” This stance reframes residual matter as a resource rather than a by-product, never really exiting that consumption loop. The policy framework unfolds in three phases where the immediate action taken is the implementation of intermediary hyper-local recovery sites. This system is gradually followed by a territorial internalization of burial operations and data collection for an inventory in order to stabilize recovery outlet markets. This response to climate, transportation and burial land risks is a strategy about self-sufficiency that is simultaneously activating landscape healing.
ARCH 672
SHORT LOOPS POLICY Residual matter generators The movement of residual matter sent for recycling or disposal is increasing in Quebec and regions like La Mitis in Bas-Saint-Laurent are no exception. In order to counter climate change and greenhouse emissions as well as other nuisances through transportation, it is suggested that provisions be integrated to reduce as much as possible the circulation of waste or recovered materials on Quebec roads, especially when it comes to exports. For example, support could be provided for the creation of markets and short-distance outlets in the regions for reuse and recycling. See Appendix B — Politique québécoise de gestion des matières résiduelles: Plan d’action 2019-2024)
26
Sainte-Luce-sur-Mer
LET Rimouski-Neigette (27 km) LET Rivière-du-Loup (111 km) Usine de biométhanisation SÉMER (110 km)
Tourism In
RECLAMATION COLLECTIVE
Écocentre de La Mitis (16 km) LET Matane (73 km)
Construction Industry
ndustry
Lumber Industry
Agriculture Industry
Luceville
1 KM
ARCH 672
2020 Triage at source The operations involved in the process of recovery and reclamation of residual materials must require intermediary sites of recovery within each municipality of the MRC de La Mitis. It reduces the residual matter travel distances to under 10 km and the number of overall trips needed. These recovery sites are a triage at source system for concrete, wood and plastic materials to be sorted and deviated from landfills an elimination sites. See Appendix C — Quebec Environment Quality Act 53.30
28
Recovery Site I
RECLAMATION COLLECTIVE
Reclamation Collective
Recovery Site III
Recovery Site II
1 KM
ARCH 672
2020
2040
Triage at source
Prohibition of external dumping and incineration
The operations involved in the process of recovery and reclamation of residual materials must require intermediary sites of recovery within each municipality of the MRC de La Mitis. It reduces the residual matter travel distances to under 10 km and the number of overall trips needed. These recovery sites are a triage at source system for concrete, wood and plastic materials to be sorted and deviated from landfills an elimination sites.
The operations involved in the municipal, residential, commercial and industrial dumping and incineration of residual matter must not be managed by an organization or facility outside of the municipality territory. The boundary of this territory should follow the administrative area determined by the most recent version of the ‘Plan de gestion des matières résiduelles’.
See Appendix C — Quebec Environment Quality Act 53.30
See Appendix C — Quebec Environment Quality Act 53.25
30
Recovery Site I
RECLAMATION COLLECTIVE
Reclamation Collective
Recovery Site III
Recovery Site II
1 KM
ARCH 672
2020
2040
206
Triage at source
Prohibition of external dumping and burial
Inven
The operations involved in the process of recovery and reclamation of residual materials must require intermediary sites of recovery within each municipality of the MRC de La Mitis. It reduces the residual matter travel distances to under 10 km and the number of overall trips needed. These recovery sites are a triage at source system for concrete, wood and plastic materials to be sorted by size and type and deviated from landfills an elimination sites.
The operations involved in the municipal, residential, commercial and industrial dumping and incineration of residual matter must not be managed by an organization or facility outside of the municipality territory. The boundary of this territory should follow the administrative area determined by the most recent version of the ‘Plan de gestion des matières résiduelles’.
The o system collec fluctu provi destin This c outle
See Appendix C — Quebec Environment Quality Act 53.30
See Appendix C — Quebec Environment Quality Act 53.25
See Ap
32
Recovery Site I
RECLAMATION COLLECTIVE
60
ntory database
operations involved in the triage at source m of local recovery sites and reclamation ctive must collect data on the circulation and uation of residual matter. This inventory should ide information on the origin, nature, quantity, nation and mode of recovery. collection of data will help stabilizing recovery et markets.
Appendix C — Quebec Environment Quality Act 53.9 Reclamation Collective
Recovery Site III
Recovery Site II
1 KM
ARCH 672
PRE-POLICY REGIONAL MAP External transportation flows
34
Key Map
RECLAMATION COLLECTIVE
35
Legend Waste facilities LET Ecocenter Industry Concrete Lumber Material deposits Existing deposits Recovery sites
Transportation flows Airport Ferry terminal Ferry pathway Railway Highway Secondary road MCR de La Mitis Municipality Agriculture land
5 KM
ARCH 672
POST-POLICY REGIONAL MAP Internal transportation flows
36
Key Map
RECLAMATION COLLECTIVE
37
Legend Waste facilities LET Ecocenter Industry Concrete Lumber Material deposits Existing deposits Recovery sites
Transportation flows Airport Ferry terminal Ferry pathway Railway Highway Secondary road MCR de La Mitis Municipality Agriculture land
5 KM
Proposed recovery sites throughout municipalities centers
3
RECLAMATION STRATEGY Through localizing reclamation, the project intends to cultivate a new relationship with waste. The design is comprised of two collaborative elements; (1) the provision of local recovery sites, which fuel (2) a reclamation collective built to transform wasted potential and cultivate knowledge. The strategic integration of recovery sites within municipality zones with high communal activities triages material at the source of production. Reclaimed waste is collected in material-specific containers, recovered in the local reclamation collective building and send back to the community as reusable construction materials. The design of the reclamation collective exemplifies the potential of construction of a building and the process of ‘building’ utilizing waste resources. Over time, this system will become a market driver for new economies that grow from the continued harvesting of ‘more than’ waste material. Reducing wasted energy and reclaiming wasted matter will refuel the social, environmental, and economic landscape of the La Mitis community.
ARCH 672
LOCATING RECOVERY SITES Community buildings in Sainte-Luce The first part of the reclamation strategy is the provision of recovery sites within each town in the MRC de La Mitis, to collect and sort waste material to be reclaimed. The recovery sites should be located near heavily trafficked areas of the community and near existing material deposit sites where possible.
40
The images below highlight community buildings along the Rue des Érables in Sainte-Luce where a recovery site could be situated.
Grocery Store
Canada Post
RECLAMATION COLLECTIVE
41
Pharmacy
Material Depot
ARCH 672
G M
RECOVERY SITE OPERATION Exemplary recovery site in Sainte-Luce Intermediary sites of recovery within each municipality of the MRC de La Mitis should be centrally located and coupled with existing material depots where possible.
Can
Pha r ada
ma
Pos t
cy
42
These recovery sites collect and sort concrete, wood and plastic waste materials at the source. Material is then collected from the recovery sites and transported to the reclamation collective (refer to page 44 of the manual). This reduces the residual matter travel distances to under 10 km and the number of overall trips needed.
Exi s dep ting m ot ate r
ial
Recovery Site Sainte-Luce
e tiv
on
ati
t
m cla e oR
c lle o C
RECLAMATION COLLECTIVE
Gro Ma cery S rch é R tore iche lieu
e Ru
s ble a r sE
de
43
e
y wa l i a
R
m Lu
ber
rd ya
ARCH 672
TRIAGE SEQUENCE Concrete
Concrete mix Cement 10 to 15 %
Wa 15 to
Concrete mix
44
Cement
Wind turbines reduced to powder (75% fiberglass)
Verrox recycled glass
Wa
10 to 15 %
15 to
Alternatives
Altern
Fly ash (coal pulveriser unburned residue)
Cured Solid sand granule + cured
RECLAMATION COLLECTIVE
CO N C R E T E
x composition
20 %
Aggregates
WO O D
ater
60 to 75%
P L A ST I C
x alternatives
ater
Aggregates
20 %
60 to 75%
natives
Alternatives
di cement + es (less water d CO2)
Recycled at risk road infrastructure (ex: Route 132)
Recycled at risk protection infrastructure (ex: seawalls)
Crushed wind turbines (20 to 25 years lifespan)
ARCH 672
TRIAGE SEQUENCE Wood Wood
Glued or painted wood (non halogenorganic compounds or
Untreated
mechanica
wo
46
preservatives)
Agglomerates
Laminated flooring
Clapboard
Wood with na
(melamine, plywwod)
Plain-sa
RECLAMATION COLLECTIVE
CO N C R E T E
waste
ally treated
including halogen-
ood
organic compounds
ails or pallets
Structural members
awn cuts
PCB treated wood
P L A ST I C
Contaminated wood,
WOOD
d or only
Quartersawn cuts
Rift-sawn cuts
Standard beam
Irregular beam
dimensions
dimensions
Mass timber pieces
ARCH 672
TRIAGE SEQUENCE Plastic
Plastic
1
2
3
PET
PE-HD
PVC
Polyethylene
Polyethylene
Polyvinyl chloride
terephthalate
(high density)
Water bottles and
Containers for pesticides
soft drink bottles
and fertilizers
4
PE-
Polyeth
48
(low de
Textile fibers
Bottles (milk, detergent)
Pipes
Silage p
Mu
Covers for g
RECLAMATION COLLECTIVE
CO N C R E T E
c waste
5
6
7
-LD
PP
PS
Others
Polypropylene
Polystyrene
Bisphenol A and others
Seed bags
Sowing trays
Maple syrup tubes
Packaging films
Coffee glasses
18 liter reusable water
hylene
WO O D
4
ensity)
ulch
greenhouses
P L A ST I C
plastic
bottles
Plugs for bottles
Vegetable trays
Ketchup bottles
ARCH 672
RECLAMATION COLLECTIVE Transform wasted potential and cultivate knowledge
50
The design of the reclamation collective exemplifies the potential of construction of a building and the process of ‘building’ utilizing waste resources. Over time, this system will become a market driver for new economies that grow from the continued harvesting of ‘more than’ waste material. Reducing wasted energy and reclaiming wasted matter will refuel the social, environmental, and economic landscape of the La Mitis community.
Reclamation Collective system as a driver of economy and community
RECLAMATION COLLECTIVE
51
Lendager Group
Precious Plastic
ARCH 672
TRANSPORTATION IMPACT Wood
Initial Building of Reclamation Collective
52
During the initial build of the Reclamation collective, the primary source of lumber will be harvested from various forest stands. The introduction of recovery sites will begin to reclaim waste lumber. These materials will at first be routed through the Ecocenter in Rimouski, providing reclaimed lumber to a local mass timber manufacturer, like Art Massif, to produce composite panels.
RECLAMATION COLLECTIVE
CO N C R E T E
Fully Operational Reclamation Collective
Raw/product material flow Recovered material flow
WOOD
Once the Reclamation center is fully operational and the large span is built, recovered waste wood will be collected at many hyper-local recovery sites and transport it directly to the Reclamation collective. The goal for the collective is to invest in the equipment to produce DLT and CDLT panels on site, localizing the wood production.
Legend
Secondary material flow
P L A ST I C
ARCH 672
TRANSPORTATION IMPACT Plastic
Initial Building of Reclamation Collective
54
Prior to the full operation of the Reclamation collective, the majority of plastic waste ends up in technical landfills (located in Rivière-du-Loup). Certain plastic types, such as plastic used in maple syrup production is recycled at the Ecocenter in Rimouski. The introduction of recovery sites within La Mitis will begin plastic waste reclamation.
RECLAMATION COLLECTIVE
CO N C R E T E
Fully Operational Reclamation Collective
Raw/product material flow Recovered material flow
WO O D
Once the Reclamation collective is fully operational and is producing reclaimed plastic products, the goal is to divert 100% of plastics from the landfills. A small portion will still recycle via the Ecocenter in Rimouski, and the bulk of the waste will be reclaimed by the recovery sites and produced into new product at the Reclamation collective for new buildings.
Legend
Waste material flow
P L A ST I C
Spruce budworm outbreaks happen in Bas-Saint-Laurent every 30 years
4
SYNCING DESIGN WITH PULSING CYCLES The non-scalable relationship of virgin natural resources to soil, air, and other living species makes them subject to pulsing cycles of disturbances. The three reclaimable materials under analysis are part of a larger network of idle waste streams existing in the region. Once understood as a resource, they are also governed by disturbances cycles that urge for adaptability in design. In the context of climate change, architecture must work with new parameters such as weather-marine conditions, forest budworm epidemics, coastal relocation, local agriculture and tourism plastic consumption. This project offers new perspectives towards change by introducing the concept of syncing the building sequence with pulsing cycles.
ARCH 672
SYNCING DESIGN WITH PULSING CYCLES Architecture of adaptability “Disciplines like fluid dynamics and ecology that are habitually thought to be outside the discipline of architecture — left as externalities to building — but are nonetheless inextricable to our actual environments and their role in our lives. [...] So much is changing daily, monthly, and annually in our world in social, ecological, and political terms. Architecture must learn to change accordingly”.
58
— K. Moe, R. Elkin, S. Craig
High tides in Bas-Saint-Laurent
La route des phares
RECLAMATION COLLECTIVE
59
Agriculture silage bags
Spruce budworm epidemic
ARCH 672
DISTURBANCE PULSING CYCLES Alternatives for concrete aggregates
Bas-Saint-Laurent
1,3 km of roads at risk 28% of littoral with seawalls
MRC de La Mitis Protection infrastructure Road infrastructure at risk
0m
60
Protection infrastructure
Coastal road infrastructure
*Coastal erosion risk is a combination of predicted and obse
periodically produce abnormal exceeding of predicted water Appendix D — Impacts of the storm of December 6, 2010:
RECLAMATION COLLECTIVE
CO N C R E T E WO O D
14 m 12 m
P L A ST I C
10 m 8m 4m
6m
2m
22 m
24 m
erved water levels which corresponds to weather-marine conditions (wind, pressure) and astronomical factors (tides) which can
r levels. Climate change is a constant risk which can make these episodes more and more frequent. Analysis report volume I
ARCH 672
DISTURBANCE PULSING CYCLES Preferred new harvest trees
Bas-Saint-Laurent
447 817 ha of vulnerable stands affected by budworm epidemics
MRC de La Mitis Jack pine budworm Western spruce budworm
62
Eastern spruce budworm
Major conifer-feeding budworms in North America
Preve
Harvesting of the m
the epidemic and
durin
RECLAMATION COLLECTIVE
CO N C R E T E WOOD
vulnerable stands
entive harvesting
most vulnerable stands before
d of damaged but alive stands
ng the epidemics.
vulnerable stands
P L A ST I C
Before epidemics
During epidemics
damaged & alive
dead trees
Salvage Harvesting stands with a variable proportion of dead trees during the epidemics.
ARCH 672
SYNCING DESIGN WITH PULSING CYCLES Wood
90 % New Harvest 10 % Virgin wood waste +
60 % New Harvest 40 % Virgin wood waste +
Recycled wood waste
Recycled wood wast
2021-2030 B. Panel composition in fabrication of large span
64
2020 A. Panel composition in fabrication of small span
A
R
Damaged trees (black spruce, Yellow Birch, Red Maple), municipal infrastructure Duration: 1 month / Periodicity: More and more frequent
R
Untreated wood, painted wood, floating floor, clapboard, agglomerates, etc. Duration: 1 month / Periodicity: More and more frequent
V
Douglas Fir, Grand Fir & White spruce trees of varying ages Duration: 4 years / Periodicity: Every 30 years
V
Jack pine, Red pine trees of varying ages Duration: 2-6 years / Periodicity: Every 15 years
V
Balsam Fir, White, Red & Black spruce trees of varying ages Duration: 9 years / Periodicity: Every 42 years
Virgin Wood Waste _ Recycled Wood Waste
0 YRS
5
10
15
20 YRS
25
RECLAMATION COLLECTIVE
CO N C R E T E WOOD
+ te
10 % New Harvest 90 % Virgin wood waste +
Recycled wood waste
Recycled wood waste
2031-2040 C. Panel composition in fabrication of panel production for other construction projects
B
C
2041-Onwards D. Panel composition in fabrication of panel production for other construction projects
D
D
Episodic Storm Damage
Relocation of coastal homes
Western spruce budworm
Jackpine budworm
Eastern spruce worm
30
35
40 YRS
45
50
55
60 YRS
65
70
75
80 YRS
P L A ST I C
40 % New Harvest 60 % Virgin wood waste +
ARCH 672
DISTURBANCE PULSING CYCLES Plastics
465 t
100 t 330 t
555 t
755 t 380 t 425 t
1880 t
Bas-Saint-Laurent
1265 tons of agricultural plastics produced yearly
1040 t 1025 t
MRC de La Mitis High production of agricultural plastics Medium production of agricultural plastics
66
Low production of agricultural plastics
Agriculture lands organized in seigneuries
Appendix E — Étude sur les plastiques agricoles générés au Québec
Influx
T, D Films, textile fibers, bottles (water, soft drinks), medicine containers, etc. A Containers for pesticides, fertilizers, harvest containers, nets, etc. T, D Bottles (milk, detergent), tubs, garbage cans, pipes, children’s toys, etc. A Old tubings, drip irrigation tubes T, D Coatings, windows frames, pipes, garden hoses, etc. A Plastics used for silage, grain bags, cover for greenhouses, mulch, tunnels, etc. T, D Shopping and garbage bags, stretch films, films packaging, etc. A Twines, seed bags and castings, horticultural equipment, etc. T, D Packaging films, rigid bottles, plugs for bottles, ropes, strings, etc. A Sowing trays T, D Coffee glasses, trays, beer glasses, mushroom trays, etc. A Flashlights and fittings, maple syrup plastic T, D 18 liter reusable water bottles, ketchup bottles
Agriculture Waste _ Tourism _ Domestic Waste
JAN
FEB
MAR
APR
MAY
RECLAMATION COLLECTIVE
CO N C R E T E WO O D P L A ST I C
Influx
JUN
JUL
Influx
AUG
SEPT
Influx
OCT
NOV
DEC
JAN
Interior Air
Exterior Air
Hot air driven out at top
Height
Neutral point — no flow (in absence of wind)
Cold air driven in at base
Pressure
Buoyancy ventilation (see ‘Physics of hot air’ lecture by Shaun Fitzergald)
5
SYNCING DESIGN WITH BUOYANCY VENTILATION In our warming climate, design must function in sync with seasonal or daily temperature fluctuations to reduce the dependence on mechanical heating and air conditioning. The project tackles invisible waste streams such as wasted heat and wasted potential for a projected 2080 low-carbon future, where projected summer temperatures surpass 38 C. The introduction of a thermal mass in the building stores heat to dampen extreme temperature fluctuation. The mass is coupled with buoyancy ventilation in a natural thermal feedback cycle, driven by the daily swing of ambient temperature. This way, the primary material controls the structure, temperature, and ventilation. Most construction materials are inherently work as a thermal mass if sized properly. This building provides a scalable construction framework that mitigates dangerously high temperatures, dependence on air conditioning, and the carbon footprint in construction.
