chap 1.INTRODUCTION

Page 1

EE 233. LIGHTWAVE SYSTEMS Chapter 1. Introduction Instructor: Ivan P. Kaminow

01/17/06

EE233. Fall 2006. Prof. Kaminow

1


IVAN P KAMINOW Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He did seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers, birefringent optical fibers, and WDM lightwave networks. Later, as Head of the Photonic Networks and Components Department, he led research on WDM components (including erbium-doped fiber amplifiers and arrayed waveguide grating routers), and on WDM local and wide area networks. Earlier (1952-1954), he did research on microwave antenna arrays at Hughes Aircraft Company. After retiring from Bell Labs, he served as 1996 IEEE Congressional Fellow in the House Science Committee and Library of Congress. He also established Kaminow Lightwave Technology to provide consulting services to technology companies and to law firms. In 1999, he served as Senior Science Advisor to the Optical Society of America. Currently, he is Adjunct Professor at University of California, Berkeley. He received degrees from Union College (BSEE), UCLA (MSE) and Harvard (AM, Ph.D). He has been Visiting Professor at Princeton, Berkeley, Columbia, University of Tokyo, and Kwangju University (Korea). He has written or co-edited 5 books, the most recent being “Optical Fiber Telecommunications IV A&B (2002).� Kaminow is a Life Fellow of IEEE, and Fellow of APS and OSA. He is the recipient of the Bell Labs Distinguished MTS Award, IEEE Quantum Electronics Award, OSA Townes Award, IEEE/LEOS/OSA Tyndall Award and IEEE Third Millennium Medal. He is a member of the National Academy of Engineering, Diplomate of the American Board of Laser Surgery, and Fellow of the New York Academy of Medicine. December 6, 2005

01/17/06

EE233. Fall 2006. Prof. Kaminow

2


Lectures • Lectures – Tuesday and Thursday, 11-12:30, – 531 Cory Hall

• Office Hours, 254M Cory ( kaminow@eecs.berkeley.edu, 642-4867): – Monday: 10:00-10:30 – Tuesday; 12:00-12:30 – Or by appointment 01/17/06

EE233. Fall 2006. Prof. Kaminow

3


Text and References • Text – Fiber-Optic Communication Systems, 3rd Ed, G. P. Agrawal, Wiley (2002)

• References: – Lightwave Technology: Componenets and Devices, G. P. Agrawal, Wiley (2004) – Lightwave Technology: Telecommunication Systems, G. P. Agrawal, Wiley (2005) – Optical Fiber Telecommunications IV A&B, I. P. Kaminow and T. Li (eds), Academic Press (2002) – Guided-Wave Optoelectronics, T.Tamir, ed; Springer (1990), [Kogelnik; Alferness; Kaminow &Tucker] – Optical Electronics in Modern Communications,5th Ed, A. Yariv, Oxford (1997) 01/17/06

EE233. Fall 2006. Prof. Kaminow

4


Text Contents • Ch 1. Introduction • Ch 2. Optical Fibers • Ch 3. Optical Transmitters • Ch 4. Optical Receivers • Ch 5. Lightwave Systems 01/17/06

• Ch 6. Optical Amplifiers • Ch 7. Dispersion Management • Ch 8. Multichannel Systems • Ch 9 Soliton Systems • Ch 10. Coherent Lightwave Systems

EE233. Fall 2006. Prof. Kaminow

5


Grades • 3-units • Overall grade based on: – Problem sets (50%) – Classroom participation (10%) – One presentation and term paper (40%): last weeks of instruction

01/17/06

EE233. Fall 2006. Prof. Kaminow

6


OVERVIEW OF LIGHTWAVE SYSTEMS

01/17/06

EE233. Fall 2006. Prof. Kaminow

7


Transmission of Information Over Optical Fibers

Units of Information

 1 pulse of light = 1 “bit”  A telephone call is represented by many bits added together

 1 phone call ≈ 64,000 bits-persecond (64kb/s) 01/17/06 EE233. Fall 2006. Prof. Kaminow

8 PDX 200.9


Telephone System Central Office

Central Office

San Francisco

Node

Central Office

01/17/06

Major City Regional Center

Node

Long Distance Network

New York

Major City Regional Center

Central Office

Central Office

Central Office

EE233. Fall 2006. Prof. Kaminow

Node

Node

Metro Network

9


PSTN-public switched telephone network Voice Channel Multiplexing Access lines CO Switch

