Chapter 6
Applications of the Integral 6.1
Rectilinear Motion Revisited
1. s(t) = 2. s(t) =
Z
6 dt = 6t + c;
5 = s(2) = 6(2) + c;
Z
(2t + 1) dt = t2 + t + c;
Z
(t2 − 4t) dt =
c = −7;
s(t) = 6t − 7
0 = s(1) = 12 + 1 + c = 2 + c;
c = −2;
s(t) = t2 + t − 2 3. s(t) =
1 3 t − 2t2 + c; 3
4. s(t) =
Z
√
7. v(t) =
Z
−5 dt = −5t + c;
6 = s(3) = −9 + c;
c = 15;
s(t) =
1 3 t − 2t2 + 15 3
1 9 5 (4t + 5)3/2 + c; 2 = s(1) = + c; c = − ; 6 2 2 1 5 s(t) = (4t + 5)2/3 − 6 2 Z π 5 π 5 5 1 5 5. s(t) = −10 cos 4t + dt = sin 4t + + c; = s(0) = − + c = − + c; 6 2 6 4 2 2 4 5 π 5 5 c = ; s(t) = − sin 4t + + 2 2 6 2 Z 2 2 2 2 2 6. s(t) = 2 sin 3t dt = − cos 3t + c; 0 = s(π) = + c; c = − ; s(t) = − cos 3t − 3 3 3 3 3 Z
4t + 5 dt =
4 = v(1) = −5 + c;
5 (−5t + 9) dt = − t2 + 9t + c; 2 5 2 9 s(t) = − t + 9t − 2 2 s(t) =
c = 9;
2 = s(1) =
335
v(t) = −5t + 9;
13 + c; 2
9 c=− ; 2