Building structure (Project 2) Individual Calculation Name: Tan Zi Jian ID: 0318291 Tutor: Mr. Mohd Adib bin Ramli
Quantity Dead Loads acting on structure Ground Floor
First Floor
Kitchen:
Bedroom
Slab thickness = 150mm
Slab thickness = 150mm
Slab self-weight = 0.15m x 24 kN/m3
Slab self-weight = 0.15m x 24 kN/m3
= 3.6 kN/m²
= 3.6 kN/m²
Living Room:
Bathroom
Slab thickness = 150mm
Slab thickness = 150mm
Slab self-weight = 0.15m x 24 kN/m3
Slab self-weight = 0.15m x 24 kN/m3
= 3.6 kN/m²
= 3.6 kN/m²
Toilet:
Staircase (residential)
Slab thickness = 150mm
Slab thickness = 150mm
Slab self-weight = 0.15m x 24 kN/m3
Slab self-weight = 0.15m x 24 kN/m3
= 3.6 kN/m²
Staircase (residential) Slab thickness = 150mm Slab self-weight = 0.15m x 24 kN/m3 = 3.6 kN/m²
Brick Wall
= wall height x thickness x density = 3m x 0.15m x 19kN/m3 = 8.55kN/m
Beam self-weight
= beam size x concrete density = 0.2m x 0.3m x 24 kN/m3 = 1.44kN/m
= 3.6 kN/m²
Quantity Dead Loads acting on structure (According to UBBL 1984, 4th Schedule pg108) Ground Floor Kitchen
: 3 kN/m²
Living room
: 1.5 kN/m²
Toilet
: 2.0 kN/m²
Staircase (residential)
: 2.0 kN/m²
First Floor Bedroom
: 1.5 kN/m²
Bathroom
: 2 kN/m²
Staircase (residential)
: 2 kN/m²
Identify One Way or Two Way Slab Indicating the distribution of load from slab to beam Ly = longer side of slab Lx = shorter side of slab When Ly/Lx>2, it is a one way slab. When Ly/Lx < or = 2, it is a two way slab.
Ground Floor Kitchen (slab 1) = 3250m/3000m = 1.08 < 2 (two way slab) Kitchen (slab 2) = 3250m/3000m = 1.08 < 2 (two way slab) Kitchen (slab 1) = 4500m/3250m = 1.38 < 2 (two way slab) Kitchen (slab 1) = 4500m/3250m = 1.38 < 2 (two way slab)
Living room (slab 1) = 6100m/3000m = 2.03 > 2 (one way slab) Living room (slab 2) = 6100m/4500m = 1.36 < 2 (two way slab)
Toilet (slab 1) = 1750m/1575m = 1.11 < 2 (two way slab)
Toilet (slab 1) = 1750m/1375m = 1.27 < 2 (two way slab) Toilet (slab 1) = 2950m/1650m = 1.79 < 2 (two way slab)
Staircase (residential) = 5850m/2950m = 1.98 < 2 (two way slab)
First Floor Bedroom (slab 1) = 4750m/3000m =1.58 < 2 (two way slab) Bedroom (slab 2) = 4750m/2700m =1.76 < 2 (two way slab)
Corridor (slab 1) = 6500m/1800m =3.61 > 2 (one way slab) Corridor (slab 2) = 6100m/1800m =3.38 > 2 (one way slab) Corridor (slab 3) = 2900m/1800m =1.63 < 2 (two way slab)
Bathroom (slab 1) = 3000m/1750m = 1.71 < 2 (two way slab) Bathroom (slab 2) = 3000m/1750m = 1.71 < 2 (two way slab) Bathroom (slab 3) = 2700m/1750m = 1.54 < 2 (two way slab) Bathroom (slab 4) = 2700m/1750m = 1.54 < 2 (two way slab)
Staircase (residential) = 5700m/2950m = 1.93 < 2 (two way slab)
Beam 1 Analysis Calculation Ground Floor Beam, E1 / 1-5 1. Carries Self weight – Dead load 2. Brick wall – Dead Load 3. Slab Dead Load & Live Load a. E-E1 / 1-5 (two way slab) b. E1-F / 1-5 (two way slab)
Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Brick wall weight
= Wall height x thickness x density = 3 m x 0.15m x 19 kN/m² = 8.55 kN/m
Dead load on Slab E-E1 / 1-5 (two way slab) Load is transferred to beam E1 / 1-5 in a trapezoidal form Dead Load from slab E1-E / 1-5 = [Dead Load on slab x (Lx/2)] = 3.6 kN/m² x (1.375m/2) = 3.6 kN/m² x 0.6875 m = 2.475 kN/m
Dead load on Slab F-E1 / 1-5 (two way slab) Load is transferred to beam E1 / 1-5 in a trapezoidal form Dead Load from slab F-E1 / 1-5 = [Dead Load on slab x (Lx/2)] = 3.6 kN/m² x (1.575m/2) = 3.6 kN/m² x 0.7875 m = 2.835 kN/m
Total Dead Load Diagram for beam E1 / 1-5
Beam Self-weight = 1.44 kN/m
Brick Wall Load = 8.55 kN/m
DL from Slab E-E1 / 1-5 = 2.475 kN/m
DL from Slab E-E1 / 1-5 = 2.835 kN/m
15.3 kN/m Total
Live load on Slab F-E / 1-2 (two way slab) Load is transferred to beam E1 / 1-5 in a trapezoidal form. Convert the trapezoidal load into UDL.
