EE 233. LIGHTWAVE SYSTEMS Chapter 1. Introduction Instructor: Ivan P. Kaminow
01/17/06
EE233. Fall 2006. Prof. Kaminow
1
IVAN P KAMINOW Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He did seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers, birefringent optical fibers, and WDM lightwave networks. Later, as Head of the Photonic Networks and Components Department, he led research on WDM components (including erbium-doped fiber amplifiers and arrayed waveguide grating routers), and on WDM local and wide area networks. Earlier (1952-1954), he did research on microwave antenna arrays at Hughes Aircraft Company. After retiring from Bell Labs, he served as 1996 IEEE Congressional Fellow in the House Science Committee and Library of Congress. He also established Kaminow Lightwave Technology to provide consulting services to technology companies and to law firms. In 1999, he served as Senior Science Advisor to the Optical Society of America. Currently, he is Adjunct Professor at University of California, Berkeley. He received degrees from Union College (BSEE), UCLA (MSE) and Harvard (AM, Ph.D). He has been Visiting Professor at Princeton, Berkeley, Columbia, University of Tokyo, and Kwangju University (Korea). He has written or co-edited 5 books, the most recent being “Optical Fiber Telecommunications IV A&B (2002).� Kaminow is a Life Fellow of IEEE, and Fellow of APS and OSA. He is the recipient of the Bell Labs Distinguished MTS Award, IEEE Quantum Electronics Award, OSA Townes Award, IEEE/LEOS/OSA Tyndall Award and IEEE Third Millennium Medal. He is a member of the National Academy of Engineering, Diplomate of the American Board of Laser Surgery, and Fellow of the New York Academy of Medicine. December 6, 2005
01/17/06
EE233. Fall 2006. Prof. Kaminow
2
Lectures • Lectures – Tuesday and Thursday, 11-12:30, – 531 Cory Hall
• Office Hours, 254M Cory ( kaminow@eecs.berkeley.edu, 642-4867): – Monday: 10:00-10:30 – Tuesday; 12:00-12:30 – Or by appointment 01/17/06
EE233. Fall 2006. Prof. Kaminow
3
Text and References • Text – Fiber-Optic Communication Systems, 3rd Ed, G. P. Agrawal, Wiley (2002)
• References: – Lightwave Technology: Componenets and Devices, G. P. Agrawal, Wiley (2004) – Lightwave Technology: Telecommunication Systems, G. P. Agrawal, Wiley (2005) – Optical Fiber Telecommunications IV A&B, I. P. Kaminow and T. Li (eds), Academic Press (2002) – Guided-Wave Optoelectronics, T.Tamir, ed; Springer (1990), [Kogelnik; Alferness; Kaminow &Tucker] – Optical Electronics in Modern Communications,5th Ed, A. Yariv, Oxford (1997) 01/17/06
EE233. Fall 2006. Prof. Kaminow
4
Text Contents • Ch 1. Introduction • Ch 2. Optical Fibers • Ch 3. Optical Transmitters • Ch 4. Optical Receivers • Ch 5. Lightwave Systems 01/17/06
• Ch 6. Optical Amplifiers • Ch 7. Dispersion Management • Ch 8. Multichannel Systems • Ch 9 Soliton Systems • Ch 10. Coherent Lightwave Systems
EE233. Fall 2006. Prof. Kaminow
5
Grades • 3-units • Overall grade based on: – Problem sets (50%) – Classroom participation (10%) – One presentation and term paper (40%): last weeks of instruction
01/17/06
EE233. Fall 2006. Prof. Kaminow
6
OVERVIEW OF LIGHTWAVE SYSTEMS
01/17/06
EE233. Fall 2006. Prof. Kaminow
7
Transmission of Information Over Optical Fibers
Units of Information
1 pulse of light = 1 “bit” A telephone call is represented by many bits added together