ARCH 672
ILLUSTRATED GLOSSARY Buoyancy ventilation terminology
Dampening Coefficient Dampening coefficient ranges from 0.0 to 1.0 and it refers to the reduction of maximum temperature during a heat wave. During a day with a high of 30C, a low of 10C and average temperature of 20C, a dampening coefficient of 0.5 reduces interior temperatures from 30C to 20C without the need for air conditioning.
Q-Value
70
In a building, each person requires 10L of fresh air per second. That is, Q=0.01m3/s. Therefore, when the ventilation rate is Q={0.1, 1, 10}m2.sm there is enough air for approximately {10, 100, 1000} people.
Buoyancy Ventilation Buoyancy ventilation naturally results from temperature difference between interior and exterior air. As warm air is less dense and therefore lighter, it rises above cold air. This creates an air movement within a building which can be harnessed.
Thermal Mass In a building, thermal mass enables the storage of heat in order to dampen temperature fluctuations. Thermal mass absorbs heat during the day and slowly releases it during the night.
For more in depth explanation regarding the above-mentioned definitions refer to: Craig, Salmaan. 2019. “The Optimal Tuning, Within Carbon Limits, of Thermal Mass in Naturally Ventilated Buildings.” Building and Environment 165. https://doi.org/10.1016/j.buildenv.2019.106373.
RECLAMATION COLLECTIVE
Coupling The mass is coupled with buoyancy ventilation in a natural thermal feedback cycle, driven by the daily swing of ambient temperature. This way, the primary material controls the structure, temperature, and ventilation. “Synchronizing the timing between processes is what matters rather than the power of one single process”.
Proportioning The successful coupling between buoyancy ventilation and thermal mass begins to inform the sizing and proportioning of a building in a generative manner. The synchronization of these two processes further informs the scalability potential of a building based on the number of people it serves.
Timber Carbon Sink Biogenic construction materials such as wood may count as temporarily stored carbon if they come from responsibly managed forests.
Sequestered
Embodied
Every construction material has a carbon footprint which is dependent on extraction, manufacturing and distribution methods. Carbon uncertainty takes into account a range of practices, from managed forestry to raw material extraction with no environmental considerations.
Uncertainty
71
Carbon Footprint Uncertainty
ARCH 672
CLIMATE RISK Wasted heat Low Carbon
LOW-CARBON FUTURE WARMEST MAX. TEMPERATURE
10TH PERCENTILE
AVERAGE
90TH PERCENTILE
2020
29.2
31.0
35.7
2050
30.3
33.0
36.9
2080
32.1
36.0
42.0
This scenario assumes that greenhouse gas emissions increase until about 2050 and then rapidly decline. This decline in emissions leads to less severe global warming than the alternative “business as usual” or high carbon scenario. This is also called the “low carbon” future, and is based on the RCP4.5 emissions scenario.
High Carbon
72
LOW-CARBON FUTURE WARMEST MAX. TEMPERATURE
10TH PERCENTILE
AVERAGE
90TH PERCENTILE
2020
28.0
32.0
35.6
2050
28.2
32.0
37.2
2080
30.9
34.0
38.1
This is the “business as usual” scenario, and assumes that world greenhouse gas emissions continue to increase at current rates through the end of the century. This large amount of greenhouse gas emissions results in more severe global warming. This is also called the “high carbon” future, and is based on the RCP8.5 emissions scenario.
42°C (High Carbon Future) 38.1°C (Low Carbon Future)
40°C 30°C 20°C 16°C (High Carbon Future) 13°C (Low Carbon Future)
10°C 0°C 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
1
2
23
24
1
2
High Carbon Mean Temperature Low Carbon Mean Temperature 38.1°C (Low Carbon Future) 31.8°C (Dampened Temperature)
40°C 30°C 20°C 23.5°C (Dampened Temperature)
10°C
16°C (Low Carbon Future)
0°C 3
4
5
6
7
8
Interior Temperature Exterior Temperature
9
10
11
12
13
14
15
16
17
18
19
20
21
22
RECLAMATION COLLECTIVE
THERMAL MASS Mixing and displacement ventilation There are two types of buoyancy ventilation: 1. Displacement ventilation is used to evacuate hot air from a place and replace it with fresh cool air. 2. Mixing ventilation is used to recuperate some of the heat from the hot air exiting the space.
DISPLACEMENT VENTILATION (Day Time)
73
DISPLACEMENT VENTILATION (Night Time)
MIXING VENTILATION (Day Time + Night Time )
ARCH 672
WOOD THERMAL MASS
74
Long Span
RECLAMATION COLLECTIVE
03
17cm insulated CDLT panels act as structure and help transfer vertical loads from the roof to the foundation while requiring 21% increase in panel count for damping coefficient of 0.6
8cm insulated CDLT panels act as an envelope substrate while providing the optimal thermodynamic performance for a damping coefficient of 0.6
8cm insulated CDLT panels act as an envelope substrate while providing the optimal thermodynamic performance for a damping coefficient of 0.6. This panel introduces an opening for fenestration.
- Structural - High carbon sink - Acts as insulation
- Optimal thermal performance
- Optimal thermal performance - Opening for fenestration
- Heavy - Lower thermal performance
- Weaker carbon sink - Non-structural - Weak insulator
WOOD
02
CO N C R E T E
01 Thermal Performance Carbon sink Utility Lightness
Con
wood long span
- Weaker carbon sink - Non-structural - Weak insulator 02
Number of panels
NUMBER OF PANELS
140
01
120
03
100 80 60 40 20 25
50
75 100 NUMBER OF PEOPLE SERVED
125
150
Number of people served
* Utility refers to a panel’s usefulness beyond its thermal performance. In the case of a short-span panel it can refer to its ability to act as support for equipment.
P L A ST I C
Pro
ARCH 672
WOOD THERMAL MASS
76
Short Span
RECLAMATION COLLECTIVE
03
17cm insulated CDLT panels act as load bearing walls supporting the roof beams while providing thermal performance to the short span. The use of 17cm panel requires 21% increase of panel count compared to an optimized 8cm panel for the same dampening coefficient of 0.6.
26cm non-insulated CDLT panels explore an insulation-free option while maintaining the same performance as 17cm CDLT at dampening coefficient of 0.6.
8cm insulated CDLT panels act as substrate for the live edge interior finish while providing an optimal thermal performance for a dampening coefficient of 0.6
Pro
- Structural - High carbon sink
- Structural - High carbon sink - Acts as insulation - Usable double wood SHORT span sided surface
- Optimal thermal performance - Light
Con
- Heavy - Lower thermal performance
- Heavier - Lower thermal performance
- Weaker carbon sink - Non-structural - Weak insulator
WOOD
02
CO N C R E T E
01 Thermal Performance Carbon sink Utility
Number of panels
01 &
45 35
02
03
25 15 05
05
10
15 20 NUMBER OF PEOPLE SERVED
25
30
Number of people served
* Utility refers to a panel’s usefulness beyond its thermal performance. In the case of a short-span panel it can refer to its ability to act as support for equipment.
P L A ST I C
NUMBER OF PANELS
Lightness
ARCH 672
PLASTIC THERMAL MASS
78
Short Span
RECLAMATION COLLECTIVE
03
15cm insulated concrete panels act as load bearing walls supporting the roof beams while providing thermal performance to the short span. The 15cm panel requires 39% increase of panel count compared to an optimized 5cm panel for the same dampening coefficient.
30cm non-insulated CDLT panels explore an insulation-free option while maintaining similar performance as the 15cm concrete panel at dampening coefficient of 0.6.
5cm insulate concrete panels act as substrate for the live edge interior finish while providing an optimal thermal performance for a dampening coefficient of 0.6
Pro
- Structural
- Structural
- Optimal thermal performance - Light
Con
- Heavy - Lower thermal performance - High carbon footprint
- Heavy - Lower thermal performance - High carbon footprint
- Non0structural - Lower thermal performance - High carbon footprint
WO O D
02
45
2
01 & 0
35
03
25 15 05
05
10
15 20 NUMBER OF PEOPLE SERVED
25
30
Number of people served
* Utility refers to a panel’s usefulness beyond its thermal performance. In the case of a short-span panel it can refer to its ability to act as support for equipment.
P L A ST I C
NUMBER OF PANELS
Thermal Performance Embodied Carbon Utility* Lightness
Number of panels
CO N C R E T E
01
ARCH 672
CONCRETE THERMAL MASS
80
Plinth and long span
RECLAMATION COLLECTIVE
03
20cm insulated concrete plinth acts as a protection layer with consideration for the industrial nature of the building. Height of 30cm provides basic protection. It’s thermal performance is minimal
20cm insulated concrete plinth acts as a protection layer with consideration for the industrial nature of the building. Height of 1.1m provides good protection against impact while providing some thermal performance.
20cm insulated concrete plinth acts as a protection layer with consideration for the industrial nature of the building. Height of 1.1m provides good protection against impact while providing some thermal performance.
- Structural - Prevents CDLT panels from touching the slab
- Structural - Prevents CDLT panels from CONCRETE PLINTH touching the
- Optimal thermal performance - Light
- Heavy - Lower thermal performance - High carbon footprint
- Heavy - Lower thermal performance - High carbon footprint
WO O D
02
Thermal Performance Carbon Utility* Mass
Number of panels
NUMBER OF PANELS
Con
500 450 400 350 300 250 200 150 100 50
slab - Non-structural - Lower thermal performance - High carbon footprint 01
02
05
10
15 20 NUMBER OF PEOPLE SERVED
25
0330
Number of people served
* Utility refers to a panel’s usefulness beyond its thermal performance. In the case of a short-span panel it can refer to its ability to act as support for equipment.
P L A ST I C
Pro
CO N C R E T E
01
ARCH 672
THERMAL MASS
82
Short span (Plastic, Concrete, CDLT)
RECLAMATION COLLECTIVE
PAGE TITLEMASS THERMAL Page Subtitle Panel Scalability Based On Material
CONCRETE 32 panels is required for 30 people
83
PLASTIC 32 panels is required for 30 people
WOOD 50 panels is required for 30 people
Reclamation Collective interior assembly hall
6
RECLAMATION COLLECTIVE DE LA MITIS The Reclamation collective is fundamentally the design of a waste system, not a specific building. Its operations, paired with material collections at nearby recovery sites, are meant to be replicable in any municipality within the MRC de La Mitis. The short span space is a structural and thermal generator, rigorously calibrated to provide for the assembly of people and things within the long span. These spaces function with a high level of interchangeability for future uses and adaptability to climate change. A building rehearsal exercise spans beyond the operational phase of the collective demonstrating the terrestrial impact of the project. Detailed design decisions consider wasted potential between the building-object and its environment and strive to recover this waste.
ARCH 672
BROWNFIELDS Site selection criteria of the reclamation collective
02 Wetlands
04 Brow
Outside of wetlands and potential
Locate
wetlands and 60 metres radius
agricul
of wetlands (peat bog, marshes,
Mitis re
swamps, etc.)
devalue to very
Route 20
2e Rang E
86
Route du fleuve Route 132
01 Road proximity
03 Distance from urban areas
Proximity to local road networks
Minimum 500-meter radius
that are not subject to erosion risk
from dwellings and urbanization
in the next 100 years.
perimeters.
Appendix F — Multiplatforme Sainte-Moïse Project
RECLAMATION COLLECTIVE
wnfields
06 Greenfields
building within
Outside of agroforestry land and
lture brownfields. The La
land with rich ecosystems.
region has 1429,3 km of 2
ed farmland with medium high revalue potential.
3e Rang E
Route 298 Legend Brownfields Road
Organic soil Gravelly soil Soil with tills deposits
05 Distance from rivers Minimum 60-meter radius from watercourses and taking in account the required ‘espace de liberté”.
500 M
87
Wetlands
ARCH 672
INITIAL CONSTRUCTION Site work and foundation
88
The use of concrete in the slab and plinth provides an element of longevity, acting as framework for subsequent thermally optimized small span structures. Residue material from this stage such as wood formwork for the plinth and foundation are treated and reused for the facade cladding.
year 0
Time
year 50
year 100
year 150
year 200
year 250 1 week
RECLAMATION COLLECTIVE
Mass (kg) 0
200 000
400 000
600 000
Concrete
% of Total
eCO2
Building Mass (kgCO2)
800 000 770 600
100 %
61 648 ± 15 412
Wood
0
0%
0
Plastic
0
0%
0
virgin material
reclaimed material (cycle I)
1.2m Plinth
89
Concrete provides longevity for wood elements
Formwork
Recovery of formwork for facade
ARCH 672
SMALL SPAN CONSTRUCTION (0-10 year) Lifespan
90
The combination of virgin materials and collected materials coming in the construction site serve for the construction of the small span. This stage is the first operational version of the building where influx of material waste of fluctuating disturbance cycles are gradually stored in unconditioned second level stacking spaces.
year 0
Time
year 50
year 100
year 150
year 200
year 250 3 months
RECLAMATION COLLECTIVE
Mass (kg) 0
200 000
400 000
600 000
% of Total
eCO2
Building Mass (kgCO2)
800 000
Concrete
770 600
80 %
61 648 ± 15 412
Wood
179 530
19 %
-134 790 ± 20 800
Plastic
8640
1%
negl.
virgin material
reclaimed material (cycle I)
Sliding Sheltered Storage
91
Natural Daylight
Translucent Plastic Brick Facade
Selective Removal
Technique for window and door variations
ARCH 672
RECLAMATION COLLECTIVE COMPLETION Reclamation collective is fully operational
92
The building sequence is paused at the small span stage for several years until the accumulation of reclaimed materials and financial resources reach a minimal threshold to pursue construction. The addition of the envelope on top of load-bearing small span structures create new spaces such as the assembly hall. The thermal relationship between these structures through porous connection details make the ventilation of the small spaces feed the larger ones. A large gantry crane, supported by the short spans, acts as a conductor of management and assembly. Fabricated on site, translucent plastic brick walls reduce the need for glazed surfaces and provide non-structural partitions.
year 0
Time
year 50
year 100
year 150
year 200
year 250 4 months
RECLAMATION COLLECTIVE
Mass (kg) 200 000
400 000
600 000
% of Total
eCO2
Building Mass (kgCO2)
800 000
Concrete
770 600
67 %
61 648 ± 15 412
Wood
371 630
32 %
-279 390 ± 24 000
Plastic
12 960
1%
negl.
virgin material
reclaimed material (cycle I)
reclaimed material (cycle II)
Cantilevered Beam
93
Load bearing DCLT walls, replace need for columns
Transfer of Facade Element
Small span facade moves to long span
ARCH 672
DECONSTRUCTION - NEW LIFE Reclamation collective is fully operational
94
The sectioned facade layout facilitates maintenance and panel replacement as the building ages. The following deconstruction and demise stages are reintroducing the use of recovery sites on site to collect and reclaim residual materials at the source of production. The internal circulation paths sized for trucks are optimizing the number of collection trips. The DLT component sizes are also sized in order to fit larger number of panels in single 100” wide trucks of varying length to be send to new reclamation collectives.
year 0
Time
year 50
year 100
year 150
year 200
year 250 4 months
RECLAMATION COLLECTIVE
Mass (kg) 0
200 000
400 000
600 000
% of Total
eCO2
Building Mass (kgCO2)
800 000
Concrete
99 000
100 %
0
Wood
0
0%
0
Plastic
0
0%
0
virgin material
reclaimed material (cycle I)
reclaimed material (cycle II)
Reclaimed Lumber
95 Concrete Formwork
Board Formed Concrete Facade division
+3.5m
Easy to Repair
Maintenance
ARCH 672
SHORT SPAN SCALABILITY Program Requirements
PROGRAM PANEL REQUIREMENT PROGRAM
# PEOPLE
# PANELS WOOD
# PANELS PLASTIC
#PANELS CONCRETE
ADMINISTRATION
10
17
14
17
PLASTIC WORKSHOP
10
17
14
17
PLASTIC CLASSROOM
20
34
28
25
CLASSROOM
30
50
41
38
96
ADMINISTRATION 10 people - 17 panels
PLASTIC CLASSROOM 20 people - 34 panels
CLASSROOM 30 people - 50 panels
RECLAMATION COLLECTIVE
PAGE TITLEMASS THERMAL Page Subtitle Wasted Heat
BUBBLE DIAGRAM architectural nesting
6
1. Administration 2. Plastic classroom 3. Plastic workshop 4. Classroom 5. Mechanical room 5. Wood workshop
PROPORTIONING
5
2
6
5
1
4
2
PROGRAM ADJUSTMENT Coupling principles dictate the minimum number of panels required. This means that spaces can grow or shrink depending on architectural requirements as long as the area of the thermal mass remains as prescribed.
3
1
97
Program and the amount of people in a space dictate the size and proportion of said space. They also dictate the number of panels required to generate sufficient ventilation. (refer to previous page)
4
3
6
4 5
3
2
1
ARCH 672
THERMAL MASS
98
Short Span Mixing Venting
01 LONG TO SHORT SPAN CONNECTION
02 SHORT SPAN ROOF/WALL CONNECTION
CDLT wall to DLT roof venting
DLT ceiling to DLT wall venting
RECLAMATION COLLECTIVE
PAGE TITLEMASS THERMAL
01
02
01
02
Page Subtitle And Mixing ventilation Displacement
WINTER & SHOULDER SEASON MIXING VENTILATION
02 02
01 01 SUMMER DISPLACEMENT VENTILATION Exterior temperature 38.1°C Interior temperature 31.8°C
99
Extremely cold winters require radiant heating in the short spans. Once the long span is in place, it relies on radiant heating and above-head heaters as well. Further, the short and long spans thermally complement each other through mixing ventilation.
ARCH 672
ASSEMBLAGE OF PEOPLE Community program
100
The short span space is a structural and thermal generator, rigorously calibrated to provide for the assembly of people and things within the long span. These spaces function with a high level of interchangeability for future uses and adaptability to climate change. While not in use for small span fabrication, the assembly hall can be configured for various community programs.
RECLAMATION COLLECTIVE
Long Section
1. Administration 2. Plastic classroom 3. Plastic workshop 4. Classroom
5. Mechanical room 6. Wood workshop 7. Assembly hall
1 101
4
7
2
3
5 6
Plan
7
10 M
ARCH 672
ASSEMBLAGE OF THINGS Reclamation program
102
The short span space is a structural and thermal generator, rigorously calibrated to provide for the assembly of people and things within the long span. These spaces function with a high level of interchangeability for future uses and adaptability to climate change. In full operation as a the reclamation collective, the assembly hall facilitates the building of small shed components from recovered material.