CO Switch

Trunk TrunkNetwork Network

PBX Residential customers

01/17/06

Signaling Signaling Network Network

EE233. Fall 2006. Prof. Kaminow

Business customers

10


STANDARD BIT-RATES: 155 Mb/s = 2000 telephone calls 620 Mb/s = 8000 telephone calls 2.5 Gb/s = 30,000 telephone calls 10 Gb/s = 120,000 telephone calls 40 Gb/s = 480,000 telephone calls

01/17/06

EE233. Fall 2006. Prof. Kaminow

11


Transmission Systems

Microwaves

Repeater Hut

Microwave Relay Towers & Dish Antennas

New York

SF

01/17/06

EE233. Fall 2006. Prof. Kaminow

12


Transmission Systems

Microwaves

Repeater Hut

Microwave Relay Towers & Dish Antennas

New York

SF

Repeater Hut

Buried Coaxial Cable 01/17/06

EE233. Fall 2006. Prof. Kaminow

13


Fiber Optical Fiber: Jacket

01/17/06

650 M km installed (2005) [16,000 equators]

EE233. Fall 2006. Prof. Kaminow

Glass

14


Worldwide Fiber Deployment Optical Fiber

Deploying Fiber at Mach 3

• Fiber is deployed at a rate of 2000 miles every hour 01/17/06

EE233. Fall 2006. Prof. Kaminow

T. Li & A.R. Chraplyvy, 2001

15


Optical Fiber Attenuation 10

Loss (dB)

Old AllWave Stnd

Loss dB/km

1

0.1 1

1.2

1.4

1.6

1.8

Wavelength (microns)

Improvements in fiber fabrication results in a much larger transmission Window 01/17/06

< 0.40 dB/km <0.30 dB/km <0.25 dB/km

EE233. Fall 2006. Prof. Kaminow

400 nm 300 nm 200 nm 16


LASER TRANSMITTER

DIMENSIONS IN INCHES

01/17/06

EE233. Fall 2006. Prof. Kaminow

17


Public Switched Telephone Network

•Circuit switched S.K. Korotky, JLT 22(3), 2004. •Centralized switch synchronization •Propagation delay - 5ms/1000km •Billing •Vulnerable 01/17/06 to attack --> Internet EE233. Fall 2006. Prof. Kaminow

Nodes

100

Network capacity

64 Tb/s

Per-node demand

640 18 Gb/s


U.S. Telecommunications Network

NODE

NODE

ATM/IP Switch

Toll Switch

Local SW

NODE

SONET/SDH

NODE

Amplifiers - WDM

Trunk Network

ONU

PON

Long Distance Network Local SW

Fiber Node

Local SW

LAN

FTTC

01/17/06

EE233. Fall 2006. Prof. Kaminow

Access Network

19


Circuit and Packet Switching

S Circuit Switching

D “telephone network”

S

D Internet

Packet Switching 01/17/06

EE233. Fall 2006. Prof. Kaminow

20


Submarine Systems Cantat-3

Northstar NPC

Gemini

China-US

TAT

TPC

Columbus-2/3

SEA-ME-WE 3

Americas-1/2

Pacrim West

SEA-ME-WE 2/3 Jasuraus

SAT-2 Unisur

Atlantis-2 Alcatel supply participation others

01/17/06

Pacrim East

Tasman-2

EE233. Fall 2006. Prof. Kaminow

21


Landing of submarine cable in Fortaleza Bay (Brazil)

01/17/06

EE233. Fall 2006. Prof. Kaminow

22


Wavelength-Division Multiplexing (WDM) Meeting Network Needs: Capacity, Scalability, & Cost Single-wavelength TDM: OC-48 (40 Gb/s) 1310 1310 1310 1310 1310 1310 1310 1310 TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM TERM 1310 1310 1310 1310 1310 1310 1310 1310 RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM TERM 1310 1310 1310 1310 1310 1310 1310 1310 RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR

OC-48: (2.5 Gb/s)

(Traditional: Pre-WDM; 1996)

OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 Optical OC-48 OC-48 Amplifier OC-48 OC-48 (1550 nm) OC-48 OC-48 OC-48

16-wavelength WDM: 40 Gb/s

16 fibers 1 fiber 48 regenerators 1 optical amplifier (

~80 wavelengths

OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48

~200 Gb/s )