1 phone call ≈ 64,000 bits-persecond (64kb/s) 01/17/06 EE233. Fall 2006. Prof. Kaminow
8 PDX 200.9
Telephone System Central Office
Central Office
San Francisco
Node
Central Office
01/17/06
Major City Regional Center
Node
Long Distance Network
New York
Major City Regional Center
Central Office
Central Office
Central Office
EE233. Fall 2006. Prof. Kaminow
Node
Node
Metro Network
9
PSTN-public switched telephone network Voice Channel Multiplexing Access lines CO Switch
CO Switch
Trunk TrunkNetwork Network
PBX Residential customers
01/17/06
Signaling Signaling Network Network
EE233. Fall 2006. Prof. Kaminow
Business customers
10
STANDARD BIT-RATES: 155 Mb/s = 2000 telephone calls 620 Mb/s = 8000 telephone calls 2.5 Gb/s = 30,000 telephone calls 10 Gb/s = 120,000 telephone calls 40 Gb/s = 480,000 telephone calls
01/17/06
EE233. Fall 2006. Prof. Kaminow
11
Transmission Systems
Microwaves
Repeater Hut
Microwave Relay Towers & Dish Antennas
New York
SF
01/17/06
EE233. Fall 2006. Prof. Kaminow
12
Transmission Systems
Microwaves
Repeater Hut
Microwave Relay Towers & Dish Antennas
New York
SF
Repeater Hut
Buried Coaxial Cable 01/17/06
EE233. Fall 2006. Prof. Kaminow
13
Fiber Optical Fiber: Jacket
01/17/06
650 M km installed (2005) [16,000 equators]
EE233. Fall 2006. Prof. Kaminow
Glass
14
Worldwide Fiber Deployment Optical Fiber
Deploying Fiber at Mach 3
• Fiber is deployed at a rate of 2000 miles every hour 01/17/06
EE233. Fall 2006. Prof. Kaminow
T. Li & A.R. Chraplyvy, 2001
15
Optical Fiber Attenuation 10
Loss (dB)
Old AllWave Stnd
Loss dB/km
1
0.1 1
1.2
1.4
1.6
1.8
Wavelength (microns)
Improvements in fiber fabrication results in a much larger transmission Window 01/17/06
< 0.40 dB/km <0.30 dB/km <0.25 dB/km
EE233. Fall 2006. Prof. Kaminow
400 nm 300 nm 200 nm 16
LASER TRANSMITTER
DIMENSIONS IN INCHES
01/17/06
EE233. Fall 2006. Prof. Kaminow
17
Public Switched Telephone Network
•Circuit switched S.K. Korotky, JLT 22(3), 2004. •Centralized switch synchronization •Propagation delay - 5ms/1000km •Billing •Vulnerable 01/17/06 to attack --> Internet EE233. Fall 2006. Prof. Kaminow
Nodes
100
Network capacity
64 Tb/s
Per-node demand
640 18 Gb/s
U.S. Telecommunications Network
NODE
NODE
ATM/IP Switch
Toll Switch
Local SW
NODE
SONET/SDH
NODE
Amplifiers - WDM
Trunk Network
ONU
PON
Long Distance Network Local SW
Fiber Node
Local SW
LAN
FTTC
01/17/06
EE233. Fall 2006. Prof. Kaminow
Access Network
19
Circuit and Packet Switching
S Circuit Switching
D “telephone network”
S
D Internet
Packet Switching 01/17/06
EE233. Fall 2006. Prof. Kaminow
20
Submarine Systems Cantat-3
Northstar NPC
Gemini
China-US
TAT
TPC
Columbus-2/3
SEA-ME-WE 3
Americas-1/2
Pacrim West
SEA-ME-WE 2/3 Jasuraus
SAT-2 Unisur
Atlantis-2 Alcatel supply participation others
01/17/06
Pacrim East
Tasman-2
EE233. Fall 2006. Prof. Kaminow
21
Landing of submarine cable in Fortaleza Bay (Brazil)
01/17/06
EE233. Fall 2006. Prof. Kaminow
22
Wavelength-Division Multiplexing (WDM) Meeting Network Needs: Capacity, Scalability, & Cost Single-wavelength TDM: OC-48 (40 Gb/s) 1310 1310 1310 1310 1310 1310 1310 1310 TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM TERM 1310 1310 1310 1310 1310 1310 1310 1310 RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM TERM 1310 1310 1310 1310 1310 1310 1310 1310 RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM 1310 1310 1310 1310 1310 1310 1310 1310 TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR TERM TERM RPTR RPTR RPTR RPTR RPTR RPTR RPTR RPTR