RECLAMATION COLLECTIVE
Long Section
1. Administration 2. Plastic classroom 3. Plastic workshop 4. Classroom
5. Mechanical room 6. Wood workshop 7. Assembly hall
1 103
4
7
2
3
5 6
Plan
7
10 M
Community meeting in MRC de La Mitis
7
BUILDING COMMUNITIES The storage, assembly and repurposing of reclaimed materials in the Reclamation collective are developing building processes beyond the building-object. These include advanced alternatives for harvesting and processing new wood materials in order to use 100% of tree parts. Woodworking techniques as carbon sinks (DLT, CDLT, OSB, live edges members) are also introduced as a philosophy for building for the future. Assembly guides are also provided for new fabrication possibilities for plastic waste. This knowledge is meant to be shared with the community to move beyond single-use ideology and actively embrace material imperfections. In the long term, changing existing practices around waste management is essential to normalize waste design and build communities.
ARCH 672
WOOD HARVESTING PRACTICE Cultivating robust forestry practice The wood harvesting will minimize waste through a carefully cultivated practice. Employing shelterwood harvesting (see Appendix ?) the initial cut of less desirable wood will be fully recovered for use in the composite DLT panels. Similarly, damaged lumber resulting from forest disturbances (i.e. insect epidemics) can be harvested and reclaimed for the composite DLT panel.
Moon harvesting Wood cut according to moon phases - protects the wood from
Shelterwood harvesting
Distur
Establishes and develops natural
Dama
regeneration in forest stand
and
106
insect and fungal damage
01 Harvesting
02 Reseeding
RECLAMATION COLLECTIVE
CO N C R E T E WOOD
Biodiverse forest stand
aged waste wood harvested
Selective harvesting a multi-
d reclaimed for DLT panels
specie forest cultivates biodiverse
utilized for varied products
flora and fauna
(see Tree Processing p. 110)
03 Growth and decay
Complete use of tree Near 100 percent of the tree to be
04 Lumber processing
P L A ST I C
rbance driven harvesting
ARCH 672
TREE PROCESSING Black Spruce (Picea mariana)
Harvesting Criteria
Cut Profiles
Harvest Height: 9 to 15 meters (30 - 50 ft) Harvest Age: +60 years Soil Type: poorly drained, histosols or soils with peat and muck
1” x 6” cuts 1” 6”
108
Foliage +12m Middle Log +10.5m
9” = 230mm
2” x 4” cuts Middle Log +7m
2” 4”
Butt Log +3.5m 9” = 230mm
Board Feet Volume: 21.5 Humus Mineral Soils Eluviated Subsoil Bedrock
RECLAMATION COLLECTIVE
CO N C R E T E
Component
Building Composition WOOD
Biomass & Wood Chip Insulation Mass Produced: 280 kg m
Oriented Strand Board 3.5 m
Required: 3 sheets Dimensions: 2.5m x 3.5m
2.5
Component Number: 116 panels Mass: 180 kg per panel Embodied Carbon: 48 ± 12 kg C02 per panel
m
Cross Dowel Laminated Timber 3.5 m
Required: 5 layers Dimensions: 2.5m x 3.5m x 0.17m Dowel: 180 dowels per panel
2.5
m
x 2”
4”
ts
cu
Dowel Laminated Timber
3.5 m
Required: 50 - 2” x 4” members Dimensions: 2.5m x 3.5m x 0.15m Dowel: 16 dowels per panel
n
tio
ula
Ins
2”
e dg
ee Liv
Component Number: 120 panels Mass: 825 kg per panel Embodied Carbon: 500 ± 120 kg C02 per panel
Component Number: 90 panels Mass: 950 kg per panel Embodied Carbon: 675 ± 200 kg C02 per panel
Total with 100% Black Spruce
Mass: 205 380 kg Embodied Carbon: 126 318 kg CO2
P L A ST I C
2.5
ARCH 672
TREE PROCESSING Jack pine (Pinus banksiana)
Harvesting Criteria
Cut Profiles
Harvest Height: 17 to 20 meters (55 - 65 ft) Harvest Age: 40 to 70 years (harvest before 50 years to reduce loses) Soil Type: dry acidic, sandy, loamy, thin soils over bedrock
Foliage +18m
1” x 6” cuts 1”
110
Top Log +14m
Middle Log +10.5m
6”
9” = 230mm
2” x 4” cuts Middle Log +7m
2” 4”
Butt Log +3.5m 9” = 230mm
Board Feet Volume: 35.9 Humus Mineral Soils Eluviated Subsoil Bedrock
RECLAMATION COLLECTIVE
CO N C R E T E
Component
Building Composition WOOD
Biomass & Wood Chip Insulation Mass Produced: 310 kg m
Oriented Strand Board 3.5 m
Required: 3 sheets Dimensions: 2.5m x 3.5m
2.5
Component Number: 116 panels Mass: 160 kg per panel Embodied Carbon: 130 ± 12 kg C02 per panel
m
Cross Dowel Laminated Timber 3.5 m
Required: 5 layers Dimensions: 2.5m x 3.5m x 0.17m Dowel: 180 dowels per panel
2.5
m
x 2”
4”
ts
cu
Dowel Laminated Timber
3.5 m
Required: 50 - 2” x 4” members Dimensions: 2.5m x 3.5m x 0.15m Dowel: 16 dowels per panel
n
tio
ula
Ins
2”
e dg
ee Liv
Component Number: 120 panels Mass: 830 kg per panel Embodied Carbon: 765 ± 40 kg C02 per panel
Component Number: 90 panels Mass: 9525 kg per panel Embodied Carbon: 870 ± 50 kg C02 per panel
Total with 100% Jack Pine
Mass: 182 110 kg Embodied Carbon: 173 300 kg CO2
P L A ST I C
2.5
ARCH 672
TREE PROCESSING Sugar maple (Acer saccharum)
Harvesting Criteria
Cut Profiles
Harvest Height: 20 meters (65 ft) Harvest Age: 50 - 70 years Soil Type: Acidic - slightly alkaline, sand, clay, loam Foliage +20m
Top Log +14m
1” x 6” cuts 1”
112
6” Middle Log +10.5m 10” = 254mm
2” x 4” cuts Middle Log +7m
2”
4” Butt Log +3.5m 10” = 254mm
Board Feet Volume: 51.9 Humus Mineral Soils Eluviated Subsoil Bedrock
RECLAMATION COLLECTIVE
CO N C R E T E
Component
Building Composition WOOD
Biomass & Wood Chip Insulation Mass Produced: 375 kg m
Oriented Strand Board 3.5 m
Required: 3 sheets Dimensions: 2.5m x 3.5m
2.5
Component Number: 116 panels Mass: 235 kg per panel Embodied Carbon: 180 ± 20 kg C02 per panel
m
Cross Dowel Laminated Timber 3.5 m
Required: 5 layers Dimensions: 2.5m x 3.5m x 0.17m Dowel: 180 dowels per panel
2.5
m
x 2”
4”
ts
cu
Dowel Laminated Timber
3.5 m
Required: 50 - 2” x 4” members Dimensions: 2.5m x 3.5m x 0.15m Dowel: 16 dowels per panel
n
tio
ula
Ins
2”
e dg
ee Liv
Component Number: 120 panels Mass: 1057 kg per panel Embodied Carbon: 924 ± 57 kg C02 per panel
Component Number: 90 panels Mass: 1240 kg per panel Embodied Carbon: 1080 ± 56 kg C02 per panel
Total with 100% Sugar Maple
Mass: 265 706 kg Embodied Carbon: 228 960 kg CO2
P L A ST I C
2.5
ARCH 672
FABRICATION GUIDE - WOOD
114
Material and Product
Thoma
Structurecraft
RECLAMATION COLLECTIVE
115
Thoma
Roca Wood Works
ARCH 672
FABRICATION GUIDE - WOOD
116
Labour, Equipment, and Tools
Labour - (4-5 trained workers)
Portable Mill
Table Saw
Capable shredding plastic 30kg/hour
For ripping planks to size
Equipment Required
Cutting Rack
Dowel Shaper
Clamping Table
Too support large logs
A planar that shapes dowels
Helps hold the panels in place
Tools Required
W
Supports
WOOD P L A ST I C
s the Dowel Shaper
CO N C R E T E
Work Table
RECLAMATION COLLECTIVE
Planer
Gantry Crane
CNC Machine
Roughly remove bowing in wood
Move heavy objects around the assembly hall
Drill dowel holes
Chainsaw
Mallet
Wood Rack
To rough cut logs to length
To help insert long dowels
Easy Transportation
ARCH 672
FABRICATION GUIDE - DLT Assembly Process - Live Edge Dowel Laminated Timber
1.
2.
118
Chainsaw Cutting
Portable
Logs are initially cut on a rack into rough 2.5m and 3.5m pieces
4.
The sections are then c
5.
Dowel Shaper Square offcuts are then shaped into 30mm hardwood dowels
Appendix G — Dowel Laminated Timber: The all wood mass timber panel (Structure Craft)
Dowel Hole
Using a CNC the h
RECLAMATION COLLECTIVE
CO N C R E T E WOOD
3.
P L A ST I C
Mill
Table Saw Cutting
cut into 2” planks
es Drilled
holes are drilled
The 2” thick planks are then cut into 4 or 6” planks with live edge
6.
Assemble and Clamp Panels Planks are stacked on edge and the long dowels are inserted. The hardwood dowels later expand due to moisture content to make a tight fit
ARCH 672
FABRICATION GUIDE - CDLT Assembly Process - Cross Dowel Laminated Timber
1.
2.
120
Chainsaw Cutting
Portable
Logs are initially cut on a rack into rough 2.5m and 3.5m pieces
4.
The sections are then c
5.
Clamping The 1”x6” sections are then clamped
Appendix H — Holz100 wall types (Thoma)
Dowel Pr
The panels are then miter and the dowels
RECLAMATION COLLECTIVE
CO N C R E T E WOOD
3.
P L A ST I C
Mill
Ripping and Planing
cut into 2” planks
ressed
red with a CNC machine s are inserted
The 2” thick planks are then cut into 1”x6” planks. Later roughly planned to eliminate bowing.
6.
Packaging and Delivery Once assembled, the panels are moved with the gantry crane onto a truck to be delivered somewhere in the region
ARCH 672
FABRICATION GUIDE - PLASTIC
122
Material and Product
Precious Plastic
RECLAMATION COLLECTIVE
123
Precious Plastic
Precious Plastic
ARCH 672
FABRICATION GUIDE - PLASTIC Labour, Equipment, and Tools
124
Shredder
Capable shredding plastic
50kg shredded plastic
Labour - (1-2 labourers)
Equipment Required
Brick Mold Components
Welding Torch
Sorting Trolley
Open source kit of parts
To weld molding together
Sort and store various plastic types
Tools Required Appendix I — Visual + Physical properties of plastics by type & name (Precious Plastic)
Ventilation Cadd
Flexible spot ventilat
Sustainable Investment “Precious Plastic is an open hardware plastic recycling project and is a type of open source digital commons project. The project was started in 2013 by Dave Hakkens and is now in its fourth iteration. It relies on a series of machines and tools which grind, melt, and inject recycled plastic, allowing for the creation of new products out of recycled plastic on a small scale.” -Precious Plastic
CO N C R E T E WO O D P L A ST I C
c 30kg/hour
RECLAMATION COLLECTIVE
Extrusion
Compression
Injection
Fills molds and makes filament
Makes sheet plastic
Fills molds
c per hour
dy
Screwdriver and Mallet
Drying Rack
Brick Trolley
tion
Assembly and Disassembly
Cooling to ensure bricks don’t warp
Easy Transportation
ARCH 672
FABRICATION GUIDE - PLASTIC Assembly Process - Plastic Brick Production
2.
3.
126
1.
Assemble Mold
Injection Molding
Weld and assemble various components
It takes approx 4 min to fill one mold
20kg plastic per hour
4.
5.
6.
Brick Drying
Transportation for Storage or Use
Cooling to insure bricks don’t warp
Plastic bricks are very lightweight, yet durable
48 hours cooling
1.5 kg per brick
A
RECLAMATION COLLECTIVE
The integration of on site processing and fabrication of plastic goods will capitalizes on a consistent stream on agricultural and household plastic waste. Once the large equipment and molds are assembled, there is no wasted time in the processing and creation recycled plastic products. It is a very straight forward and not labour intensive process. The initial phase of plastic production will produce transparent bricks for natural daylight into the shed. Additional possibilities will be endless!
WO O D
Brick re-use in other location
P L A ST I C
Stool
Removing Cast Brick
Chair
Bricks are removed and molds are reused
Bench
End of Life
Recycle
Assemble Opaque Wall or Translucent Window Wall Very simple and easy assembly, requiring basic skill set not for structural use*
Dry stack
CO N C R E T E
Endless Possibilities
Brick
Precious Plastic products
8
WASTED POTENTIALS Given the realities of transportation, climate and land burial risk, this design manual considered waste as an expandable term. While its manifestation may seem very tangible, biological, cultural and ecological dynamics revealed a whole set of wasted potentials: (1) To reduce wasted time, a modular system involving standardized panels and a choreographed building assembly help reduce waiting periods for contractors. (2) To reduce wasted transportation, local materials are sourced locally, optimally sizing members to maximize transportation efficiency, coupling routes between different trades and providing a decentralized system of recovery sites for resources (3) To reduce wasted material, low processing strategies such as reclaiming salvaged construction materials, strategic log cutting, and encouraging efficient forestry management practices are introduced to increase the longterm viability of the ecosystem. (4) To reduce wasted heat, design dictates the dimensions of the small spans based on the capacity of each standardized panel and opening sizes to drive buoyancy ventilation.
ARCH 672
WASTED TRANSPORTATION Summary of potentials to harness
Short loops Is about internalizing the movement of residual matter on the roads of the MRC de La Mitis. A system of intermediary recovery sites within each municipality establishes a policy of reclamation for keeping local resources for local production. This triage at source system deviates those residual matter from elimination sites to short-distance market outlets.
130
Prohibit exportation of waste The operations involved in the municipal, residential, commercial and industrial dumping and incineration of residual matter must not be managed by an external organization or municipality. Waste flows traveling outside the boundary of the municipality boundary are polluting and do not fuel local economy.
Inventory database Once a local recovery and reclamation system is established, the collection of data on the circulation and fluctuation of residual matter can be used to build a rigorous waste inventory. More information about the origin, nature, quantity, destination and mode of recovery will contribute to develop more robust outlet markets for end-of-life materials.
Local waste resources The agriculture, tourism, lumber and construction industries in the MRC de La Mitis are all considerable residual matter generators in the municipality. This design manual provides a better understanding of those end-of-life materials from industry by-products to reclaimable resources.
RECLAMATION COLLECTIVE
WASTED TIME Summary of potentials to harness
Pulsing cycles Biology and ecology must be included in the architecture and design realm. Understanding their interactions and exchanges is key for an architecture that is adaptable to change. This manual outlines land as a temporal scale through disturbance cycles in order to sync design with those pulses.
Low processing
Standardization All concrete, wood and plastics components of the building can be devised in three to four standardized panels or elements that optimize construction time and sequence. The main multi-specie wood panels are also sized in order to fit the most amount of pieces in a transportation truck to limit the total traveling time the building and unbuilding sequence.
Less material The reclamation collective building design minimizes the number of different material used. Multiples envelope functions, such as structure, rainscreen and insulation are therefore combined into the use of a 100% wood wall composition for example. This decision minimizes the overlaps between trades during the building sequence.
131
The articulation of woodworking techniques that maximizes the amount of usable pieces with the least number of cuts provides low processing construction methods. As they optimize time and labor, material and financial resources can be redistributed in projects according to community goals and values.
ARCH 672
WASTED HEAT Summary of potentials to harness
Massing form To reduce heat waste, optimizing the size of program spaces based on the number of occupants ensures efficient ventilation and heat exchanges.
Thermal mass
132
To reduce heat waste, design dictates precise dimensions and quantities of materials in order to act as efficient thermal mass.
Heat recovery To reduce heat waste, mixing ventilation ensures heat exchange between cool and warm air as they vent through the space.
Material choice
To reduce heat waste, the use of wood provides a sustainable alternative to concrete while being a multi-functional component: structural, carbon sequestering, low labor demand.
RECLAMATION COLLECTIVE
WASTED MATERIAL Summary of potentials to harness
Diversified Investment DLT and CDLT panels as building component assembly techniques allow for the coexistence of multiple species of wood in the same panel. They also offer the opportunity to combine virgin and reclaimed parts. The essence of the envelope and structure are devices that can adapt to the risk of change.
Brownfield Building a waste reclamation collective should also be synonym to reclamation of wasted land. In Bas-Saint-Laurent, 1429,3 km2 of agriculture land is classified as brownfields with medium to high revalue potential. Those lands must be prioritized in project location selection.
Harvesting practices The design of a wood building should reflect the design of the forest. Above all, the reclamation collective is about building communities by sharing knowledge on better forestry and harvesting practices. Tree specie-specific processing, optimal harvest age and soil types become important factors to consider in design decision making.
Complexity Optimizing the use of material by integrating more than one function into a single building component. The small span of the reclamation collective is combining the following functions: column, wall, structure, partition, thermal mass.
ARCH 672
LONG LOOPS External transportation flows
Agriculture Industry
I. Ecocenter Triage center for dry waste in Mont-Joli
II. Compost Center Biomethanization plant in Rivière-du-Loup
III. Landfill Lieu d’enfouissement technique (LET) in Rivière-du-loup
Construction Industry Lumber Industry Tourism Industry
RECLAMATION COLLECTIVE
SHORT LOOPS Internal transportation flows IV. Wasted potentials Transportation, time, heat, material
Agriculture Industry Construction Industry
I. Recover Intermediary hyper-local triage at source
Lumber Industry
III. Refuel Shared knowledge and building communities
Tourism Industry
II. Reclaim Reclamation collective La Mitis
Black spruce 60 years 21.5 BFV
Reclamation collective
Recovery Site I Recovery Site III
Recovery Site II
APPENDIX
ARCH 672
APPENDIX A Towards Zero Waste
Manufacturing Reconsider
Is a new product neccessary?
Reduce
How can we future proof the design?
Reuse
Is it possible to reuse?
138
Repair
Could it be repaired?
Re-purpose
Is it possible to find a different purpose?
Recycle
Recover
Could the material be recycled?
Could the energy be recovered?
Landfill disposal Fig. 1.12 — 7xR of the products life/cycle leading to the waste reduction, Own illustration, based on the waste hierarchy pyramid retrieved from https://en.wikipedia.org/wiki/Waste_hierarchy
Value preservation The diagram above is showing the life - cycle pyramid of a product. Each level represents a certain state of the value of the product in its life-cycle, in terms of both economic and environmental savings. Each degradation into a lower level in the pyramid results in a decrease of value and therefore a least preferable option, with the disposal and almost complete loss of value in the bottom.