Live load on Slab E-E1 / 1-5 (two way slab) Load is transferred to beam E1 / 1-5 in a triangular form. Convert the triangular load into UDL. Live Load from slab E1-E / 1-5
= [Live Load on slab x (Lx/2)] = 2.0 kN/m² x (1.375m/2) = 2.0 kN/m² x 0.6875 m = 1.375 kN/m
Live load on Slab F-E1 / 1-5 (two way slab) Load is transferred to beam E1 / 1-5 in a triangular form. Convert the triangular load into UDL. Live Load from slab F-E1 / 1-5
= [Live Load on slab x (Lx/2)] = 2.0 kN/m² x (1.575m/2) = 2.0 kN/m² x 0.7875 m = 1.575 kN/m
Total Live Load Diagram for beam E1 / 1-5
LL from Slab E-E1 / 1-5 = 1.375 kN/m
LL from Slab E-E1 / 1-5 = 1.575 kN/m
2.95 kN/m Total
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively Ultimate Load 1-5
= DL x 1.4 + LL x 1.6 = 15.3 kN/m x 1.4 + 2.95 kN/m x 1.6 = 26.14 kN/m
26.14 kN/m ∑ MA
=0
(26.14kN/m x 1.75m) x (1.75m/2) – RB x (1.75m) =0 RB
= (45.745kN x 0.875m) / 1.75m = 22.8725 kN
Total Load RA
= RA + RB
= Total Load – RB = (26.14kN/m x 1.75m) – 22.8725 kN
A1
= 22.8725 kN
A2 A1 = A2 = (22.8725 kN x 0.875 m) / 2 = 10 kNm
-10
Beam 2 Analysis Calculation Ground Floor Beam, F-E/1 1. Carries Self weight – Dead load 2. Brick wall – Dead Load 3. Slab Dead Load & Live Load a. F-E / 1-2 (two way slab) b. E-E1 / 1-5 (two way slab) c. E1-F / 1-5 (two way slab)
Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Brick wall weight
= Wall height x thickness x density = 3 m x 0.15m x 19 kN/m² = 8.55 kN/m
Dead load on Slab F-E / 1-1A (two way slab) Load is transferred to beam F-E/1 in a trapezoidal form Dead Load from slab F-E / 1-2
= Dead Load on slab x (Lx/2) = 3.6 kN/m² x (1.65m/2) = 3.6 kN/m² x 0.825 m = 2.97 kN/m
Dead load on Slab E-E1 / 1-5 (two way slab) Load is transferred to beam F-E/1 in a triangular form Dead Load from slab E1-E / 1-5 = [Dead Load on slab x (Lx/2)] x 2/3 = 3.6 kN/m² x (1.375m/2) x 2/3 = 3.6 kN/m² x 0.458 m = 1.65 kN/m
Dead load on Slab F-E1 / 1-5 (two way slab) Load is transferred to beam F-E/1 in a triangular form Dead Load from slab F-E1 / 1-5 = [Dead Load on slab x (Lx/2)] x 2/3 = 3.6 kN/m² x (1.575m/2) x 2/3 = 3.6 kN/m² x 0.525 m = 1.89 kN/m
Total Dead Load Diagram for beam F-E/1
Beam Self-weight = 1.44 kN/m
Brick Wall Load = 8.55 kN/m
DL from Slab F-E / 1-1A = 2.97 kN/m
DL from Slab E-E1 / 1-5 = 1.65 kN/m
DL from Slab F-E1 / 1-5 = 1.89 kN/m 22.8725 kN/m
Total
14.61 kN/m
14.85 kN/m
Live load on Slab F-E / 1-1A (two way slab) Load is transferred to beam FE / 1 in a trapezoidal form. Convert the trapezoidal load into UDL. Live Load from slab E1-E / 1-5
= Live Load on slab x (Lx/2) = 2.0 kN/m² x (1.65m/2) = 2.0 kN/m² x 0.825 m = 1.65 kN/m
Live load on Slab E-E1 / 1-5 (two way slab) Load is transferred to beam FE / 1 in a triangular form. Convert the triangular load into UDL. Live Load from slab E1-E / 1-5