OC-48: (2.5 Gb/s)
(Traditional: Pre-WDM; 1996)
OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 Optical OC-48 OC-48 Amplifier OC-48 OC-48 (1550 nm) OC-48 OC-48 OC-48
16-wavelength WDM: 40 Gb/s
16 fibers 1 fiber 48 regenerators 1 optical amplifier (
~80 wavelengths
OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48 OC-48
~200 Gb/s )
60 wavelengths @ 40 Gb/s per ch ï&#x192;¨ 2.4 Tb/s 01/17/06
EE233. Fall 2006. Prof. Kaminow
23
Commercial Lightwave System Capacity
100
Optics
NUMBER of CHANNELS
1000
'98
100Tb/s '03
'98 '96
10
10Tb/s
'95 '89
1
'01 '03 '01
Total Capacity
â&#x20AC;&#x2122;77
'83
'93 '91
'86 '87
1Tb/s
'95
Electronics 0.1 0.01 01/17/06
10Gb/s 0.1
1
10
100
DATA RATE per CHANNEL (Gb/s) EE233. Fall 2006. Prof. Kaminow
100Gb/s 1000 24
H. Kogelnik, ECOC 2004
Optical telecom technologies of the last 1/4 Century (Desurvire) Capacity x distance (bit.km/s)
Five generations of technology breakthroughs (3 decades) 1000 100 10 1/1000 100 10 1/1000 100 10 1/1000 100
X10
every 4 years
PETA Raman FEC (>1999) DM, C+L WDM
TERA
108
V = EDFA IV = coherent III = 1.5µm DSF II =1.3µm SMF I = 0.8 µm MMF
GIGA
MEGA 74
78
82
86
90
94
98
02
04
year 10 Petabit.km/s= 1Terabit/s over 10,000km or 10Tbit/s over 1,000km 01/17/06
EE233. Fall 2006. Prof. Kaminow
© J.Wiley & Sons, Inc., 2004
25
TECHNOLOGY HISTORY • 1960 - demonstration of the laser • 1970 - semiconductor laser and low-loss fiber • 1983 - commercial fiber system deployedNortheast Corridor • 1996 - commercial WDM - 8x2.5Gb/s • 1996 - commercial 10 Gb/s 01/17/06
EE233. Fall 2006. Prof. Kaminow
26
Optical Networking: Critically Dependent on Advanced Photonic Components [from R. C. Alferness] Robust, Functional Components
WDM Networking
• λ-Converters
• WDM Mesh Networks
• WDM XC-Fabrics • Integrated Add/Drop
• WDM Cross-Connects
• Dynamic Gain Equalizers • Ultra-Wideband Amplifiers • λ-Monitors • Tunable Lasers • WDM Routers • WDM Sources
• WDM Rings • WDM Add/Drops • Point-to-Point Systems
• Amplifiers • Fibers 01/17/06
EE233. Fall 2006. Prof. Kaminow
27
Optical telecom technologies of the last 1/4 Century (Desurvire) Transmitters
Fibres
Amplifiers (a suivre..)
Receivers
• • • • • • •
from 622Mbit/s to 10Gbit/s (E-TDM) from 0.8µm to 1.3µm then 1.55µmwavelength lithium niobate modulators single-frequency lasers (DFB) wavelength-division multiplexing (WDM) dense WDM (DWDM, <1bit/s/Hz) « new » modulation formats (CRZ, PSBT, soliton)
• • • • • •
loss from 20dB/km to 0.2dB/km (T=1%/100km) dispersion at 1.3µm (SMF) then 1.55µm (DSF) reduced dispersion slope (RDS-DSF) dispersion-compensation fibres for SMF dispersion management strategies large effective-area fibres (100-500µm2)
• • • • •
erbium-doped fibers, laser-diode pumped gain equalization over 30-40nm (4-5THz) long-band operation (L) output power greater than +30dBm Raman fibre amplifiers
• optically pre-amplified • 10-40Gbit/s electronics • error-correction codes (FEC)
TELECOM/INTERNET BUBBLE
01/17/06
EE233. Fall 2006. Prof. Kaminow
29
Telecommunications Bubble â&#x20AC;ŚDesurvire, Campinas (2003)
Nasdaq Dow Jones
... countered by a deep market depression !
-240%
March 2000
01/17/06
EE233. Fall 2006. Prof. Kaminow
30
Installed-fiber indicator (19962007) Source: E. Desurvire (Alcatel) - ECOCâ&#x20AC;&#x2122;05