Our responsibility as architects is to design the buildings and its components by keeping this in mind. At the same time, maintaining a product in a certain state should not require an exaggerated effort in terms of energy and costs. To achieve this, a considered strategy is the design for disassembly which simplifies repair and reuse. How design for disassembly contributes to facilitates this, is discussed further in this study.
Repair
Could it be repaired?
RECLAMATION COLLECTIVE
Re-purpose
Is it possible to find a different purpose?
Recycle
Recover
Could the material be recycled?
Could the energy be recovered?
Landfill disposal Fig. 1.12 — 7xR of the products life/cycle leading to the waste reduction, Own illustration, based on the waste hierarchy pyramid retrieved from https://en.wikipedia.org/wiki/Waste_hierarchy
Value preservation The diagram above is showing the life - cycle pyramid of a product. Each level represents a certain state of the value of the product in its life-cycle, in terms of both economic and environmental savings.
To achieve this, a considered strategy is the design for disassembly which simplifies repair and reuse. How design for disassembly contributes to facilitates this, is discussed further in this study. 139
Each degradation into a lower level in the pyramid results in a decrease of value and therefore a least preferable option, with the disposal and almost complete loss of value in the bottom.
Our responsibility as architects is to design the buildings and its components by keeping this in mind. At the same time, maintaining a product in a certain state should not require an exaggerated effort in terms of energy and costs.
It is crucial to notice that recycling requires an additional amount of energy, and not all the materials are suitable for an infinite recycling loop. Recycling, from the environmental perspective, is, therefore, a less desirable option than direct reuse or re-purpose. Between each of these steps, there is one more “R” which needs to be mentioned. There has to be a Reason for not repairing, reusing, etc.
15
ARCH 672
APPENDIX B Politique québécoise de gestion des matières résiduelles 2019-2024
Politique québécoise de gestion Politique québécoise de gestion des matières résiduelles des matières résiduelles
PLAN D’ACTION 2019-2024 PLAN D’ACTION 2019-2024
RÉCUPÉRER RÉCUPÉRER PLU PLU RECYCLER MIEU RECYCLER MIEU
Mesures
Actions
Indicateurs
Mesures Modernisation des systèmes de
Réviser les rôles et responsabilités des entreprises et municipalités afin 1Actions d’optimiser le système de collecte sélective et le système de consignation les rôles et responsabilités des entreprises et municipalités afin 1 Réviser et d'améliorer la qualité des matières récupérées, triées et recyclées
Indicateurs Taux de recyclag
gestion des matières recyclables Modernisation des systèmes de gestion des matières recyclables Investissements* : 33 millions $ Investissements* : 33 millions $
d’optimiser le système de collecte sélective et le système de consignation et d'améliorer la qualité des matières récupérées, triées et recyclées
2 2
Moderniser les centres de tri et assurer une meilleure uniformisation de leurs pratiques favoriserdeletri développement débouchés locaux et améliorer Moderniserpour les centres et assurer unede meilleure uniformisation de leurs la traçabilité des matières vendues pratiques pour favoriser le développement de débouchés locaux et améliorer
140
la traçabilité des matières vendues
3 3
Développer de nouveaux marchés et diversifier les débouchés pour les matières récupérées et triées en encourageant au débouchés maximum l’innovation Développer de nouveaux marchés et diversifier les pour les et l’économie circulaire matières récupérées et triées en encourageant au maximum l’innovation et l’économie circulaire
4 4
Réduction des plastiques et des produits usage unique Réduction desà plastiques et des produits à: usage unique Investissements* 20 millions $ Investissements* : 20 millions $
Valorisation des matières organiques Valorisation des matières organiques Investissements* : 10 millions $ Investissements* : 10 millions $
Informer, sensibiliser et éduquer les citoyens ainsi que tous les acteurs du milieu quant à l’efficacité des systèmes de gestion des tous matières recyclables Informer, sensibiliser et éduquer les citoyens ainsi que les acteurs du et à l'importance de continuer à poser le bon geste milieu quant à l’efficacité des systèmes de gestion des matières recyclables
et à l'importance de continuer à poser le bon geste Élaborer et mettre en œuvre une stratégie gouvernementale visant à réduire l'utilisation plastiques et une des stratégie produits àgouvernementale usage unique visant à réduire Élaborer et des mettre en œuvre
5 5 des plastiques et des produits à usage unique et l’écoconception Favoriser l’intégration de contenu recyclé dans les produits 6 l'utilisation Favoriser l’intégration de contenu recyclé dans les produits et l’écoconception 6 7 7 8 8 9 9
Diminuer le recours aux produits à usage unique et favoriser les pratiques d’acquisitions écoresponsables Diminuer le recours aux produits à usage unique et favoriser les pratiques d’acquisitions écoresponsables Augmenter la récupération des matières recyclables hors foyer
Augmenter la récupération des matières recyclables hors foyer Améliorer la desserte, la disponibilité et l’efficacité des installations de recyclage pour les matières organiques dans tous secteurs Améliorer la desserte, la disponibilité et l’efficacité deslesinstallations de recyclage pour les matières organiques dans tous les secteurs
10 Contribuer à la réduction du gaspillage alimentaire Contribuer la réduction dudes gaspillage alimentaire 10 le àdéveloppement débouchés pour les composts, digestats 11 Soutenir 11
et autreslematières résiduelles Soutenir développement desfertilisantes débouchés pour les composts, digestats et autres matières résiduelles fertilisantes
Taux de recyclag
Proportion des m expédiées àdes desm Proportion expédiées à des Taux de rejets m et démolition (C Taux de rejets m
et démolitionde (C Pourcentage et des contenan Pourcentage de
et des contenan Pourcentage de recyclés ou valo Pourcentage de
recyclés oude valo Proportion ci est déposé de danci Proportion
est déposé dan
Publication de la
Publication de la Contenu recyclé
Contenu recyclé Pourcentage de sont compatible Pourcentage de
sont compatible Nombre d'initiat
Nombre d'initiat Réduction de la
Réduction de la Nombre d'initiat
Nombre d'initiat Pourcentage de des matières de ou Pourcentage
des ou Tauxmatières de recyclag des industries, c Taux de recyclag
des industries, Pourcentage dec
Pourcentage de
Pourcentage de
Pourcentage de
MELCC Ministère de l’Environnement et de la Lutte contre les changements climatiques *Aux investissements indiqués ici s’ajoutent les budgets disponibles chez RECYC-QUÉBEC, au MELCC et au Fonds vert pour des mesures déjà prévues ou en cours de déploiement. MELCC Ministère de l’Environnement et de la Lutte contre les changements climatiques *Aux investissements indiqués ici s’ajoutent les budgets disponibles chez RECYC-QUÉBEC, au MELCC et au Fonds vert pour des mesures déjà prévues ou en cours de déploiement.
US, US, UX ! UX !
RECLAMATION COLLECTIVE
Objectifs visés pour 2023 visés de pour 2023 •Objectifs Réduire la quantité matières éliminées par habitant • • • • • •
à 525 kglaouquantité moins de matières éliminées par habitant Réduire à 525 kg 75 ou% moins Recycler du papier, du carton, du verre, du plastique et métaldu carton, du verre, Recycler 75 % dudupapier, du plastique du matières métal organiques Recycler 60 %etdes 60 valoriser % des matières organiques Recycler et 70 % des résidus de construction, rénovation et démolition Recycler et valoriser 70 % des résidus de construction, rénovation et démolition
85 % en 2023 30 % en 2023
79 % en 2015 51 % en 2015
30 % en 2023 60 % en 2023
51 % en 2015 39 % en 2015 pour la collecte sélective 39 % en 2015 pour la collecte
ge atteints par la collecte sélective et la consigne
Cibles 75 % en 2023
ge atteints par la collecte sélective et la consigne
75 % en 2023
matières reçues par les centres de tri de collecte sélective smatières conditionneurs/recycleurs reçues par les centres de tri de collecte sélective s conditionneurs/recycleurs moyen des centres de tri de résidus de construction, rénovation CRD) moyen des centres de tri de résidus de construction, rénovation
CRD) es matières sortantes des centres de tri de collecte sélective nts consignés vendus àdes descentres conditionneurs/recycleurs du Québec es matières sortantes de tri de collecte sélective
consignés vendus à des conditionneurs/recycleurs du Québec ents résidus de construction, rénovation et démolition (CRD) orisés e résidus de construction, rénovation et démolition (CRD)
orisés itoyens qui estiment que tout ou une grande partie de ce qui ns le bac qui est estiment effectivement recyclé itoyens que tout ou une grande partie de ce qui
ns le bac est effectivement recyclé
60 % en 2023 70 % en 2023
sélective
70 % en 2023 75 % en 2023
49 % en 2019
75 % en 2023
49 % en 2019
la stratégie
2020
la stratégie é minimum dans les emballages de plastique
2020 15 % d’ici 2024
é minimum dans emballages de plastique es emballages et les contenants de plastique mis en marché qui es avec le système de récupération et de recyclage au Québec es emballages et contenants de plastique mis en marché qui
15 %%d’ici 80 d’ici2024 2024
es avec le système de récupération et de recyclage au Québec tives mises en œuvre
80 % d’ici 2024 Au moins 5 d’ici 2024
misesdeenproduits œuvre à usage unique éliminés atives quantité
Au % moins 5 d’ici 2024 25 en 2024
atives quantité misesdeenproduits œuvre à usage unique éliminés
25 % en 2024 Au moins 5 d’ici 2024
tives mises en œuvre es organismes municipaux ayant implanté une collecte u un autre moyen de gestion à laimplanté source une collecte es organismes municipaux ayant
Au moins 5 d’ici 2024 100 % d’ici 2024
Responsables Responsables
MELCC RECYC-QUÉBEC MELCC
RECYC-QUÉBEC
RECYC-QUÉBEC RECYC-QUÉBEC
RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC
RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC RECYC-QUÉBEC
RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC
100 % d’ici 2024 60 % en 2023
19 % en 2015
60 % en 2023 45 % en 2024
19 % en 2015 50 % en 2017
RECYC-QUÉBEC
et institutions (ICI) (excluant agroalimentaire) ecommerces résidus alimentaires évitables éliminés par les ménages
e résidus alimentaires évitables éliminés par les àménages es composts et digestats destinés aux marchés valeur ajoutée
45 % en 2023 2024 95
50 % en 2017 89 2015
es composts et digestats destinés aux marchés valeur ajoutée répondant aux normesàde qualité AA et A
95 % en 2023 45
89 % en 2015 39
RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC
es composts et digestats répondant aux normes de qualité AA et A
45 % en 2023
39 % en 2015
ugeundes autre moyenorganiques de gestiongénérées à la source matières par le secteur commerces et institutions (ICI) (excluant ge des matières organiques générées paragroalimentaire) le secteur
RECYC-QUÉBEC
RECYC-QUÉBEC
141
85 % en 2023
Résultats actuels Résultats actuels 54 % en 2015 pour la collecte sélective résidentielle 54 % en 2015 pour la collecte 66,5 % enrésidentielle 2017 pour la sélective consigne lespour contenants 66,5 % ensur 2017 la à remplissage unique consigne sur les contenants à remplissage 79 % en 2015 unique
Cibles
ARCH 672
APPENDIX B Politique québécoise de gestion des matières résiduelles 2019-2024
Politique québécoise de gestion des matières résiduelles Politique québécoise de gestion des matières résiduelles PLAN D’ACTION 2019-2024 PLAN D’ACTION 2019-2024 Mesures
Actions
Indicateurs
Mesures Développement des différentes
Actions Assurer l’exemplarité de l’État en matière d’approvisionnement et au regard 12 la gestion des matières résiduelles Assurer l’exemplarité de l’État en matière d’approvisionnement et au regard 12 de de la gestion des matières résiduelles Contribuer au déploiement de l'économie circulaire au Québec, notamment 13 par la consolidation des symbioses territoriales circulaire au Québec, notamment 13 Contribuer au déploiement de l'économie
Indicateurs Pourcentage de d'approvisionne Pourcentage de d'approvisionne Nombre d'initiat
filières de récupération et autres Développement des différentes actions structurantes filières de récupération et autres actions structurantes Investissements* : 23,5 millions $
142
Investissements* : 23,5 millions $
par la consolidation des symbioses territoriales 14 Encourager l’optimisation des écocentres par l’élargissement des bonnes une accessibilité Encourageretl’optimisation des accrue écocentres par l’élargissement des bonnes 14 pratiques
15 15 16 16 17 17 18 18
pratiques et une accessibilité accrue Faire évoluer le cadre actuel de la responsabilité élargie des producteurs (REP) et assujettir de nouvelles matières Faire évoluer le cadre actuel de la responsabilité élargie des producteurs (REP)
19 19 20 20 21 21 22 22
Contribuer à l’amélioration de la conception et de la gestion en fin de vie des bâtiments et des infrastructures Contribuer à l’amélioration de la conception et de la gestion en fin de vie
et assujettir de nouvelles matières et favoriser le prolongement de la durée Contrer l'obsolescence programmée de vie des produits, notamment la réparation Contrer l'obsolescence programmée et favoriser le prolongement de la durée de vie deslaproduits, notamment la réparation Accroître performance de récupération et les débouchés pour les matières non viséeslapar les programmes actuels et les débouchés pour les matières Accroître performance de récupération
non visées par les actuels Mettre en place lesprogrammes outils appropriés pour avoir une traçabilité des matières et mieux suivre la performance de la gestion desune matières résiduelles au Québec Mettre en place les outils appropriés pour avoir traçabilité des matières et mieux suivre la performance de la gestion des matières résiduelles au Québec
des bâtiments et des infrastructures Optimiser la récupération, le réemploi, le recyclage et la valorisation des pneus hors d’usage Optimiser la récupération, le réemploi, le recyclage et la valorisation
des pneus hors d’usage d’innovations technologiques pour de nouvelles Assurer le développement approches de recyclage ou d’innovations de nouveaux débouchés Assurer le développement technologiques pour de nouvelles approches de recyclaged’approches ou de nouveaux débouchés pour détourner Favoriser l’émergence complémentaires des matières de l’élimination Favoriser l’émergence d’approches complémentaires pour détourner des matières de l’élimination
Nombre d'initiat Pourcentage de
Pourcentage de d'é de redistribution Pourcentage d'é
de redistribution Pourcentage d’a
Pourcentage d’a Nombre d'initiat
Nombre d'initiat Nombre de mat à améliorer leur Nombre de mat
à améliorer leur Mise en place d
Mise en place Publication dudB résiduelles au Publication du QB résiduelles au Q Nombre d'initiat
Nombre d'initiat Pourcentage de
Pourcentage de Nombre d'initiat
Nombre d'initiat Établissement d
Établissement Quantité de mad dans les lieux d Quantité de ma
dans les lieux d
Aide aux communautés isolées Aide aux communautés Investissements* : 20 millions isolées $ Investissements* : 20 millions $
23 Appuyer les communautés isolées ayant des besoins problématiques spécifiques Appuyer les communautés isolées ayant des besoins 23 ou ou problématiques spécifiques
Nombre d’initiat
Nombre d’initiat
Investissements totaux : 106,5 millions $ totaux : Investissements 106,5 millions $
MELCC Ministère de l’Environnement et de la Lutte contre les changements climatiques *Aux investissements indiqués ici s’ajoutent les budgets disponibles chez RECYC-QUÉBEC, au MELCC et au Fonds vert pour des mesures déjà prévues ou en cours de déploiement. MELCC Ministère de l’Environnement et de la Lutte contre les changements climatiques *Aux investissements indiqués ici s’ajoutent les budgets disponibles chez RECYC-QUÉBEC, au MELCC et au Fonds vert pour des mesures déjà prévues ou en cours de déploiement.
es infrastructures gouvernementales ayant adopté des mesures ement responsablegouvernementales ayant adopté des mesures es infrastructures
RECLAMATION COLLECTIVE
Cibles Cibles 75 % d’ici 2024
ement responsable tives mises en œuvre
75 % d’ici 2024 Au moins 5 d’ici 2024 Au 5 d’ici 2024 100moins % en 2024 100 % en 2024
n des redevances atteinte des taux de récupération fixés par règlement
100 % en 2024 100 % en 2024
atteinte des taux de récupération fixés par règlement tives mises en œuvre
100 % en 2024 Au moins 5 d’ici 2024
tives mises en œuvre tières problématiques ciblées par des initiatives visant r récupération ou leursciblées débouchés tières problématiques par des initiatives visant
Au moins 5 d’ici 2024 Au moins 5 d’ici 2024
d'un traçabilité Bilanmécanisme 2020 et dude Bilan 2023 deobligatoire la gestion des matières Québec Bilan 2020 et du Bilan 2023 de la gestion des matières
D’ici 2024 En 2021 et en 2024
Québec tives mises en œuvre
En 2021 et en 2024 Au moins 5 d’ici 2024
tives mises en œuvre e pneus acheminés au remoulage et au recyclage
Au moins 5 d’ici 2024 95 % en 2023
e pneus acheminés au remoulage et au recyclage tives mises en œuvre
95 % en 2023 Au moins 5 d’ici 2024
tives mises en œuvre de critères de valorisation énergétique par règlement
Au moins 5 d’ici 2024 D'ici 2022
de critères de valorisation par règlement atériaux alternatifs utilisés énergétique en recouvrement ou autres usages d’enfouissement (excluant propres et contaminés) atériaux alternatifs utiliséssols en recouvrement ou autres usages d’enfouissement (excluant sols propres et contaminés)
tives mises en œuvre
D'ici 2022 de 10 % Réduction d’ici 2024 par rapport Réduction de 10 % au total 2015 d’ici 2024depar rapport au total de 2015 Au moins 5 d’ici 2024
tives mises en œuvre
Au moins 5 d’ici 2024
r récupération débouchés d'un mécanismeoudeleurs traçabilité obligatoire
Responsables Responsables MELCC RECYC-QUÉBEC MELCC
RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC
RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC RECYC-QUÉBEC RECYC-QUÉBEC
Au moins 5 d’ici 2024 D’ici 2024
RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC RECYC-QUÉBEC RECYC-QUÉBEC 91 % en 2018 91 % en 2018
RECYC-QUÉBEC RECYC-QUÉBEC RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC RECYC-QUÉBEC
857 000 tonnes en 2015 857 000 tonnes en 2015
MELCC RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC RECYC-QUÉBEC MELCC RECYC-QUÉBEC
143
mises œuvre supportés encore en place etives projets de en symbioses
eécocentres projets derépondant symbiosesaux supportés enProgramme place critèresencore fixés au n des redevances écocentres répondant aux critères fixés au Programme
Résultats actuels Résultats actuels
ARCH 672
APPENDIX C Quebec Environment Quality Act (Updated June 14, 2020)
ENVIRONMENT QUALITY management plan with government policy or preventing any adverse effects on public health and safety, exercise the municipality’s regulatory powers (1) if the municipality failed to amend its draft management plan within the time specified in the notice of non-compliance sent under section 53.20 or within any additional time granted by the Société; or (2) if the amendments the regional municipality made to the draft plan were also the subject of a notice of non-compliance from the Société. A regulation made by the Minister pursuant to the first paragraph is not subject to any preliminary formalities. The regulation comes into force on the day of its publication in the Gazette officielle du Québec and has the same effect as a by-law passed by the regional municipality. Notice of the coming into force of the regulation must be sent to the regional municipality concerned and to any neighbouring municipality or to any regional municipality served by an elimination facility located in the territory covered by the plan. 1999, c. 75, s. 13; 2000, c. 34, s. 253; 2017, c. 44, s. 1011.
