Thermal Response Of Listeria Monocytogenes On Different Culture Media: Microbiology ABSTRACT Cellular responses against environmental stresses are the most highly regulatory responses among all organisms. Exposure of cells to stresses such as heat shock leads to the accumulation of partly and fully denatured proteins that interfere with normal cellular function. Present study was designed to examine the growth and physiology of Listeria monocytogenes under different temperatures ranging from 25° to 45°C using patching, spot test, and spectroscopic measurement of cell turbidity and to determine the critical growth temperature of Listeria monocytogene on different media. The results showed that the elevation of temperature inhibited the normal phenotypic colony characteristics. According to the spot test, slower growth was observed upon increase of temperature. 1.1 Background Microorganisms live in a permanently changing environment. The temperature variation is one of the most important existing stress factors. For instance, a temperature increase induces the bacterial heat shock response which allows cells to adapt and survive thermal stress conditions (Bukau, 1993; Connolly, et al.,1999;Geogopoulos,et., 1994). Nowadays the heat shocks response is of importance for many scientific and industrial applications, i.e.in processes where temperature-induced heterogonous protein production takes place.(Han et al.,2004).The general heat shock response was first discovered in Drosophila sp. By Rotissa, who suggested that cells exposed to heat induce the synthesis of a well-define number of protein (Rotissa et al., 1963). The proteins induced by heat and cold shock in Listeria monocytogenes (pathogenic for humans) and Listeria innocua (nonpathogenic) strains were analyzed by two-dimensional (2-D) electrophoresis with the help of a computerized 2-D gel analysis system. Heat (49°C) and cold (4°C) shock repressed roughly half the number of proteins synthesized at normal temperature (25°C) and decreased the level of numerous other proteins. Conversely, the synthesis of a great number of proteins was enhanced and novel proteins appeared upon temperature stress. There were more proteins induced in the Listeria monocytogenes strain than in the Listeria innocua strain. Each stress induced a set of specific proteins. There was overlap between these sets of proteins induced by heat and cold shock. Furthermore, a number of heat or cold shock proteins were found to be induced in both Listeria species and by both heat and cold shock in both species. The induction by heat shock was more intense than that by cold shock. The most strongly induced common stress a molecular protein of Listeria had mass of 17.6 kDa and an isoelectric point of 5. Misfolding, and aggregation of proteins are major damaging consequences of stress situation such as heat shock and pathophysiological states (mormoto et.at al.,1994; Horwich and Weissman 1997; Lindquist and Schirmer 1999.) The cellular defense against such damage is moleculer chaperones , whice prevent aggregation, assist refolding and mediate degradation of misfolded proteins (morimoto et al.,1994;Hart 1996;Bukau,1999). Chaperones can cooperate in vitro as part of functional network in which folder chaperones actively assist aggregation of misfolded proteins, whereas” folder” chaperones actively assist refolding (Langer et al.,1992; Buchberger et al.,1996;Freeman and morimoto,1996.Ehrsperger et al.,1997; Johnson Craig 1997;veinger et al., 1998). The contribution of individuals chaperones to this folding network in vivo and the identity of the stress sensitive cellular proteins remain unknown. Moreover, since cells have only a limited chaperone capacity to prevent protein aggregation under stress condition (Craig and