= [Live Load on slab x (Lx/2)] x 2/3 = 2.0 kN/m² x (1.375m/2) x 2/3 = 2.0 kN/m² x 0.458 m = 0.916 kN/m
Live load on Slab F-E1 / 1-5 (two way slab) Load is transferred to beam FE / 1 in a triangular form. Convert the triangular load into UDL. Live Load from slab F-E1 / 1-5
= [Live Load on slab x (Lx/2)] x 2/3 = 2.0 kN/m² x (1.575m/2) x 2/3 = 2.0 kN/m² x 0.525 m = 1.05 kN/m
Total Live Load Diagram for beam F-E/1
LL from Slab F-E / 1-1A = 1.65 kN/m
LL from Slab E-E1 / 1-5 = 0.916 kN/m
LL from Slab F-E1 / 1-5 = 1.05 kN/m
Total
2.7 kN/m 2.57 kN/m
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively Ultimate Load E-E1
= DL x 1.4 + LL x 1.6 = 14.61 kN/m x 1.4 + 2.57 kN/m x 1.6 = 24.57 kN/m
Ultimate point load
= 22.8725 kN
Ultimate load E1-F
= DL x 1.4 + LL x 1.6 = 14.85 kN/m x 1.4 + 2.7 kN/m x 1.6 = 25.11 kN/m
∑ MA
=0
(24.57kN/m x 1.375m) x (1.375m/2) + (22.8725kN x 1.375m)
22.8725 kN
+ (25.11kN/m x 1.575m) x (1.375m + 1.575/2) – RB x 2.95m =0
25.11 kN/m
2.95m x RB = (33.78kN x 0.6875m)
24.57 kN/m
+ 31.45kNm + 39.55kN x 2.1625m 2.95m x RB = 23.22kNm + 31.45kNm + 85.53kNm RB = 140.2kNm / 2.95m RB = 47.55kN
Total Load
= RA + RB
RA = Total Load – RB = (24.57kN/m x 1.375m) + 22.8725kN + 25.11kN/m x 1.575m – 47.55 = 96.2kN – 47.55kN = 48.65kN
A1 = [(47.55kN + 13.77kN)] x 1.375m)/2 = 42.15kNm
A2 = [(9.1kN + 48.65kN)] x 1.375m)/2 = 45.48kNm
A1 A2
Beam 3 Analysis Calculation Ground Floor Beam, G-F / 2 1. Carries Self weight – Dead load 2. Slab Dead Load & Live Load a. G-F / 1-2 (one way slab) b. E-E1 / 1-5 (two way slab)
Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Dead load on Slab G-F / 1-2 (one way slab) Half of the load is transferred to beam G-F / 2 Dead Load from slab G-F / 1-2 = Dead Load on slab x (Lx/2) = 3.6 kN/m² x (3m/2) = 3.6 kN/m² x 1.5 m = 5.4 kN/m
Dead load on Slab G-F / 2-3 (two way slab) Load is transferred to beam G-F / 2 in a trapezoidal form Dead Load from slab G-F / 2-3 = [Dead Load on slab x (Lx/2)] = 3.6 kN/m² x (4.5 m /2) = 3.6 kN/m² x 2.25 m = 8.1 kN/m
Total Dead Load Diagram for beam G-F / 2
Beam Self-weight = 1.44 kN/m
DL from Slab G-F / 1-2 = 5.4 kN/m
DL from Slab G-F / 2-3 = 8.1 kN/m
14.94 kN/m Total
Live load on Slab G-F / 1-2 (one way slab) Load is transferred to beam G-F / 2 in a trapezoidal form. Convert the trapezoidal load into UDL. Live Load from slab E1-E / 1-5
= Live Load on slab x (Lx/2) = 2.0 kN/m² x (3 m/2) = 2.0 kN/m² x 1.5 m = 3 kN/m
Live load on Slab G-F / 2-3 (two way slab) Load is transferred to beam G-F / 2 in a triangular form. Convert the triangular load into UDL. Live Load from slab E1-E / 1-5
= [Live Load on slab x (Lx/2)] = 2.0 kN/m² x (4.5 m /2) = 2.0 kN/m² x 2.25 m = 4.5 kN/m
Total Live Load Diagram for beam G-F / 2
LL from Slab G-F / 1-2 = 3 kN/m