53.22.
(Repealed).
144
1999, c. 75, s. 13; 2000, c. 34, s. 254; 2017, c. 44, s. 1021.
53.23.
The management plan may be amended at any time by the council of the regional municipality.
The management plan must be revised by the council every seven years. To that end, the council must adopt, by resolution and not later than the date of the fifth anniversary of the coming into force of the management plan, a revised draft plan. Sections 53.7 to 53.21 apply, with the necessary modifications, to the amendment and revision of the management plan. 1999, c. 75, s. 13; 2000, c. 34, s. 255; 2017, c. 44, s. 1031.
53.24.
A management plan in force is binding on the local municipalities whose territory is situated within the territory covered by the plan. Every local municipality bound by the management plan shall take the necessary measures to implement the plan in its territory.
The local municipality is also required to bring its regulation into compliance with the provisions of the plan within 12 months of the date on which the plan comes into force. 1999, c. 75, s. 13; 2000, c. 34, s. 256; 2000, c. 56, s. 194.
53.25.
From the date of coming into force of a management plan or of an amendment to a plan that contains a restriction or prohibition referred to in the second paragraph of section 53.9, the council of the regional municipality may pass a by-law to restrict or prohibit, to the extent specified in the plan, the dumping or incineration in its territory of residual materials from outside its territory. A by-law passed under the first paragraph may not, however, apply to an elimination facility established before the date of coming into force of the plan or amendment, up to the authorized elimination capacity on that date. In addition, the by-law does not apply to an elimination facility that belongs to a business and is used exclusively to eliminate the residual materials produced by the business.
Updated to 0June 14, 2020 6 © Québec Official Publisher
Q-2 / 80 of 172
regulatory standards prescribed under section 53.28; (2) any products that are in containers or packaging not in conformity with the above-mentioned standards. RECLAMATION COLLECTIVE 1999, c. 75, s. 13.
§ 4. — Recovery and reclamation of residual materials
53.30. The Government may, by regulation, regulate the recovery and reclamation of residual materials in all or part of the territory of Québec. The regulations may, in particular, Updated to 0June 14, 2020 © Québec Official 6 Publisher
Q-2 / 81 of 172
ENVIRONMENT QUALITY (1) classify recoverable and reclaimable residual materials; (1.1) determine the operations involved in the processing of residual materials that constitute reclamation within the meaning of this division, and particularly under which conditions thermal destruction of residual materials constitutes energy conversion; (2) prescribe or prohibit, in respect of one or more classes of residual materials, any mode of recovery or reclamation; (3) require any municipality to recover and reclaim or to see to the recovery and reclamation of the designated classes of residual materials, on the conditions fixed; (4) determine the conditions or prohibitions applicable to the establishment, operation and closure of any recovery or reclamation facility, in particular biological treatment and storage facilities, including facilities where sorting and transfer operations are carried out and determine the conditions or prohibitions to apply after the closure; (5) determine the conditions or prohibitions applicable to the use, sale, storage and processing of materials intended for or resulting from reclamation. For that purpose, the regulations may make the standards fixed by a certifying or standards body mandatory, and provide that in such a case, the references to the standards will include such amendments as may be made to the standards from time to time;
(a) to carry out studies, on the conditions fixed, on the quantity and composition of the containers, packaging, packaging materials, printed matter or other products, on their environmental impacts or on measures capable of mitigating or eliminating those impacts; (b) to develop, implement and contribute financially to, on the conditions fixed, programs or measures to reduce, recover or reclaim residual materials generated by the containers, packaging, packaging materials, printed matter or other products, or generated by their activities; (b.1) to obtain from the Minister or the Société québécoise de récupération et de recyclage, as applicable, on the conditions fixed, a certificate attesting to the conformity of every program or measure described in subparagraph b with the applicable regulatory prescriptions; (c) to keep registers and furnish to the Minister or the Société, as applicable, on the conditions fixed, reports on the quantity and composition of the containers, packaging, packaging materials, printed matter or other products, on the residual materials generated by their activities, and on the results obtained in terms of reduction, recovery or reclamation; (7) exempt from all or any of the requirements prescribed pursuant to paragraph 6 any person that is a member of an organization (a) the function or one of the functions of which is to implement or to contribute financially towards the implementation of a system to recover or reclaim residual materials in accordance with the conditions determined in an agreement between the organization and the Société québécoise de récupération et de recyclage, which must be transmitted to the Minister; and (b) the name of which appears on a list drawn up by the Société and published in the Gazette officielle du Québec; (8) prescribe, in the cases and on the conditions it determines, any consignment system applicable to containers, packaging, materials or products; Updated to 0June 14, 2020 © Québec Official 6 Publisher
Q-2 / 82 of 172
145
(6) require any class of persons, in particular those operating industrial and commercial establishments, which manufacture, market or otherwise distribute containers, packaging or packaging materials, printed matter or other products, which market products in containers or packaging acquired for that purpose, or, more generally, whose activities generate residual materials,
ARCH 672
APPENDIX C Quebec Environment Quality Act (Updated June 14, 2020)
ENVIRONMENT QUALITY
53.5. Regional municipalities, local municipalities and all other municipal entities authorized to act in matters concerning residual materials management shall, when acting in connection with that management, perform the duties assigned to them by law in a manner that is conducive to the implementation of the government policy adopted pursuant to section 53.4. For the purposes of this division, the Communauté métropolitaine de Montréal, the Communauté métropolitaine de Québec, Ville de Lévis, Ville de Gatineau and the regional county municipalities except those whose territory is situated entirely within the territory of the Communauté métropolitaine de Montréal or the territory of the Communauté métropolitaine de Québec are regional municipalities. 1999, c. 75, s. 13; 2000, c. 34, s. 239; 2000, c. 56, s. 191.
53.5.1. The Minister may give the Société québécoise de récupération et de recyclage various mandates to assist the Minister in carrying out his responsibilities. 2002, c. 59, s. 1; 2017, c. 44, s. 871 .
§ 2. — Regional planning
53.6.
146
origin.
The provisions of this subdivision do not apply to hazardous materials, except those of domestic
The provisions of this subdivision do not apply to biomedical waste governed by a regulation made under section 70. 1999, c. 75, s. 13.
53.7.
plan.
Every regional municipality must establish and maintain in force a residual materials management
Two or more regional municipalities may agree to establish a joint residual materials management plan. In such a case, the procedure for adopting a management plan prescribed by this subdivision shall continue to apply, with the necessary modifications, to each regional municipality concerned, except that the public consultation established under section 53.13 may be a joint public consultation. A local municipality may, with the consent of the regional municipality of which it is a part, be excluded from the management plan of the regional municipality and may, with its consent, be included in the management plan of another regional municipality. 1999, c. 75, s. 13; 2000, c. 34, s. 240; 2002, c. 59, s. 2; 2017, c. 4, 4 s. 881 .1
53.8.
A regional municipality is authorized to delegate to an intermunicipal board or to any other group formed by local municipalities the responsibility of preparing the draft management plan it is required to adopt under section 53.11.
1999, c. 75, s. 13; 2000, c. 34, s. 241; 2006, c. 3, s. 35; 2017, c. 44, s. 891.
53.9.
Each management plan must
(1) describe the territory to which it applies; (2) identify the local municipalities covered by the plan and the intermunicipal residual materials management agreements that apply in all or part of the territory; (3) list the organizations and enterprises in the territory that engage in residual materials recovery, reclamation or elimination; Updated to 0June 14, 2020 © Québec Official Publisher 6
Q-2 / 76 of 172
RECLAMATION COLLECTIVE
ENVIRONMENT QUALITY (4) contain an inventory of residual materials produced in the territory, whether they are of domestic, industrial, commercial, institutional or other origin, and list them by type; (5) contain a statement of policies and of objectives to be attained, which must be compatible with the government policy enacted pursuant to section 53.4, that concern the recovery, reclamation and elimination of residual materials, and describe the services to be offered to attain the objectives; (6) list any recovery, reclamation or elimination facilities existing in the territory and any new facilities required in order to attain the above objectives, and mention any possibility of using facilities located outside the territory; (7) formulate a proposal for the implementation of the plan that encourages public participation and the cooperation of organizations and enterprises engaging in residual materials management; (8) establish a budgetary forecast and a timetable for the implementation of the plan; (9) establish a system to supervise and monitor the plan for the purpose of periodically verifying its application, in particular the degree to which the objectives fixed have been attained and the effectiveness of the implementation measures taken by the regional municipality or local municipalities, as the case may be, covered by the plan.
For the purposes of subparagraph 1 of the first paragraph, (1) in the case of a regional county municipality whose territory is situated partly within the territory of the Communauté métropolitaine de Montréal or the Communauté métropolitaine de Québec, the territory to which the plan applies does not include the part of the territory of the regional county municipality situated within the territory of the Community ; (2) the territory to which the plan of the Communauté métropolitaine de Québec applies does not include the territory of Ville de Lévis. However, a regional county municipality and a metropolitan community referred to in subparagraph 1 of the third paragraph may agree (1) that the territory to which the regional county municipality’s plan applies includes the territory of one or more local municipalities that is part of the territory of the regional county municipality and of the territory of the metropolitan community ; (2) that the territory to which the metropolitan community’s plan applies includes the territory of all or part of the local municipalities and unorganized territories that is part of the territory of the regional county municipality. A regional county municipality referred to in subparagraph 1 of the third paragraph is exempt from the requirement to establish a residual materials management plan where, as a result of an agreement entered into pursuant to the second paragraph of section 53.7 or subparagraph 2 of the fourth paragraph of this section, all its territory is covered by the management plan of another regional county municipality or that of a metropolitan community. 1999, c. 75, s. 13; 2000, c. 34, s. 242; 2001, c. 68, s. 79; 2000, c. 56, s. 192; 2017, c. 4, 4 s. 901 .
Updated to June 0 14, 2020 © Québec Official 6 Publisher
Q-2 / 77 of 172
147
Where a regional municipality intends to restrict or prohibit the dumping or incineration in its territory of residual materials from outside the territory, it must state that intention in the plan and where a limit is set, indicate the quantities applicable to the residual materials concerned.
ARCH 672
APPENDIX D Impacts of the storm of December 6, 2010 on the coasts of Bas-Saint-Laurent and the Baie des Chaleurs: Analysis report: volume I
2. D ESCRIPTION OF THE STORM OF 6 DECEMBER 2010 The storm of December 6, 2010 was particularly devastating for the regions located on the south shore of the lower St. Lawrence estuary and the north shore of the Baie des Chaleurs. Its peculiar north-northwest track from Nova Scotia, very low barometric pressure coupled with strong easterly winds in conjunction with high tide contributed to extensive damage along the coastline.
Although three major low pressure systems swept across eastern Quebec between December 1 and December 31, 2010, that of December 6 has the lowest pressure, the surge and the highest measured water level (Figure 1 ). In figure 1, the depressions of December 14 and 21 are visible, but did not generate such a significant surge or coastal damage as considerable as the storm of December 6 for the regions located in the estuary and the Gulf of Saint -Laurent. However, it should be noted that the storm of December 21 still had significant
148
impacts in the Magdalen Islands (Bernatchez et al., 2012).
F IGURE 1. V HOURLY ARIATION OF ATMOSPHERIC PRESSURE AND WATER LEVELS AT THE STATION OF R IMOUSKI BETWEEN THE 1 AND THE 31 DECEMBER 2010.
The following analysis therefore focuses primarily on the storm of December 6, 2010. To do this, satellite images as well as synoptic maps have been listed in order to illustrate the event in a global way. Also, meteorological data recorded at four Environment Canada climate stations (Mont-Joli, Cap-Chat, Gaspé and New Carlisle), make it possible to account for variations in certain meteorological parameters during the storm event.
RECLAMATION COLLECTIVE
2.5
2.5
2
2
Water level (m)
Surcote (m)
1.5
1.5
1
1
0.5
0.5
0
0
- 0.5
- 0.5 -1
-1
05/12/2010
06/12/2010
07/12/2010
08/12/2010
09/12/2010
10/12/2010
12/11/2010
Dates (Rivière-au-Renard)
Surcote (m)
Observed water level (m)
Predicted water level (m)
Fullsea upper (mid)
F IGURE 11. N WATER LEVEL OBSERVED AND FORECAST AT THE MAREGRAPHIC STATION OF R IVIÈRE-AU- R AGAINST 5
3.50
5
3.00
4
2.50
3
2.00
2
1.50
1
1.00
0
0.50
Surcote (m)
6
-1
0.00
-2
- 0.50
05/12/2010
06/12/2010
07/12/2010
08/12/2010
09/12/2010
10/12/2010
12/11/2010
Dates (Rimouski)
Surcote (m)
Observed water level (m)
Fullsea upper (mid)
Predicted water level (m)
F IGURE 12. N WATER LEVEL OBSERVED AND FORECAST AT THE MAREGRAPHIC STATION OF R IMOUSKI FROM 5 AT 11 DECEMBER 2010.
3.5
3.5
3
3 2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0 - 0.5
- 0.5 -1
05/12/2010
-1
06/12/2010
07/12/2010
08/12/2010
09/12/2010
10/12/2010
12/11/2010
Dates (Belledune; NB) Surcote (m)
Observed water level (m)
Predicted water level (m)
F IGURE 13. N WATER LEVEL OBSERVED AND FORECAST AT THE MAREGRAPHIC STATION OF B ELLEDUNE ( NB) OF 5 AT
11 DECEMBER 2010.
Surcote (m)
Water level (m)
2.5
149
Water level (m)
AT 11 DECEMBER 2010.
ARCH 672
APPENDIX E Étude sur les plastiques agricoles générés au Québec
Tablea Principaux produits de plastique utilis
150
Produits
Type de plastique
Films d’enrobage (ensilage)
PEbd n 4
Tubes et embouts pour l’ensilage
PEbd n 4
Sacs d’ensilage ou à grain
PEbd n 4
o
o
o
Couleur usuelle
Durée de vie1
Blanc (forte majorité) et vert (quantités résiduelles)
Usage unique
Blanc à l’extérieur et noir à l’intérieur
Usage unique
Blanc à l’extérieur et noir à l’intérieur
Usage unique
RECYC-QUÉBEC Étude sur les plastiques agricoles générés au Québec
Usage agrico
RECLAMATION COLLECTIVE
au 2.2 sés dans le secteur agricole au Québec
ers oles
Tonnage
Tendances
Élevé
Marginal
Marginal
9
151
Au cours des vingt dernières années, l’ensilage à l’aide de films d’enrobage a progressivement remplacé l’ensilage en silo tour. Le faible coût associé à l’utilisation de films (aucun investissement requis en bâtiment [silo]) explique principalement cette situation. Depuis quelques années, l’ensilage en balles individuelles est progressivement remplacé par l’ensilage en ligne (enrobage en silos boudins), puisqu’il requiert une quantité inférieure de plastique. L’enrobage en balles rondes est plus fréquent que celui en balles carrées. Ce dernier est plus coûteux, puisqu’il nécessite une machinerie particulière et davantage de plastique pour enrober une balle. Il facilite toutefois l’entreposage, tout comme l’exportation (les balles sont plus facilement empilables). L’ensilage en balles carrées serait toutefois en expansion. Les nouvelles technologies de films sont plus minces pour une même qualité d’enrobage, voire supérieure, ce qui réduit la quantité totale de plastique nécessaire pour enrober une balle. Environ 5 à 10 % des producteurs agricoles québécois utilisaient l’ensilage en tubes au Québec. Les ventes d’équipements pour réaliser ce type d’enrobage seraient en décroissance. En croissance, en raison de l’augmentation de la taille des fermes. Demeure toutefois peu utilisé par les fermes (taux d’utilisation d’environ 10 % pour le foin et 20 % pour le maïs).
ARCH 672
APPENDIX E Étude sur les plastiques agricoles générés au Québec
Produits
Type de plastique
o
PEbd n 4
Filets d’enrobage
PEhd n 2
Durée de vie1
Blanc à l’extérieur et noir à l’intérieur
De 8 à 24 mois
Vert, blanc ou bleu
Usage unique
Usage agrico
152
Toiles d’ensilage
Couleur usuelle
4
o
LEFEBVRE, Germain, LAFRENIÈRE, Carole et LAPIERRE, Brigitte. 2015. La conservation des ensi https://www.craaq.qc.ca/documents/files/EPLF1501/Lefebvre_resume(1).pdf, consulté le 30
RECYC-QUÉBEC Étude sur les plastiques agricoles générés au Québec
ers oles
RECLAMATION COLLECTIVE
Tonnage
Tendances L’utilisation de silo fosse est en croissance, en raison de l’augmentation de la taille des fermes. Les grosses fermes laitières (200 à 300 vaches) se dotent de ce type d’installation, puisqu’il facilite la gestion de l’alimentation des vaches en stabulation libre (ration dans le mélangeur) et qu’il permet d’entreposer de très grandes quantités. L’utilisation de silo meule est à l’inverse en diminution notamment en raison de son manque d’efficacité et d’étanchéité qui entraîne des pertes importantes (mauvaise conservation de l’ensilage). Ce mode d’ensilage est principalement utilisé lorsque les rendements en fourrages sont très importants et que les producteurs ont des quantités très importantes de fourrages à ensiler. En croissance au détriment des ficelles. Les filets permettent un meilleur pressage des balles en plus d’une réduction des risques de perforation du film qui recouvre la balle par les tiges rigides de luzerne (meilleure protection contre les 4 intempéries et réduction du temps de pressage) . La plupart des producteurs agricoles possèdent aujourd’hui les équipements requis pour enrober les balles à l’aide de filets et délaissent ainsi l’utilisation de la ficelle.
Élevé
ilages : Nouvelles réalités, nouveaux outils, CRAAQ, tiré du site juillet 2018.