10 Mkm/y = 317 m/s > csound !
Million fiber-km / year
100
World total 80
US
60 40
recovery 17%
20 0 1995
1997
1999
2001
2003
bubble pops * and 1997-2007 data: KMI Research, 2002
01/17/06
9%
fiber glut
2005
2007
back to 2-digits growth (US)
EE233. Fall 2006. Prof. Kaminow
31
BUBBLE = PERFECT STORM • • • • • •
optical fiber technology - backbone computer technology - PC commercial Internet - connectivity Web browser - killer application government deregulation - competition venture capital, marketing hype - spark
01/17/06
EE233. Fall 2006. Prof. Kaminow
32
BOOM • Real growth • Excess competition • Over-investment • Bad judgment • Greed • Dishonesty 01/17/06
EE233. Fall 2006. Prof. Kaminow
33
01/17/06
EE233. Fall 2006. Prof. Kaminow
34
TEXT: CHAPTER 1
01/17/06
EE233. Fall 2006. Prof. Kaminow
35
01/17/06
EE233. Fall 2006. Prof. Kaminow
36
01/17/06
EE233. Fall 2006. Prof. Kaminow
37
01/17/06
EE233. Fall 2006. Prof. Kaminow
38
SONET = SYNCHRONOUS OPTICAL NETWORK [US] SDH = SYNCHRONOUS DIGITAL HIERARCHY [EUROPE] OC-N = OPTICAL CARRIER STM-N = SYNCHRONOUS TRANSPORT MODULE T-1, 3 = TELEPHONE = 1.5 Mbps, 45 Mbps [PLEIOSYNCHRONOUS = separate clocks at T and R (MESO)SYNCHRONOUS = central system clock]
01/17/06
EE233. Fall 2006. Prof. Kaminow
39
01/17/06
EE233. Fall 2006. Prof. Kaminow
40
Generic Optical Comm. System Input
Optical Transmitter
• Modulation Format • Bandwidth • Protocol
01/17/06
Comm. Channel
• Modulation Characteristics • Power • Wavelength
• • • • • • •
Loss Dispersion 4-Wave Mixing Noise Crosstalk Distortion Amplification
EE233. Fall 2006. Prof. Kaminow
Optical Receiver
• • • • •
Output
Bandwidth Responsivity Sensitivity Noise Wavelength
41
01/17/06
EE233. Fall 2006. Prof. Kaminow
42
01/17/06
EE233. Fall 2006. Prof. Kaminow
43
THE END
01/17/06
EE233. Fall 2006. Prof. Kaminow
44
WDM transmission (Desurvire) Wavelength-division multiplexing (WDM): transforms 155Mbit/s 16 x STM-1
2.5 Gbit/s
2.5 Gbit/s
STM-16 terminal
3R
3R
STM-16 terminal
3R
16 x STM-1
16 X in parallel
2.5 Gbit/s
16 STM-16
...
into
STM-16 terminal
16 x STM-1
STM-16 terminal
D E M U X
M U X
STM-16 terminal
16 x STM-1
...
16 x STM-1
2.5 Gbit/s
40 Gbit/s
16 STM-16
STM-16 terminal
16 x STM-1
EDFA: erbium-doped fiber amplifier
01/17/06
EE233. Fall 2006. Prof. Kaminow
45
WDM FOR LONG DISTANCE CARRIERS [from R. C. Alferness] • Recently Announced Systems with 40, 80, 160…..Wavelengths • Value Proposition – Single Amplifier for All Wavelength Channels – Utilize Embedded Fiber Base
Data In XMTR XMTR • • • • •
XMTR 01/17/06
λ1 λ2
λN
λ1 O
O M U X
OA
OA
OA
WDM Point-to-Point EE233. Fall 2006. Prof. Kaminow
OA
D M U X
λ2
λN
Data Out RCVR RCVR • • • • •
RCVR
46
WDM transmission (3/3) Wavelength-division multiplexing (WDM): transform 155Mbit/s
16 x STM-1
2.5 Gbit/s
2.5 Gbit/s
STM-16 terminal
3R
3R
STM-16 terminal
3R
16 x STM-1
16 X in parallel
2.5 Gbit/s STM-16 terminal
16 STM-16
...
16 x STM-1
STM-16 terminal
into 01/17/06
D E M U X
M U X
STM-16 terminal
16 x STM-1
...
16 x STM-1
2.5 Gbit/s
40 Gbit/s
16 STM-16
STM-16 terminal
16 x STM-1
EDFA: erbium-doped fiber amplifier
EE233. Fall 2006. Prof. Kaminow
47
WDM Optical System Frequency-registered transmitters
λ1
Receivers
Optical Fiber
R R
λ2 WDM Mux
λ3
Amp
Amp
WDM DeMux
R
40 - 120 km
λN
R
Up to 10,000 km
Δλ = 25 - 100 GHz (0.4 or 0.8 nm @ 1500 nm) 01/17/06
EE233. Fall 2006. Prof. Kaminow
48