LL from Slab G-F / 2-3 = 4.5 kN/m
7.5 kN/m Total
Ultimate Load Apply factor 1.4 and 1.6 to dead load and Live load respectively Ultimate Load F-G
= DL x 1.4 + LL x 1.6 = 14.94 kN/m x 1.4
7.5 kN/m
+ 7.5 kN/m x 1.6 = 32.916 kN/m
∑ MA
=0
(32.916kN/m x 6.1m) x (6.1m/2) – RB x (6.1m) =0 RB
= (200.79kN x 3.05m) / 6.1m = 100.3938kN = 100.4kN
A1 Total Load RA
= RA + RB
= Total Load – RB = (32.916kN/m x 6.1m) – 100.3938 kN = 100.3938kN
A1 = A2 = (100.4kN x 3.05m) / 2 = 153.11kNm
A2
Beam 4 Analysis Calculation Ground Floor Beam, F-E/1A 1. Carries Self weight – Dead load 2. Brick wall – Dead Load 3. Slab Dead Load & Live Load a. F-E / 1-1A (two way slab) Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Brick wall weight
= Wall height x thickness x density = 3 m x 0.15m x 19 kN/m² = 8.55 kN/m
Dead load on Slab F-E / 1-1A (two way slab) Load is transferred to beam F-E/1A in a trapezoidal form Dead Load from slab F-E / 1-1A = Dead Load on slab x (Lx/2) = 3.6 kN/m² x (1.65m/2) = 3.6 kN/m² x 0.825 m = 2.97 kN/m
Total Dead Load Diagram for beam F-E/1A
Beam Self-weight = 1.44 kN/m
Brick Wall Load = 8.55 kN/m
DL from Slab F-E / 1-2 = 2.97 kN/m
12.96 kN/m Total
Live load on Slab F-E / 1-1A (two way slab) Load is transferred to beam F-E/ 1A in a trapezoidal form. Convert the trapezoidal load into UDL. Live Load from slab F-E / 1-1A
= Live Load on slab x (Lx/2) = 2.0 kN/m² x (1.65m/2) = 2.0 kN/m² x 0.825 m = 1.65 kN/m
Total Live Load Diagram for beam F-E / 1A
LL from Slab G-F / 2-3 = 4.5 kN/m
4.5 kN/m Total
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively Ultimate Load F-E1
= DL x 1.4 + LL x 1.6 = 12.96 kN/m x 1.4 + 4.5 kN/m x 1.6 = 25.34 kN/m
∑ MA
=0
(25.34kN/m x 2.95m) x (2.95m/2) – RB x (2.95m) =0 RB
= (74.753kN x 1.475m) / 2.95m = 37.3765kN = 37.38
Total Load RA
= RA + RB
= Total Load – RB = (25.34kN/m x 2.95m) – 37.3765 kN = 37.3765kN
A1
= 37.38kN
A2 A1 = A2 = (37.38kN x 1.475m) / 2 = 27.57kNm
Beam 5 Analysis Calculation Ground Floor Beam, F/ 1-2 1. Carries Self weight – Dead load 2. Brick wall – Dead Load 3. Slab Dead Load & Live Load a. F-E / 1-2 (two way slab) Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Brick wall weight
= Wall height x thickness x density = 3 m x 0.15m x 19 kN/m² = 8.55 kN/m
Dead load on Slab F-E / 1-1A (two way slab) Load is transferred to beam F / 1-2 in a trapezoidal form Dead Load from slab F-E / 1-1A = Dead Load on slab x (Lx/2) = 3.6 kN/m² x (1.65m/2) = 3.6 kN/m² x 0.825 m = 2.97 kN/m
Total Dead Load Diagram for beam F / 1-2
Beam Self-weight = 1.44 kN/m
Brick Wall Load = 8.55 kN/m
DL from Slab F-E / 1-2 = 2.97 kN/m
12.96 kN/m Total
Live load on Slab F-E / 1-1A (two way slab) Load is transferred to beam F-E/ 1A in a trapezoidal form. Convert the trapezoidal load into UDL. Live Load from slab F-E / 1-1A