10
153
Élevé
ARCH 672
APPENDIX E
154
Étude sur les plastiques agricoles générés au Québec
Produits
Type de plastique
Ficelles d’enrobage
PP n 5
Sacs à grains
o
o
PEbd n 4
o
Sacs de semences
PP n 5
Sacs de moulées
PP n 5
Sacs de mousse de tourbe
Contenants pour pesticides, fertilisants et engrais
o
PEbd
Couleur usuelle
Durée de vie1
Varié
Usage unique
Blanc à l’extérieur et noir à l’intérieur
Usage unique
Blanc, quelquesuns sont noirs à l’intérieur Blanc, quelquesuns sont noirs à l’intérieur Blanc, quelquesuns sont noirs à l’intérieur
Usage unique
Usage unique
Usage unique
o
PEhd n 2 o et PP n 5 (bouchon)
Varié
Usage unique
RECYC-QUÉBEC Étude sur les plastiques agricoles générés au Québec
Usage agrico
ers oles
RECLAMATION COLLECTIVE
Tonnage
Tendances
n. d.
Élevé
Marginal
Élevé
Élevé
Marginal L’utilisation de contenants varie selon différents facteurs tels que les conditions météorologiques qui ont un impact sur la présence des parasites. Selon les données nationales fournies par AgriRÉCUP, l’utilisation des contenants est demeurée relativement constante au cours des cinq dernières années si ce n’est qu’en 2016, une année caractérisée par une forte présence de parasites.
Élevé
11
155
En décroissance au détriment des filets pour l’enrobage des balles rondes. Seule une faible part des producteurs agricoles possèdent encore de vieux équipements permettant uniquement l’enrobage des balles à l’aide de ficelles. La ficelle est principalement utilisée pour presser les balles carrées (grosses et petites). L’utilisation de ficelles pour enrober la grosse balle carrée est en croissance, suivant l’expansion de l’ensilage en balles carrées. Des ficelles biodégradables en sisal (plante de la famille des Agavaceae) sont également commercialisées sur le marché. Ces ficelles demeurent toutefois peu utilisées en raison de leur coût plus élevé. Utilisé principalement lors de grosses récoltes, lorsque les silos sont insuffisants pour entreposer l’ensemble des grains. Peu utilisé au Québec, usage plus répandu dans l’Ouest canadien. Les gros producteurs achètent de plus en plus des semences en vrac, en contenants réutilisables et en big bags (500 kg ou 1000 kg). n. d.
ARCH 672
APPENDIX E Étude sur les plastiques agricoles générés au Québec
Produits
Type de plastique
o
Paillis de plastique
PEbd n 4
Recouvrement de tunnels (grands/minis)
PEbd n 4
Bâches ou couvertures flottantes
PEbd n 4
Sacs pour couvertures flottantes
PP n 5 o PEhd n 2
Durée de vie1
Noir (forte majorité), blanc, transparent ou autre
De 1 à 3 ans
Transparent ou blanc
1 an
Blanc
3 ans
Varié
De 2 à 5 ans
156
o
Couleur usuelle
Filets anti-insectes et anti-oiseaux
o
o
Insectes : 5 ans o
PEhd n 2
Blanc
Oiseaux : 10 ans
RECYC-QUÉBEC Étude sur les plastiques agricoles générés au Québec
Usage agrico
ers oles
RECLAMATION COLLECTIVE
Tonnage
Tendances
La qualité des paillis de plastique biodégradables (films composés majoritairement d’amidon issu du maïs auquel on ajoute un agent complexifiant de plastique appelé OXOpolyéthylène) et photodégradables (films à base de polyéthylène auquel est ajouté un agent prodégradant) s’est grandement améliorée au cours des dernières années. Un nombre croissant de producteurs y ont recours (de 5 à 20 % des producteurs). Néanmoins, les paillis de plastique noir conventionnels demeurent les plus utilisés.
n. d.
Élevé
Moyen
L’utilisation de couvertures hivernales est en croissance au Québec. L’utilisation des bâches est également en croissance. Ces dernières sont principalement utilisées en production biologique pour contrer la croissance des mauvaises herbes. Les bâches faisaient partie des produits admissibles à une aide financière dans le cadre du programme d’appui en agroenvironnement Prime-Vert 2013-2018 soutenant l’amélioration et l’acquisition d’équipements pour la réduction des risques liés aux pesticides.
Marginal
En croissance, suivant l’augmentation de l’utilisation des couvertures flottantes.
L’utilisation de filets anti-insectes est requise en mode de production biologique. Compte tenu de la croissance de la production biologique au Québec et de la volonté gouvernementale et sociale de réduire l’utilisation des pesticides, l’utilisation de filets anti-insectes pourrait être amenée à croître au cours des prochaines années. Par ailleurs, plusieurs producteurs agricoles se sont récemment dotés de filets anti-insectes, puisqu’ils étaient admissibles à une aide financière dans le cadre du programme d’appui en agroenvironnement Prime-Vert 2013-2018. Filets anti-oiseaux : un nombre croissant de producteurs remplacent les filets anti-oiseaux par des effaroucheurs dont l’installation représente beaucoup moins de travail que celle requise pour les filets.
Marginal
12
157
Élevé
ARCH 672
APPENDIX E Étude sur les plastiques agricoles générés au Québec
Produits
158
Système goutte à goutte
Tapis de sol Recouvrement pour serre Plateaux de semis
Type de plastique
Couleur usuelle
Durée de vie1
Noir
1 an
Noir et blanc
5 ans
Transparent ou blanc
4-5 ans
Varié
n. d.
Varié
n. d.
o
Varié
Unique
o
Varié
5-6 ans
o
Varié
Plus de 10 ans
o
o
PEbd n 4
o
PP n 5 o
PEbd n 4 o
PS n 6 o
Pots (pour les plants)
PP n 5 o PEbd n 4
Tuteurage et palissage
PP n 5
Tubes de protection Contenants de récolte
PP n 5 PEhd n 2
Produits sanitaires
PEhd n 2
Varié
s. o.
Produits de santé pour animaux
Plusieurs
Varié
s. o.
Couvertures pour fosse à lisier
Plusieurs dont PEhd
Noir, vert
De 10 à 15 ans
RECYC-QUÉBEC Étude sur les plastiques agricoles générés au Québec
Usage agrico
ers oles
RECLAMATION COLLECTIVE
Tonnage
Tendances
Élevé
Élevé Marginal Marginal
Marginal Marginal
n. d.
Les contenants de récolte sont pour la plupart utilisés durant plusieurs années.
n. d.
n. d.
n. d.
n. d.
Marginal
n. d.
Marginal
13
159
Marginal
Selon les perspectives de changements climatiques, l’irrigation est appelée à croître comme système d’adaptation à des étés plus secs et à des températures plus chaudes. Par contre, sur le plan économique, même dans un horizon de long terme (2050), la rentabilité d’installer des systèmes d’irrigation pour les grandes cultures n’est pas démontrée, compte tenu du faible gain en rendement et des coûts élevés des systèmes d’irrigation. Ce sont donc davantage de superficies maraîchères, et en particulier de pommes de terre, qui pourraient être irriguées. La plupart des producteurs (plus de 90 %) qui utilisent des paillis pour leurs cultures utilisent également un système d’irrigation goutte à goutte. L’utilisation de tapis de sol est en forte croissance au Québec. La tendance est à l’utilisation de plastique plus épais afin d’offrir plus de résistance aux hivers et notamment au verglas. Un nombre important de plateaux utilisés en horticulture ont comme derniers usagers les consommateurs. Un nombre important de pots utilisés en horticulture ont comme derniers usagers les consommateurs. Un nombre croissant d’équipements utilisés pour le tuteurage et le palissage sont biodégradables ou photodégradables.
ARCH 672
APPENDIX E Étude sur les plastiques agricoles générés au Québec
Produits
Type de plastique o
Tubulures (5/16) Conduits de la ligne principale Raccords et chalumeaux
Durée de vie1
PEbd n 4 PVC (vieilles tubulures) o PEhd n 2 et o PEbd n 4
Varié : bleu, transparent, vert ou noir
De 10 à 15 ans
Varié : bleu, transparent, vert ou noir
De 10 à 15 ans
Nylon
Varié
De 10 à 15 ans
Productions laitière et bovine
160
Couleur usuelle
Productions animales
Productions maraîchère et fruitière Cultures en serre s. o. : sans objet n. d. : non disponible. 1 Tous les types de produits confondus. Source : Compilation Groupe AGÉCO, 2018.
Usage agrico
Production fourragère Pépinières
RECYC-QUÉBEC Étude sur les plastiques agricoles générés au Québec
G
Acéricultur
ers oles
RECLAMATION COLLECTIVE
Tonnage
Tendances
Élevé
Élevé Élevé
Le nombre d’érablières possédant un système de tubulures serait plutôt stable au Québec. La production acéricole est contingentée au Québec, c’est-à-dire qu’elle est alignée sur les besoins du marché. Advenant que le marché soit favorable et que les besoins en sirop d’érable augmentent, les contingents de production pourraient éventuellement augmenter, et donc, l’utilisation de tubulures. Par ailleurs, il y a une tendance à changer plus fréquemment les chalumeaux pour réduire les risques de contamination.
Grandes cultures
re
161
14
ARCH 672
APPENDIX F Multiplatforme Matapédia-Mitis
Project description
162
The Matapédia-Mitis Multiplatform project aims to implement a multiplatform covering three components (composting platform, landfill site (LET) and ecocenter). Its location would be in the Municipality of Saint-Moïse in La Matapédia. The project is based on the three dimensions of sustainable development (social acceptability, environmental preservation and cost reduction) and is being carried out in partnership between the Régie
http://www.ecoregie.ca/multiplatforme/accueil.html
intermunicipale de traitement des matières résiduelles des MRC de La Matapédia et de La Mitis and these MRCs. The project is scheduled to begin operations in 2023-2024.
RECLAMATION COLLECTIVE
Project goals
• • • • •
Réduire les coûts de traitement des matières organiques et des déchets; Permettre le retour du compost aux citoyens qui participent au bac brun; Viser la réduction des déchets enfouies autant que possible; Obtenir une prévisibilité à court-moyen-long terme de notre gestion des matières résiduelles; Être à la fine pointe de la technologie pour un traitement écologique des matières résiduelles à petite échelle;
•
•
•
Offrir un service de proximité pour la gestion des matières compostables et des déchets, limitant ainsi les gaz à effet de serre générés en réduisant de 85 000 km le transport de ces matières; Avoir une autonomie locale du traitement de nos matières dans un but de développer des projets d’économie circulaire; Créer des emplois locaux.
163
Project location
Géographique, social et politique
Normes du REIMR*
•
• •
•
• • • •
Proximité de la route 132 afin d’éviter de circuler dans au cœur des municipalités; Localisation le plus possible à mi-chemin entre les deux MRC afin d’avoir un équilibre dans les frais de transport lié à la collecte; Être à l’extérieur de la zone agricole; Superficie d’environ 20,5 hectares minimum; Prendre en compte tout développement touristique potentiel et les écosystèmes connus; Terrain ne nécessitant pas d’expropriation, idéalement à vendre;
• • • • • • • •
N’avoir aucun impact visuel sur le paysage; Rayon de 1000 mètres des puits municipaux et des puits privés desservant un réseau d’aqueduc; Rayon de 60 mètres des cours d’eau; Rayon de 300 mètres des lacs ; Rayon de 500 mètres des habitations et des périmètres d’urbanisation; Hors des terrains ayant une pente supérieure à 8 %; Hors des nappes aquifères à vulnérabilité élevé et des plaines inondables ; Hors des milieux humides et rayon de 60 mètres des milieux humides; Hors des terrains présentant une faible capacité portante (dépôts organiques). *Règlement sur l’enfouissement et l’incinération des matières résiduelles
ARCH 672
APPENDIX G Dowel Laminated Timber: The all wood mass timber panel (StructureCraft)
D LT
PROF IL ES
PROFILE MOULDING
PROFILE OPTIONS
NEW PROFILES
Each of the boards in a DLT panel are run through our profile moulder, allowing custom profiles to be integrated into the bottom of the panel.
Some examples of aesthetic and acoustic profiles we offer are shown below. Each of the profiles are parametric - for example chamfers, roundovers, or kerfs are available in any size, radius, or depth. The acoustic profiles are able to develop Noise Reduction Coefficients of up to 0.70.
Developing a new profile is a simple process and can be done on a project specific basis. Profiles are fully customizable to suit the particular performance and aesthetic requirements of each project.
Typically laminations are nominal 2x width, with 3x and 4x dimensions available.
164
S TA N D A R D D LT P R O F I L E S
These standard profiles give the designer a variety of aesthetic options at no extra cost. Variations of these can be easily incorporated. Depth available: 2x4 to 2x12, 3x4 to 3x12, 4x4 to 4x12. Max depth = 12 1/4” without sheathing
KERF EDGE
CHAMFER EDGE
EASED EDGE
SQUARE EDGE
A C O U S T I C D LT P R O F I L E S The Acoustic Square profile incorporates a groove into the sides of each board which is acoustically engineered to trap sound waves. This groove is filled with non-combustible, fibrous insulation strips which act as an absorbing material to shorten the reverberation time and create a higher acoustic performance inside rooms. It is available in nominal 6” through 12” panel depths, using lamination thicknesses from 1-1/2” to 4”, with a range of wood species and grades. This profile has been independently tested to an NRC (noise reduction coefficient) value of 0.70. Test reports including performance across the frequency spectrum are available upon request.
ACOUSTIC SQUARE (NRC=0.70)
Depths available: 6” to 12”
StructureCraft DLT Design & Profile Guide © V4.0 – USA
18
RECLAMATION COLLECTIVE
S P E C I A LT Y
D LT
PRO FILES
Panel layups using boards of different depths or thicknesses are possible with DLT. Fluted patterns create an interesting aesthetic if exposed, as well as having a structural performance which is between that of the two lamination depths. Random patterns are more labor intensive to create but are possible.
SINGLE FLUTE
DOUBLE FLUTED
RANDOM FLUTED
(any variation can be customized)
SAWTOOTH
BULLNOSE
GAPPED
Service integration inside DLT panels is possible through several different methods:
165
ROUTING FOR SERVICE RUNS The DLT panel is created flat and then milled to suit the service runs. Services can be left exposed, or smaller infill boards can be added after the services have been run to cover them up. Services can be run perpendicular to panel within the gaps between panel ends. FLUTED SERVICE RUNS If service routs are pre-planned, flutes can be left in certain locations to provide routing for wiring and piping. These can be left exposed, or covered with acoustic treatment or boards after service installation. SERVICE CHANNELS DLT panels can be placed with gaps between them to allow the creation of larger service channels. These channels can be left accessible from above, and can be covered from below with permanent infill panels. Alternatively the channels can be made accessible from below with removable infill panels, and permanently closed in from above. CURVED PANELS DLT panels can be curved perpendicular to the primary span direction. This is achieved using a unique moulded profile which allows the panel to be manufactured flat but curved into place during installation. Radii larger than 10 ft are achievable. More dramatically curved and warped panels are also possible using NLT, which we have done for several projects.
18
StructureCraft DLT Design & Profile Guide © V4.0 – USA
19
ARCH 672
APPENDIX H
Current (https://www.thoma.at/aktuelles/) Woodhouse (https://www.thoma.at/holzhaus/) travel (https://www.thoma.at/reise/) (https://www.thoma.at) partner (https://www.thoma.at/partner/) Knowledge (https://www.thoma.at/wissen/) Companies (https://www.thoma.at/unternehmen/)
Holz100 wall types (Thoma)
Contact (https://www.thoma.at/kontakt/)
DE (HTTPS://WWW.THOMA.AT/)
(https://www.thoma.at/suche)
Home (https://www.thoma.at) > Wooden (https://www.thoma.at/holzhaus/holz100/)house (https://www.thoma.at/holzhaus/) > This is Holz100 (https://www.thoma.at/holzhaus/holz100/) > Holz100 wall types (https://staging.thoma.at/?p=12439)
Wall, ceiling, roof - with Holz100 everything is solid wood From the 12 inner wall to the 36 outer wall and ceiling systems, you will nd the right component for every requirement at Holz100. So you can build your house from pure wood - without compromise.
36 mm outer wall Our thickest outer wall with its 36cm solid wood o ers the best living climate and the highest level of comfort. It enables building without insulation.
30 mm outer wall
166
With its almost 140kg per square meter, this wall manages to compensate for heating and cooling load peaks over a month thanks to its high storage capacity.
25 mm outer wall Our 25cm wall is the rst to be executed in "Holz100-Thermo" and thus o ers higher insulation properties compared to normal solid wood.
20 mm outer wall Due to the thick wall structure, the 20cm wall o ers a high level of re protection and all the advantages of a solid solid wood wall.
17 outer wall The 17cm wall is our entry-level model for the exterior wall. It combines a cost-oriented budget with a high demand for healthy living and comfort.
14 mm inner wall Our 14cm wall is used as a load-bearing inner wall and also increases
RECLAMATION COLLECTIVE
17 outer wall The 17cm wall is our entry-level model for the exterior wall. It combines a cost-oriented budget with a high demand for healthy living and comfort.
14 mm inner wall Our 14cm wall is used as a load-bearing inner wall and also increases the heat storage capacity of your house.
12 inner wall Our 12cm wall is used as a non-load-bearing interior wall. It combines a minimal wall thickness with the advantages of solid wood, such as good sound insulation.
167
21 ceiling Our 21cm ceiling enables spans of over 5 meters thanks to the upper and lower chords. The two inner layers also have a statically sti ening e ect.
17 ceiling Our 17cm ceiling has similar static spans to its big sister with 21cm. As a less sti ening ceiling and roof panel, it is the cost-optimized solution for uncompromising solid wood construction.
Share:
Facebook (https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.thoma.at%2Fholz100-wandtypen%2F)
(https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fwww.thoma.at%2Fholz100-wandtypen%2F&description=Holz100+Wandtypen) WhatsApp (whatsapp://send?text=Holz100+Wandtypen%3A+https%3A%2F%2Fwww.thoma.at%2Fholz100-wandtypen%2F)
Continue reading
ARCH 672
APPENDIX I
168
Everyone is a recycler (Precious Plastic)
RECLAMATION COLLECTIVE
Physical Properties
Plastic
thermal properties
strength
density
Abbreviation - Brand name
Tm (°C)
Tg (°C)
Td (°C)
Cte (ppm/°C)
Tensile (psi)
Compressive (psi)
g/cc
PET - Polyethyleneterephthalate
245 - 265
73 - 80
21 - 38
65
7000 - 10500
11000 - 15000
1.29 - 1.40
LDPE - Low density polyethylene
98 - 115
-25
40 - 44
100 - 220
1200 - 4550
-
0.917 - 0.932
HDPE - High density polyethylene
130 - 137
-
79 - 91
59 - 110
3200 - 4500
2700 - 3600
0.952 - 0.965
PP - polypropylene
168 - 175
-20
107 - 121
81 - 100
4500 - 6000
5500 - 8000
0.900 - 0.910
P¬C - polyvinylchloride
-
75 - 105
57 - 82
50 - 100
5900 - 7500
8000 - 13000
1.30 - 1.58
P´ - polystyrene
-
74 - 105
68 - 96
50 - 83
5200 - 7500
12000 - 13000
1.04 - 1.05
Tm - crystalline melting temperature (some plastics have no crystallinity and are said to be amorphous). Tg - glass transition temperature (the plastic becomes brittle below this temperature). Cte - coefficient of linear thermal expansion. Tensile ´trength - load necessary to pull a sample of the plastic apart. Compressive ´trength - load necessary to crush a sample of the plastic. Density - aka specific gravitymass of plastic per unit volume.