60 wavelengths @ 40 Gb/s per ch  2.4 Tb/s 01/17/06

EE233. Fall 2006. Prof. Kaminow

23


Commercial Lightwave System Capacity

100

Optics

NUMBER of CHANNELS

1000

'98

100Tb/s '03

'98 '96

10

10Tb/s

'95 '89

1

'01 '03 '01

Total Capacity

’77

'83

'93 '91

'86 '87

1Tb/s

'95

Electronics 0.1 0.01 01/17/06

10Gb/s 0.1

1

10

100

DATA RATE per CHANNEL (Gb/s) EE233. Fall 2006. Prof. Kaminow

100Gb/s 1000 24

H. Kogelnik, ECOC 2004


Optical telecom technologies of the last 1/4 Century (Desurvire) Capacity x distance (bit.km/s)

Five generations of technology breakthroughs (3 decades) 1000 100 10 1/1000 100 10 1/1000 100 10 1/1000 100

X10

every 4 years

PETA Raman FEC (>1999) DM, C+L WDM

TERA

108

V = EDFA IV = coherent III = 1.5µm DSF II =1.3µm SMF I = 0.8 µm MMF

GIGA

MEGA 74

78

82

86

90

94

98

02

04

year 10 Petabit.km/s= 1Terabit/s over 10,000km or 10Tbit/s over 1,000km 01/17/06

EE233. Fall 2006. Prof. Kaminow

© J.Wiley & Sons, Inc., 2004

25


TECHNOLOGY HISTORY • 1960 - demonstration of the laser • 1970 - semiconductor laser and low-loss fiber • 1983 - commercial fiber system deployedNortheast Corridor • 1996 - commercial WDM - 8x2.5Gb/s • 1996 - commercial 10 Gb/s 01/17/06

EE233. Fall 2006. Prof. Kaminow

26


Optical Networking: Critically Dependent on Advanced Photonic Components [from R. C. Alferness] Robust, Functional Components

WDM Networking

• λ-Converters

• WDM Mesh Networks

• WDM XC-Fabrics • Integrated Add/Drop

• WDM Cross-Connects

• Dynamic Gain Equalizers • Ultra-Wideband Amplifiers • λ-Monitors • Tunable Lasers • WDM Routers • WDM Sources

• WDM Rings • WDM Add/Drops • Point-to-Point Systems

• Amplifiers • Fibers 01/17/06

EE233. Fall 2006. Prof. Kaminow

27


Optical telecom technologies of the last 1/4 Century (Desurvire) Transmitters

Fibres

Amplifiers (a suivre..)

Receivers

• • • • • • •

from 622Mbit/s to 10Gbit/s (E-TDM) from 0.8µm to 1.3µm then 1.55µmwavelength lithium niobate modulators single-frequency lasers (DFB) wavelength-division multiplexing (WDM) dense WDM (DWDM, <1bit/s/Hz) « new » modulation formats (CRZ, PSBT, soliton)

• • • • • •

loss from 20dB/km to 0.2dB/km (T=1%/100km) dispersion at 1.3µm (SMF) then 1.55µm (DSF) reduced dispersion slope (RDS-DSF) dispersion-compensation fibres for SMF dispersion management strategies large effective-area fibres (100-500µm2)

• • • • •

erbium-doped fibers, laser-diode pumped gain equalization over 30-40nm (4-5THz) long-band operation (L) output power greater than +30dBm Raman fibre amplifiers

• optically pre-amplified • 10-40Gbit/s electronics • error-correction codes (FEC)


TELECOM/INTERNET BUBBLE

01/17/06

EE233. Fall 2006. Prof. Kaminow

29


Telecommunications Bubble ‌Desurvire, Campinas (2003)

Nasdaq Dow Jones

... countered by a deep market depression !

-240%

March 2000

01/17/06

EE233. Fall 2006. Prof. Kaminow

30


Installed-fiber indicator (19962007) Source: E. Desurvire (Alcatel) - ECOC’05

10 Mkm/y = 317 m/s > csound !

Million fiber-km / year

100

World total 80

US

60 40

recovery 17%

20 0 1995

1997

1999

2001

2003

bubble pops * and 1997-2007 data: KMI Research, 2002

01/17/06

9%

fiber glut

2005

2007

back to 2-digits growth (US)

EE233. Fall 2006. Prof. Kaminow

31


BUBBLE = PERFECT STORM • • • • • •

optical fiber technology - backbone computer technology - PC commercial Internet - connectivity Web browser - killer application government deregulation - competition venture capital, marketing hype - spark