= Live Load on slab x (Lx/2) = 2.0 kN/m² x (1.65m/2) = 2.0 kN/m² x 0.825 m = 1.65 kN/m
Total Live Load Diagram for beam F / 1-2
LL from Slab F-E / 1-1A= 1.65 kN/m
1.65 kN/m Total
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively Ultimate Load 1-1A
= DL x 1.4 + LL x 1.6 = 14.61 kN/m x 1.4 + 1.65 kN/m x 1.6 = 24.57 kN/m
Ultimate point load
= 37.38 kN
∑ MA
=0
(25.57kN/m x 1.65m) x (1.65m/2) + (37.38kN x 1.65m)– RB x (3m) = 0 RB
= 37.71kN
Total Load RA
37.38 kN
= (40.5405kN x 0.825m + 61.677kNm) / 3m
24.57 kN/m
= RA + RB
= Total Load – RB = (24.57kN/m x 1.65m) + 37.38 kN – 37.31kN = 46.2105kN = 46.21kN
A1 = [(46.21kN + 5.67kN) x 1.65] / 2 = 42.8kNm
A1
A2 = (31.71kN x 1.35m) / 2 = 21.4kNm
A2
Beam 6 Analysis Calculation Ground Floor Beam, H / 1-3 (Divided into 2 secondary beams – H / 1-2, H / 2-3)
Beam 6A Analysis Calculation Ground floor beam, H / 1-2 1. Carries Self weight – Dead load 2. Brick wall – Dead Load 3. Slab Dead Load & Live Load a. H-I / 1-2 (two way slab) b. H-I / 2-3 (two way slab)
Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Brick wall weight
= Wall height x thickness x density = 3 m x 0.15m x 19 kN/m² = 8.55 kN/m
Dead load on Slab H-I / 1-2 (two way slab) Load is transferred to beam H / 1-2 in a triangular form Dead Load from slab H-I / 1-2
= Dead Load on slab x (Lx/2) x 2/3 = 3.6 kN/m² x (3 m/2) x 2/3 = 3.6 kN/m² x 1.5 m x 2/3 = 3.6 kN/m
Dead load on Slab G-H / 1-2 (two way slab) Load is transferred to beam H / 1-2 in a triangular form Dead Load from slab F-E1 / 1-5 = [Dead Load on slab x (Lx/2)] x 2/3 = 3.6 kN/m² x (3 m/2) x 2/3 = 3.6 kN/m² x 1.5 m x 2/3 = 3.6 kN/m
Total Dead Load Diagram for beam H / 1-2
Beam Self-weight = 1.44 kN/m
Brick Wall Load = 8.55 kN/m
DL from Slab H-I / 1-2 = 3.6 kN/m
DL from Slab G-H / 1-2 = 3.6 kN/m
17.19 kN/m Total
Live load on Slab H-I / 1-2 (two way slab) Load is transferred to beam H / 1-2 in a triangular form. Convert the triangular load into UDL. Live Load from slab E1-E / 1-5
= [Live Load on slab x (Lx/2)] x 2/3 = 3.0 kN/m² x (3 m/2) x 2/3 = 3.0 kN/m² x 1.5 m x 2/3 = 3.0 kN/m
Live load on Slab H-I / 2-3 (two way slab) Load is transferred to beam H / 1-2 in a triangular form. Convert the triangular load into UDL. Live Load from slab E1-E / 1-5
= [Live Load on slab x (Lx/2)] x 2/3 = 3.0 kN/m² x (3 m/2) x 2/3 = 3.0 kN/m² x 1.5 m x 2/3 = 3.0 kN/m
Total Live Load Diagram for beam H / 1-2
LL from Slab H-I / 1-2 = 3 kN/m
LL from Slab G-H / 1-2 = 3 kN/m
9 kN/m Total
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively Ultimate Load 1-1A
= DL x 1.4 + LL x 1.6 = 17.19 kN/m x 1.4 + 9 kN/m x 1.6 = 38.47 kN/m
∑ MA
=0
(38.47kN/m x 3m) x (3m/2) – RB x 3m =0 RB
38.47 kN/m
= (173.115kNm) / 3m = 57.705kN
Total Load RA
= RA + RB
= Total Load – RB = (38.47kN/m x 3m) – 57.705kN = 57.705kN = 57.7kN