169
Td - heat distortion temperature under a 66 psi load.
ARCH 672
APPENDIX J
Recovery site along transportation roads in every municipality of La Mitis
170
Lifespan of technical landfills (LET)
500 m Distance from urban areas
RECLAMATION COLLECTIVE
Cell No. 1
Cell No. 2
Cell No. 3
Cell No. 4
Cell No. 5
(approx dates based on filling rate) construction: 2024 operation: 2024-2035
(approx dates based on filling rate) construction: 2034 operation: 2035-2041
(approx dates based on filling rate) construction: 2040 operation: 2041-2047
(approx dates based on filling rate) construction: 2046 operation: 2047-2053
(approx dates based on filling rate) construction: 2052 operation: 2053-2059
11 years
6 years
6 years
6 years
6 years
171
90 m Technical cell size
30 m
60 m Distance from watercourses
500 M
ARCH 672
APPENDIX K
172
Optimal forestry management of Black spruce (Picea mariana)
RECLAMATION COLLECTIVE
173
ARCH 672
APPENDIX L Board foot volume - Black spruce (Picea mariana)
Table 4—Board-foot volumes, Scribner rule (1-foot stump to 6-inch a
174
Susitna River basin, Alaska
a b c d
Regression: BFV = 0.005601 * (d2h)1.05619 ; increased efficienc standard error of estimate = 6.4 board feet or 16 percent of the For example, 9-inch class includes trees 8.6 to 9.5 inches in di For example, 60-foot class includes trees 57.6 to 62.5 feet tall. Number of trees; range of data is shaded. Includes 208 white
9
RECLAMATION COLLECTIVE
h top dib) given dbh and height to a usable top for white spruce and black spruce,
175
cy = 171 percent; e mean volume. iameter . spruce and 27 black spruce.
ARCH 672
APPENDIX M projected tempetature in a high carbon future
SCENARIAO 2080
DAMPING COEFFICIENT 0.3 0.4 0.5 0.6
176
0.1 0.2 0.7 0.8 0.9 HIGH HIGH 42.0 °C CARBON AVERAGE 31.5 °C 41.0 °C 39.9 °C 38.9 °C 37.8 °C 36.8 °C 35.7 °C 34.7 °C 33.6 °C 32.6 °C 90TH LOW 21.0 °C HIGH HIGH 36.0 °C CARBON AVERAGE 26.0 °C 35.0 °C 34.0 °C 33.0 °C 32.0 °C 31.0 °C 30.0 °C 29.0 °C 28.0 °C 27.0 °C AVERAGE LOW 16.0 °C
RECLAMATION COLLECTIVE
projected tempetature in a low carbon future
SCENARIAO 2080
0.1
0.2
0.3
DAMPING COEFFICIENT 0.4 0.5 0.6
0.7 0.8 0.9 LOW HIGH 38.1 °C CARBON AVERAGE 27.6 °C 38.1 °C 38.1 °C 38.1 °C 38.1 °C 38.1 °C 38.1 °C 38.1 °C 38.1 °C 38.1 °C 90TH LOW 17.0 °C LOW HIGH 34.0 °C CARBON AVERAGE 23.5 °C 34.0 °C 34.0 °C 34.0 °C 34.0 °C 34.0 °C 34.0 °C 34.0 °C 34.0 °C 34.0 °C AVERAGE LOW 13.0 °C
177
ARCH 672
APPENDIX N How to Design a Building So It Works Like a Termite Mound
178
The below image shows the application that was used to optimize the thickness and surface area of thermal mass inside a building, to control the interior temperature and rate of buoyancy ventilation in “free-running” mode.
Contributed by: Salmaan Craig and Remy Fortin
RECLAMATION COLLECTIVE
CBE Thermal Comfort Tool
Complies with ASHRAE Standard 55-2017 80% acceptability limits = Operative temperature: 24.2 to 31.2 °C Comfortable 90% acceptability limits = Operative temperature: 25.2 to 30.2 °C Comfortable
179
NOTE: Method is applicable only for occupant-controlled naturally conditioned spaces that meet all of the following criteria: (a) There is no mechanical cooling system installed. No heating system is in operation; (b) Metabolic rates ranging from 1.0 to 1.3 met; and (c) Occupants are free to adapt their clothing to the indoor and/or outdoor thermal conditions within a range at least as wide as 0.51.0 clo
ARCH 672
APPENDIX O SHORT SPAN PANELS
180
Thermal performance and properties WOOD SHORT SPAN PANEL #1 SOFTWOOD PANEL TYPE CDLT PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 17 cm PANEL AREA 8.75 m² 17cm CO2 -620 CDLT CO2 unc 977 INSULATED CO2 min -1597 CO2 max 357 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.006 NUMBER OF PANELS PEOPLE Q wd PANELS 5 0.05 9 10 0.1 17 15 0.15 25 20 0.2 34 25 0.25 42 30 0.3 50
WOOD SHORT SPAN PANEL #2 SOFTWOOD PANEL TYPE CDLT PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 26 cm PANEL AREA 8.75 m² 26cm CO2 -900 CDLT CO2 unc 1500 UNINSULATED CO2 min -2400 CO2 max 600 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.006 NUMBER OF PANELS PEOPLE Q wd PANELS 5 0.05 9 10 0.1 17 15 0.15 25 20 0.2 34 25 0.25 42 30 0.3 50
WOOD SHORT SPAN PANEL #3 SOFTWOOD PANEL TYPE DLT PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 7.96 cm PANEL AREA 8.75 m² 7.96 cm CO2 -290 DLT PANEL CO2 unc 450 INSULATED CO2 min -740 CO2 max 160 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0073 NUMBER OF PANELS PEOPLE Q wd PANELS 5 0.05 7 10 0.1 14 15 0.15 21 20 0.2 28 25 0.25 35 30 0.3 42
CONCRETE SHORT SPAN PANEL #1 SOFTWOOD PANEL TYPE CDLT PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 15 cm PANEL AREA 8.75 m² 15 cm CO2 341 CONCRETE CO2 unc 69 INSULATED CO2 min 272 CO2 max 410 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.008 NUMBER OF PANELS PEOPLE Q cr PANELS 5 0.05 7 10 0.1 13 15 0.15 19 20 0.2 25 25 0.25 32 30 0.3 38
CONCRETE SHORT SPAN PANEL #2 SOFTWOOD PANEL TYPE CDLT PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 30 cm PANEL AREA 8.75 m² 30 cm CO2 681 m² CONCRETE CO2 unc 138 m² UNINSULATED CO2 min 543 CO2 max 819 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.007 NUMBER OF PANELS PEOPLE Q cr PANELS 5 0.05 8 10 0.1 15 15 0.15 22 20 0.2 29 25 0.25 36 30 0.3 43
CONCRETE SHORT SPAN PANEL #3 SOFTWOOD PANEL TYPE DLT PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 4.5 cm PANEL AREA 8.75 m² 4.5 cm CO2 102 m² CONCRETE CO2 unc 21 m² INSULATED CO2 min 81 CO2 max 123 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0115 NUMBER OF PANELS PEOPLE Q cr PANELS 5 0.05 5 10 0.1 9 15 0.15 14 20 0.2 18 25 0.25 22 30 0.3 27
PLASTIC SHORT SPAN PANEL #1 PLASTIC PANEL TYPE BRICK PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 17 cm 17 cm PANEL AREA 8.75 m² PLASTIC CO2 8011 BRICK CO2 unc 527 INSULATED CO2 min 7484 CO2 max 8538 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0074 NUMBER OF PANELS PEOPLE Q pl PANELS 5 0.05 7 10 0.1 14 15 0.15 21 20 0.2 28 25 0.25 34 30 0.3 41
PLASTIC SHORT SPAN PANEL #2
PLASTIC SHORT SPAN PANEL #3 PLASTIC PANEL TYPE BRICK PANEL DIMENSIONS 2.5m X 3.5m PANEL THICKNESS 4.4 cm 4.4 cm PANEL AREA 8.75 m² PLASTIC CO2 2073 BRICK CO2 unc 136 INSULATED CO2 min 1937 CO2 max 2209 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0097 NUMBER OF PANELS PEOPLE Q pl PANELS 5 0.05 6 10 0.1 11 15 0.15 16 20 0.2 21 25 0.25 26 30 0.3 31
PANEL TYPE PANEL DIMENSIONS PANEL THICKNESS PANEL AREA 24 cm CO2 PLASTIC CO2 unc UNINSULATED CO2 min CO2 max DAMPENING Q/PERSON Q/PANEL NUMBER OF PANELS PEOPLE Q 5 0.05 10 0.1 15 0.15 20 0.2 25 0.25 30 0.3
PLASTIC BRICK 2.5m X 3.5m 24 cm 8.75 m² 11310 744 10566 12054 0.6 0.01 0.0074 pl PANELS 7 14 21 28 34 41
RECLAMATION COLLECTIVE
LONG SPAN PANELS Thermal performance and properties LONG SPAN PANEL #1
SOFTWOOD CDLT PANEL DIMENSIONS 2.5m X 7m PANEL THICKNESS 17 cm PANEL AREA 17.5 m² 17 cm CO2 -1200 INSULATED CDLT CO2 unc 2000 PANEL CO2 min -3200 CO2 max 800 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0121 NUMBER OF PANELS PEOPLE Q wd PANELS 25 0.25 21 50 0.5 42 75 0.75 62 100 1.0 83 125 1.25 104 150 1.5 124 PANEL TYPE
CONCRETE LONG SPAN PANEL #1 PANEL TYPE
PEOPLE 25 50 75 100 125 150
PANEL DIMENSIONS 2.5m X 7m PANEL THICKNESS 15 PANEL AREA 17.5 m² CO2 681 m² CO2 unc 138 m² CO2 min 543 CO2 max 819 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0154 NUMBER OF PANELS Q cr PANELS 0.25 17 0.5 33 0.75 49 1.0 65 1.25 82 1.5 98
PLASTIC LONG SPAN PANEL #1 PANEL TYPE
PLASTIC BRICK
PANEL DIMENSIONS 2.5m X 7m PANEL THICKNESS 17 cm PANEL AREA 17.5 m² 17 cm CO2 16000 PLASTIC BRICK CO2 unc 527 INSULATED CO2 min 15473 CO2 max 16527 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0148 NUMBER OF PANELS PEOPLE Q pl PANELS 25 0.25 17 50 0.5 34 75 0.75 51 100 1.0 68 125 1.25 85 150 1.5 102
SOFTWOOD CDLT PANEL DIMENSIONS 2.5m X 7m PANEL THICKNESS 7.96 cm PANEL AREA 17.5 m² 7.96 cm CO2 -581 INSULATED CO2 unc 915 CDLT PANEL CO2 min -1496 CO2 max 334 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0147 NUMBER OF PANELS PEOPLE Q wd PANELS 25 0.25 18 50 0.5 35 75 0.75 52 100 1.0 69 125 1.25 86 150 1.5 103
PANEL TYPE
7.96 cm INSULATED CDLT PANEL
PEOPLE 25 50 75 100 125 150
PLASTIC LONG SPAN PANEL #2 PANEL TYPE
PANEL TYPE
CONCRETE
PANEL DIMENSIONS 2.5m X 7m PANEL THICKNESS 30 PANEL AREA 17.5 m² 4.5 cm CO2 204 m² CONCRETE CO2 unc 41 m² INSULATED CO2 min 163 CO2 max 245 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.023 NUMBER OF PANELS PEOPLE Q cr PANELS 25 0.25 11 50 0.5 22 75 0.75 33 100 1.0 44 125 1.25 55 150 1.5 66
PLASTIC BRICK
PANEL DIMENSIONS 2.5m X 7m PANEL THICKNESS 4.4 cm 4.4 cm PANEL AREA 17.5 m² PLASTIC CO2 4147 BRICK CO2 unc 273 INSULATED CO2 min 3874 CO2 max 4420 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.019 NUMBER OF PANELS PEOPLE Q pl PANELS 25 0.25 14 50 0.5 27 75 0.75 40 100 1.0 53 125 1.25 66 150 1.5 79
wd PANELS 25 50 75 100 125 150
CONCRETE LONG SPAN PANEL #3
CONCRETE LONG SPAN PANEL #2 PANEL TYPE
PANEL DIMENSIONS PANEL THICKNESS PANEL AREA CO2 CO2 unc CO2 min CO2 max DAMPENING Q/PERSON Q/PANEL NUMBER OF PANELS Q 0.25 0.5 0.75 1.0 1.25 1.5
SOFTWOOD CDLT 2.5m X 4.7m 7.5 cm 11.75 m² -390 614 -1004 224 0.6 0.01 0.01
4.5 cm CONCRETE INSULATED
PEOPLE 25 50 75 100 125 150
PANEL DIMENSIONS PANEL THICKNESS PANEL AREA CO2 CO2 unc CO2 min CO2 max DAMPENING Q/PERSON Q/PANEL NUMBER OF PANELS Q 0.25 0.5 0.75 1.0 1.25 1.5
CONCRETE 2.5m X 4.7m 4.5 11.75 m² 137 m² 28 m² 109 165 0.6 0.01 0.0159 cr PANELS 16 32 48 63 79 95
PLASTIC SPAN PANEL #3 PANEL TYPE PANEL DIMENSIONS PANEL THICKNESS PANEL AREA 4.4 cm CO2 PLASTIC BRICK CO2 unc INSULATED CO2 min CO2 max DAMPENING Q/PERSON Q/PANEL NUMBER OF PANELS PEOPLE Q 25 0.25 50 0.5 75 0.75 100 1.0 125 1.25 150 1.5
PLASTIC BRICK 2.5m X 4.7m 4.4 cm 11.75 m² 2784 183 2601 2967 0.6 0.01 0.013 pl PANELS 20 39 58 77 97 116
181
15 cm CONCRETE INSULATED
CONCRETE
LONG SPAN PANEL #3
LONG SPAN PANEL #2 PANEL TYPE
ARCH 672
APPENDIX P CARBON FOOTPRINT COMPARISON Short span
CONCRETE PLINTH #1
PANEL TYPE
PANEL TYPE
20cm CONCRETE INSULATED
PEOPLE 5 10 15 20 25 30
PANELS 80 159 239 318 397 477
PANEL DIMENSIONS PANEL THICKNESS PANEL AREA CO2 CO2 unc CO2 min CO2 max DAMPENING Q/PERSON Q/PANEL NUMBER OF PANELS Q 0.05 0.1 0.15 0.2 0.25 0.3
CONCRETE PLINTH/PANEL #3 SOFTWOOD PANEL TYPE DLT PANEL DIMENSIONS 2.5m X 7m PANEL THICKNESS 20 cm PANEL AREA 17.5 m² 20cm CO2 908 CONCRETE CO2 unc 184 INSULATED CO2 min 724 CO2 max 1092 DAMPENING 0.6 Q/PERSON 0.01 Q/PANEL 0.0145 NUMBER OF PANELS PEOPLE Q PANELS 5 0.05 4 10 0.1 7 15 0.15 11 20 0.2 14 25 0.25 18 30 0.3 21
SOFTWOOD CDLT 2.5m X 1.1m 20 cm 2.31 m² 120 24 96 144 0.6 0.01 0.0019 PANELS 27 53 79 106 132 158
182
PANEL DIMENSIONS PANEL THICKNESS PANEL AREA 20cm CO2 CONCRETE CO2 unc INSULATED CO2 min CO2 max DAMPENING Q/PERSON Q/PANEL NUMBER OF PANELS PEOPLE Q 5 0.05 10 0.1 15 0.15 20 0.2 25 0.25 30 0.3
CONCRETE PLINTH #2
SOFTWOOD CDLT 2.5m X 0.3m 20 cm 0.75 m² 39 8 31 47 0.6 0.01 0.00063
WOOD SHORT SPAN PANEL #1 # PANEL
MIN
MAX
5 10 15 20 25 30
-7985 -15970 -23955 -31940 -39925 -47910
1785 3570 5355 7140 8925 10710
WOOD SHORT SPAN PANEL #2
AVERAGE # PANEL -3993 -7985 -11978 -15970 -19963 -23955
5 10 15 20 25 30
WOOD SHORT SPAN PANEL #3
MIN
MAX
AVERAGE
# PANEL
MIN
MAX
AVERAGE
-12000 -24000 -36000 -48000 -60000 -72000
3000 6000 9000 12000 15000 18000
-6000 -12000 -18000 -24000 -30000 -36000
5 10 15 20 25 30
-3700 -7400 -11100 -14800 -18500 -22200
800 1600 2400 3200 4000 4800
-1850 -3700 -5550 -7400 -9250 -11100
CONCRETE SHORT SPAN PANEL #1 CONCRETE SHORT SPAN PANEL #1 # PANEL MIN MAX AVERAGE # PANEL MIN MAX AVERAGE 5 1360 2050 680 5 2715 4095 1358 10 2720 4100 1360 10 5430 8190 2715 15 4080 6150 2040 15 8145 12285 4073 20 5440 8200 2720 20 10860 16380 5430 25 6800 10250 3400 25 13575 20475 6788 30 8160 12300 4080 30 16290 24570 8145
CONCRETE SHORT SPAN PANEL #1 # PANEL MIN MAX AVERAGE 5 405 615 203 10 810 1230 405 15 1215 1845 608 20 1620 2460 810 25 2025 3075 1013 30 2430 3690 1215
PLASTIC SHORT SPAN PANEL #1 PLASTIC SHORT SPAN PANEL #2 # PANEL MIN MAX AVERAGE # PANEL MIN MAX AVERAGE 5 37420 42690 18710 5 52830 60270 26415 10 74840 85380 37420 10 105660 120540 52830 15 112260 128070 56130 15 158490 180810 79245 20 149680 170760 74840 20 211320 241080 105660 25 187100 213450 93550 25 264150 301350 132075 30 224520 256140 112260 30 316980 361620 158490
PLASTIC SHORT SPAN PANEL #3 # PANEL MIN MAX AVERAGE 5 9685 4843 10 19370 22090 9685 15 29055 33135 14528 20 38740 44180 19370 25 48425 55225 24213 30 58110 66270 29055
RECLAMATION COLLECTIVE
CARBON FOOTPRINT COMPARISON
EMBODIED/SEQUESTERED CARBON
Long span
20
0
WOOD LONG SPAN PANEL #1
183
NUMBER OF PANELS WOOD LONG SPAN PANEL #2
WOOD LONG SPAN PANEL #3
# PANEL
MIN
MAX
AVERAGE
# PANEL
MIN
MAX
AVERAGE
# PANEL
MIN
MAX
AVERAGE
5 10 15 20 25 30
-16000 -32000 -48000 -64000 -80000 -96000
4000 8000 12000 16000 20000 24000
-8000 -16000 -24000 -32000 -40000 -48000
5 10 15 20 25 30
-7480 -14960 -22440 -29920 -37400 -44880
1670 3340 5010 6680 8350 10020
-3740 -7480 -11220 -14960 -18700 -22440
5 10 15 20 25 30
-5020 -10040 -15060 -20080 -25100 -30120
1120 2240 3360 4480 5600 6720
-2510 -5020 -7530 -10040 -12550 -15060
CONCRETE LONG SPAN PANEL #1 # PANEL MIN MAX AVERAGE 5 2715 4095 3405 10 5430 8190 6810 15 8145 12285 10215 20 10860 16380 13620 25 13575 20475 17025 30 16290 24570 20430
CONCRETE LONG SPAN PANEL #1 # PANEL MIN MAX AVERAGE 5 815 1225 1020 10 1630 2450 2040 15 2445 3675 3060 20 3260 4900 4080 25 4075 6125 5100 30 4890 7350 6120
CONCRETE LONG SPAN PANEL #1 # PANEL MIN MAX AVERAGE 5 545 825 685 10 1090 1650 1370 15 1635 2475 2055 20 2180 3300 2740 25 2725 4125 3425 30 3270 4950 4110
PLASTIC LONG SPAN PANEL #1 # PANEL MIN MAX AVERAGE 5 77365 82635 38683 10 154730 165270 77365 15 232095 247905 116048 20 309460 330540 154730 25 386825 413175 193413 30 464190 495810 232095
PLASTIC LONG SPAN PANEL #1 # PANEL MIN MAX AVERAGE 5 19370 22100 9685 10 38740 44200 19370 15 58110 66300 29055 20 77480 88400 38740 25 96850 110500 48425 30 116220 132600 58110
PLASTIC LONG SPAN PANEL #1 # PANEL MIN MAX AVERAGE 5 13005 14835 6503 10 26010 29670 13005 15 39015 44505 19508 20 52020 59340 26010 25 65025 74175 32513 30 78030 89010 39015
ARCH 672
APPENDIX Q 2080 PROJECTED TEMPERATURES adapative comfort range
The graph below demonstrates the projected data for 2080 in Mont-Joli, Quebec. (High level of unccertainty)
36.95 31.40
DRY BULB TEMPERATURE (C)
184
25.85 20.30 14.75 9.20 -3.65 -1.90 -7.45 JAN
FEB
MAR
APR
Thermal comfort range Temperature signal Normalized temperature signal Damped temperature signal
MAY
JUN
JULY
AUG
SEP
OCT
NOV
DEC
RECLAMATION COLLECTIVE
185
B
BIBLIOGRAPHY
ARCH 672
BIBLIOGRAPHY List of references Book Hillebrandt et al. Manual of Recycling: Buildings as sources of materials. Edition DETAIL, 2019. Ibañez, Daniel, Hutton, Jane & Kiel Moe. Wood Urbanism. Actar Publishers, 2019. Journal article Craig, Salmaan. “The Optimal Tuning, Within Carbon Limits, of Thermal Mass in Naturally Ventilated Buildings.” 2019. Building and Environment 165. https://doi.org/10.1016/j.buildenv.2019.106373. “CBE Thermal Comfort Tool.” Accessed December 9, 2020. https://comfort.cbe.berkeley.edu. Craig, Salmaan. “Can Termites Teach Us to Build Environmentally Friendly Communities?” Massive Science, 2017. https://massivesci.com/articles/termite-mound-arcology-climate-control/. Craig, Salmaan. Fortin, Remy. “How to Design a Building So It Works Like a Termite Mound” http://demonstrations.