01/17/06

EE233. Fall 2006. Prof. Kaminow

32


BOOM • Real growth • Excess competition • Over-investment • Bad judgment • Greed • Dishonesty 01/17/06

EE233. Fall 2006. Prof. Kaminow

33


01/17/06

EE233. Fall 2006. Prof. Kaminow

34


TEXT: CHAPTER 1

01/17/06

EE233. Fall 2006. Prof. Kaminow

35


01/17/06

EE233. Fall 2006. Prof. Kaminow

36


01/17/06

EE233. Fall 2006. Prof. Kaminow

37


01/17/06

EE233. Fall 2006. Prof. Kaminow

38


SONET = SYNCHRONOUS OPTICAL NETWORK [US] SDH = SYNCHRONOUS DIGITAL HIERARCHY [EUROPE] OC-N = OPTICAL CARRIER STM-N = SYNCHRONOUS TRANSPORT MODULE T-1, 3 = TELEPHONE = 1.5 Mbps, 45 Mbps [PLEIOSYNCHRONOUS = separate clocks at T and R (MESO)SYNCHRONOUS = central system clock]

01/17/06

EE233. Fall 2006. Prof. Kaminow

39


01/17/06

EE233. Fall 2006. Prof. Kaminow

40


Generic Optical Comm. System Input

Optical Transmitter

• Modulation Format • Bandwidth • Protocol

01/17/06

Comm. Channel

• Modulation Characteristics • Power • Wavelength

• • • • • • •

Loss Dispersion 4-Wave Mixing Noise Crosstalk Distortion Amplification

EE233. Fall 2006. Prof. Kaminow

Optical Receiver

• • • • •

Output

Bandwidth Responsivity Sensitivity Noise Wavelength

41


01/17/06

EE233. Fall 2006. Prof. Kaminow

42


01/17/06

EE233. Fall 2006. Prof. Kaminow

43


THE END

01/17/06

EE233. Fall 2006. Prof. Kaminow

44


WDM transmission (Desurvire) Wavelength-division multiplexing (WDM): transforms 155Mbit/s 16 x STM-1

2.5 Gbit/s

2.5 Gbit/s

STM-16 terminal

3R

3R

STM-16 terminal

3R

16 x STM-1

16 X in parallel

2.5 Gbit/s

16 STM-16

...

into

STM-16 terminal

16 x STM-1

STM-16 terminal

D E M U X

M U X

STM-16 terminal

16 x STM-1

...

16 x STM-1

2.5 Gbit/s

40 Gbit/s

16 STM-16

STM-16 terminal

16 x STM-1

EDFA: erbium-doped fiber amplifier

01/17/06

EE233. Fall 2006. Prof. Kaminow

45


WDM FOR LONG DISTANCE CARRIERS [from R. C. Alferness] • Recently Announced Systems with 40, 80, 160…..Wavelengths • Value Proposition – Single Amplifier for All Wavelength Channels – Utilize Embedded Fiber Base

Data In XMTR XMTR • • • • •

XMTR 01/17/06

λ1 λ2

λN

λ1 O

O M U X

OA

OA

OA

WDM Point-to-Point EE233. Fall 2006. Prof. Kaminow

OA

D M U X

λ2

λN

Data Out RCVR RCVR • • • • •

RCVR

46


WDM transmission (3/3) Wavelength-division multiplexing (WDM): transform 155Mbit/s

16 x STM-1

2.5 Gbit/s

2.5 Gbit/s

STM-16 terminal

3R

3R

STM-16 terminal

3R

16 x STM-1

16 X in parallel

2.5 Gbit/s STM-16 terminal

16 STM-16

...

16 x STM-1

STM-16 terminal

into 01/17/06

D E M U X

M U X

STM-16 terminal

16 x STM-1

...

16 x STM-1

2.5 Gbit/s

40 Gbit/s

16 STM-16

STM-16 terminal

16 x STM-1

EDFA: erbium-doped fiber amplifier

EE233. Fall 2006. Prof. Kaminow

47


WDM Optical System Frequency-registered transmitters

λ1

Receivers

Optical Fiber

R R

λ2 WDM Mux

λ3

Amp

Amp

WDM DeMux

R

40 - 120 km

λN

R

Up to 10,000 km

Δλ = 25 - 100 GHz (0.4 or 0.8 nm @ 1500 nm) 01/17/06

EE233. Fall 2006. Prof. Kaminow

48


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.