188
wolfram.com/HowToDesignABuildingSoItWorksLikeATermiteMound/Wolfram Demonstrations Project. Published: June 3, 2020. Didier et al. “Wave runup estimations on platform-beaches for coastal flood hazard assessment.” Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards. Published May 18, 2016. Dolan, Patrick J., Lampo, Richard G., and Dearborn, Jaqueline C. “Construction and Demolition Waste.” In Concepts for Reuse and Recycling of Construction and Demolition Waste. US Army Corps of Engineers, 1999. “Embodied Carbon Topic.” Science Direct. https://www.sciencedirect.com/topics/engineering/embodied-carbon. Larson, F., & Winterberger, K. (n.d.). “Tables and Equations for Estimating Volumes of Trees in the Susitna River Basin, Alaska.” United States Department of Agriculture. doi:https://www.fs.fed.us/pnw/pubs/pnw_rn478.pdf Napier, Tom. “Construction Waste Management.” U.S. Army Corps of Engineers, Engineer Research and Development Center / Construction Engineering Research Laboratory. Published October 17, 2016.
News or magazine article AgriRÉCUP. “Au cours de dix ans, AgriRÉCUP a récupéré 50 000 tonnes de déchets agricoles pour les recycler ou les éliminer de façon appropriée.” Cision, April 17, 2020. https://www.newswire.ca/fr/news-releases/au-cours-de-dixans-agrirecup-a-recupere-50-000-tonnes-de-dechets-agricoles-pour-les-recycler-ou-les-eliminer-de-facon-appropriee-872516084.html.
RECLAMATION COLLECTIVE
Bourdillon, Rémy. “Dans la cour des grands pour l’autosuffisance.” Le Devoir, November 18, 2020. https://www.ledevoir.com/economie/589898/ecologie-dans-la-cour-des-grands-pour-l-autosuffisance. Demers-Lemay, Miriane. “Les municipalités de Bas-Saint-Laurent à la rescousse des centres de tri.” Radio-Canada, June 29, 2019. https://ici.radio-canada.ca/nouvelle/1203797/centres-tri-dechets-plastique-matieres-residuelles. Demers-Lemay, Miriane. “Les plastiques agricoles s’accumulent dans l’Est-du-Québec.” Radio-Canada, August 6, 2019. https://ici.radio-canada.ca/nouvelle/1249641/plastiques-agricoles-quebec-dechets-gestion-chine. Fournier, Johanne. “Le Bas-Saint-Laurent, première FabRégion au Canada: un pas vers une plus grande autonomie.” Le Soleil, October 16, 2020. https://www.lesoleil.com/actualite/en-region/le-bas-saint-laurent-premiere-fabregion-au-canada-un-pas-vers-une-plus-grande-autonomie-2519507be3d788eefffd9a12fac1bc44. Larouche, Vincent. “Résidus de construction et démolition: l’autre crise du recyclage.” La Presse, August 22, 2018. https://www.lapresse.ca/environnement/pollution/201808/22/01-5193823-residus-de-construction-et-demolition-lautre-crise-du-recyclage.php.
July 15, 2020. https://ici.radio-canada.ca/nouvelle/1719623/matieres-residuelles-compost-let-semer-matapedia-mitis-economie-projet-saint-moise. Report Chaire de recherche en géoscience côtière. “Impacts of the storm of December 6, 2010 on the coasts of Bas-SaintLaurent and the Baie des Chaleurs.” Published February 2013. City of Vancouver. “Climate Emergency Action Plan.” Published November 3, 2020. https://council.vancouver. ca/20201103/documents/p1.pdf. Conférence régionale des élues Bas Saint-Laurent. “La stratégie du Bas-Saint-Laurent sur le chantier d’éclaircies commerciales: Enjeux-Défis-Résultats.” https://www.crdbsl.org/content/documents/chantier-eclaircie-commerciale/20150318_gagne-et-lavoie_web.pdf. Conseil du Saint-Laurent. “État d’avancement du portrait des connaissances sur l’érosion et la submersion côtière.” Published January 14, 2016. https://tcrsudestuairemoyen.org/wp-content/uploads/2016/02/15f2dd6d74854ad6d16 5dbf4be203219.pdf. Conseil régional de l’environnement du Bas-Saint-Laurent. “Les déchets, ça se réduit à la source!” Published October, 2018. http://www.crebsl.com/documents/pdf/publications/ef_sqrd2018.pdf.
189
Tremblay, Michel-Félix. “Un lieu d’enfouissement à Saint-Moïse pour La Matapédia et La Mitis.” Radio-Canada,
ARCH 672
BIBLIOGRAPHY List of references Direction générale du Bas-Saint-Laurent du ministère des Ressources naturelles et de la faune. “Portrait territorial Bas Saint-Laurent.” https://cdn-contenu.quebec.ca/cdn-contenu/environnement/territoire/Documents/Bas-St-Laurent/RA_portrait-BSL_MERN.pdf?1592581964. “Embodied Carbon in Construction: Policy Primer for Ontario.” Published December 2017. http://taf.ca/wp-content/ uploads/2018/04/Embodied-Carbon-in-Construction.PRIMER-FINAL.pdf. Grmela, Vaclav. “Towards zero-waste buildings: Building design for reuse and disassembly.” Chalmers University of Technology. 2020. https://odr.chalmers.se/bitstream/20.500.12380/301384/1/ACEX35%20-%20Vaclav%20Grmela.pdf. Gouvernment of Quebec. “Épidémie de la tordeuse des bourgeons de l’épinette Bas-Saint-Laurent.” https://mffp. gouv.qc.ca/documents/forets/protection/RA-Feuillet-TBE-BasSaintLaurent.pdf. Government of Quebec Ministry of Environment and the Fight against Climate Change. “Soil protection and contaminated land rehabilitation policy – 2017-2921 action plan.” Gouvernement du Québec, 2017. http://www.environnement.gouv.qc.ca/sol/terrains/politique/index.html.
190
Government of Quebec. “Politique québécoise de gestion des matières résiduelles: Plan d’action 2019-2024.” https:// www.recyc-quebec.gouv.qc.ca/sites/default/files/documents/plan-action-2019-2024-pqgmr.pdf. Ministère de Développement durable, de l’Environnement et de la Lutte contre les changements climatiques. “Lieux d’enfouissement technique (LET) autorisés et en exploitation.” Published March 18 2015. http://www.environnement.gouv.qc.ca/ministere/accesprotect/doc-demande-acces/LET_en_exploitation_2014.pdf. MRC de La Mitis. “Municipalité de Sainte-Luce: Les contraintes anthropiques.” https://sainteluce.ca/citoyen/pdf_urbanisme/reglement_de_zonage/reglement_de_zonage_chapitre_13.pdf. MRC de La Mitis. “Plan de gestion des matières résiduelles MRC de La Mitis.” Adopted on September 14, 2016. https://www.ecoregie.ca/images/Upload/Files/plan-gestion-matieres-residuelles/1-pgmr_mitis_2016-2020-20170121. pdf. “Municipality Mont-Joli | Climate Atlas of Canada.” Accessed December 9, 2020. https://climateatlas.ca/data/city/280/ plus30_2030_85/line. Recyc-Québec. “Étude sur les plastiques agricoles générés au Québec.” Published May 2019. https://www.recyc-quebec.gouv.qc.ca/sites/default/files/documents/etude-plastiques-agricoles-rapport.pdf. Régie intermunicipale de traitement des matièeres résiduelles MRC de La Matapédia et de La Mitis. “Multiplatforme de gestion des matières résiduelles Matapédia-Mitis.” Published November 2020. https://www.ecoregie.ca/ images/Upload/Files/multiplateforme/presentation_-_multiplateforme_-_novembre_2020.pdf.
RECLAMATION COLLECTIVE
Thomas, Michael. “Optimizing the Use of Fly Ash in Concrete.” University of New Brunswick. https://www.cement. org/docs/default-source/fc_concrete_technology/is548-optimizing-the-use-of-fly-ash-concrete.pdf. Ville de Rismouski. “Aménagement d’un lieu d’enfouissement technique à Rimouski: Étude d’impacts sur l’environnement.” Published February, 2003. https://archives.bape.gouv.qc.ca/sections/mandats/LES-Rimouski/documents/PR3-3-Resume.pdf.
Website content Art Massif. “Art Massif Wood Structure.” Last modified 2020, https://www.artmassif.ca/. Co-éco. “Ecocenter – Accepted Materials.” Last modified 2019, https://co-eco.org/ecocentres-matieres-acceptees/. Conseil régional de l’environnement du Bas-Saint-Laurent. “Gestion des matières résiduelles.” Accessed December 2, 2020. http://www.crebsl.com/matieres_residuelles/?id=matieres_residuelles_gestion_des_matieres_residuelles&a=2010.
November 10, 2020. https://www.ecohabitation.com/guides/2780/faire-acheminer-les-dechets-de-renovation-versdes-ecocentres-ou-des-centres-de-tri/. Fryer, Janet L. “Picea mariana: Fire Effects Information System.” U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Published December 9, 2020. https://www.fs.fed.us/ database/feis/plants/tree/picmar/all.html. Government of Canada. “Municipal solid waste: statistics and trends.” Last modified July 07 2020, https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/municipal-solid/statistics-trends.html. Government of Nova Scotia Department of Natural Resources. “Harvesting Systems.” In Woodlot Management Home Study Course. Last modified August 8 2009, https://novascotia.ca/natr/Education/woodlot/modules/module2/. Intermunicipal board for the treatment of residual materials of the MRCs of La Matapédia and La Mitis. “Drop-off Points – La Mitis.” Last modified 2020, https://www.ecoregie.ca/point-de-depots/la-mitis.html Intermunicipal board for the treatment of residual materials of the MRCs of La Matapédia and La Mitis. “Multiplatform Matapédia-Mitis.” Last modified 2020, https://www.ecoregie.ca/multiplateforme/accueil.html. Légis Québec. “Consolidated Statutes and Regulations.” http://legisquebec.gouv.qc.ca/en/.
191
Écohabitation. “Faire acheminer les déchets de rénovation vers des écocentres ou des centres de tri.” Accessed
ARCH 672
BIBLIOGRAPHY List of references Légis Québec. “Chapter Q-2 Environment Quality Act.” In Consolidated Statutes and Regulations. Last modified September 1 2020, http://legisquebec.gouv.qc.ca/en/. “Madaster brings circular economics to the built environment in the cloud.” Accessed November 1, 2020. https:// customers.microsoft.com/en-gb/story/731550-madaster-azure-vault-cosmosdb-spain. MRC de la Matanie. “Gestion des matières résiduelles et environnementales.” Accessed November 10, 2020. http:// www.mrcdematane.qc.ca/services_gestion_matieres.html#ancre5. Nordic Structures. “Nordic Structures Engineered Wood.” Last modified 2020, https://www.nordic.ca/. Organisme des bassins versants du Nord-Est du Bas-Saint-Laurent. “Le plan directeur de l’eau.” Accessed November 10, 2020. https://obv.nordestbsl.org/plan-directeur-de-leau-pde.html. Prairie Climate Centre. “Climate Change in Canada | Climate Atlas of Canada.” Last modified 2020, https://climateat-
192
las.ca/. Precious Plastic. “Make Extruded plastic bricks.” Accessed November 7, 2020. https://community.preciousplastic. com/how-to/make-extruded-plastic-bricks. Recyc-Québec. “Implantation d’une nouvelle installation de compostage à aire ouverte.” Accessed November 10, 2020. https://www.recyc-quebec.gouv.qc.ca/municipalites/matieres-organiques/recyclage-residus-verts-alimentaires/options-gestion/implantation-nouvelle-installation/compostage-aire-ouverte. Recyc-Québec. “Responsabilité élargie des prodcuteurs (REP).” Accessed November 10, 2020. https://www.recyc-quebec.gouv.qc.ca/entreprises-organismes/mieux-gerer/responsabilite-elargie-producteurs#:~:text=La%20 responsabilit%C3%A9%20%C3%A9largie%20des%20producteurs%20(REP)%20est%20un%20principe%20selon,gestion%20en%20fin%20de%20vie. Régie intermunicipale de traitement des matières résiduelles MRC de La Matapédia et de La Mitis. “Multiplateforme Matapédia-Mitis.” Accessed November 10, 2020. https://www.ecoregie.ca/multiplateforme/accueil.html. Sémer (Societé d’économie mixte d’énergie renouvelable de la region de Riviere-du-Loup). “Anaerobic Digestrion.” Last modified May 15 2017, http://www.semer.ca/biomethanisation/?id=semer_procede. State of Minnesota. “”Black Spruce Cover Type Guidelines.” In Forest Development Manual. Last edited October 2008, https://files.dnr.state.mn.us/forestry/ecssilviculture/covertype/covertype_blackSpruce.pdf. Thoma. “Moonwood.” In Holz100 Building System Planning Guide. Last modified 2020, https://www.thoma.at/ thoma-planungshandbuch/?lang=en.
RECLAMATION COLLECTIVE
United States Environmental Protection Agency. “Best Practices for Reducing, Reusing, and Recycling Construction and Demolition Materials.” Accessed November 17, 2020. https://www.epa.gov/smm/best-practices-reducing-reusing-and-recycling-construction-and-demolition-materials#consideration. United States Environmental Protection Agency. “Sustainable Management of Construction and Demolition Materials.” Accessed November 17, 2020. https://www.epa.gov/smm/sustainable-management-construction-and-demolition-materials. Zürcher, Ernst, and Rogenmoser, Christian. “Considering reversible Variations in Wood Properties: possible Applications in the Choice of the Tree-Felling Date?” Bern University of Applied Sciences BFH/Architecture, October 11 2014. Accessed from, https://www.holz100canada.com/uploads/9/5/8/7/95874198/considering_reversible_variations_in_wood_properties_by_dr._zurcher.pdf Application & Database Fortin, R., & Craig, S. “Synchronizing Thermal Mass with Buoyancy Ventilation”. Food4Rhino. Retrieved 31 August
Geoindex. “Geoindex – University McGill.” Last modified 2018, https://geoapp.bibl.ulaval.ca/Home/Index. Government of Quebec. “Données ouvertes.” Last modified 2020, https://www.donneesquebec.ca/recherche/fr/dataset/. Gouvernement du Québec. “Forêt ouverte: Portail de diffusion des données écoforestières.” Accessed December 1, 2020. https://www.foretouverte.gouv.qc.ca/. Precious Plastic. “Community Map” Accessed December 1, 2020. https://community.preciousplastic.com/map. Recyc-Québec. “Bienvenue sur notre outil de rechercher «Ça va où?».” Accessed November 10, 2020, https://www. recyc-quebec.gouv.qc.ca/points-de-recuperation.
193
2020, https://www.food4rhino.com/resource/synchronizing-thermal-mass-buoyancy-ventilation.