A1 = A2 = (57.7kN x 1.5m) / 2 = 43.28kNm
A1 A2
Beam analysis 6B Ground floor beam, H / 2-3 1. Carries Self weight – Dead load 2. Slab Dead Load & Live Load a. H-I / 2-3 (two way slab) b. G-H / 2-3 (two way slab)
Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Dead load on Slab H-I / 2-3 (two way slab) Load is transferred to beam H / 2-3 in a trapezoidal form Dead Load from slab E1-E / 1-5 = Dead Load on slab x (Lx/2) = 3.6 kN/m² x (3.25 m/2) = 3.6 kN/m² x 1.625 m = 5.85 kN/m
Dead load on Slab G-H / 2-3 (two way slab) Load is transferred to beam H / 2-3 in a trapezoidal form Dead Load from slab F-E1 / 1-5 = Dead Load on slab x (Lx/2) = 3.6 kN/m² x (3.25 m/2) = 3.6 kN/m² x 1.625 m = 5.85 kN/m
Total Dead Load Diagram for beam H / 2-3
Beam Self-weight = 1.44 kN/m
DL from Slab H-I / 2-3 = 5.85 kN/m
DL from Slab G-H / 2-3 = 5.85 kN/m
13.14 kN/m Total
Live load on Slab H-I / 2-3 (two way slab) Load is transferred to beam H / 1-2 in a trapezoidal form. Convert the trapezoidal load into UDL. Live Load from slab H-I / 2-3
= Live Load on slab x (Lx/2) = 3.0 kN/m² x (3.25 m/2) = 3.0 kN/m² x 1.625 m = 4.875 kN/m
Live load on Slab G-H / 2-3 (two way slab) Load is transferred to beam H / 1-2 in a triangular form. Convert the trapezoidal load into UDL. Live Load from slab G-H / 2-3
= Live Load on slab x (Lx/2) = 3.0 kN/m² x (3.25 m/2) = 3.0 kN/m² x 1.625 m = 4.875 kN/m
Total Live Load Diagram for beam H / 2-3
LL from Slab H-I / 1-2 = 4.875 kN/m
LL from Slab G-H / 1-2 = 4.875 kN/m
9.75 kN/m Total
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively Ultimate Load 1-1A
= DL x 1.4 + LL x 1.6 = 13.14 kN/m x 1.4 + 9.75 kN/m x 1.6 = 34 kN/m
∑ MA
=0
(34kN/m x 4.5m) x (4.5m/2) – RB x 4.5m =0 RB
38.47 kN/m
= (344.25kNm) / 4.5m = 76.5kN
Total Load RA
= RA + RB
= Total Load – RB = (34kN/m x 4.5 m) – 76.5kN = 153kN – 76.5kN = 76.5kN
A1 = A2 = (76.5kN x 2.25m) / 2 = 86.06kNm
A1 A2
Beam 7 Analysis Calculation Ground Floor Beam, G-I / 2 1. Carries Self weight – Dead load 2. Brick wall – Dead Load 3. Slab Dead Load & Live Load a. H-I / 1-2 (two way slab) b. H-I / 2-3 (two way slab) c. H-I / 2-3 (two way slab) d. G-H / 2-3 (two way slab)
Beam self-weight
= Beam size x concrete density = 0.2m x 0.3m x 24 kN/m² = 1.44 kN/m
Brick wall weight
= Wall height x thickness x density = 3 m x 0.15m x 19 kN/m² = 8.55 kN/m
Dead load on Slab H-I / 1-2 (two way slab) Load is transferred to beam G-I / 2 in a trapezoidal form Dead Load from slab H-I / 1-2
= Dead Load on slab x (Lx/2) = 3.6 kN/m² x (3 m/2) = 3.6 kN/m² x 1.5 m = 5.4 kN/m
Dead load on Slab G-H / 1-2 (two way slab) Load is transferred to beam G-I / 2 in a trapezoidal form Dead Load from slab F-E1 / 1-5 = [Dead Load on slab x (Lx/2)] = 3.6 kN/m² x (3 m/2) = 3.6 kN/m² x 1.5 m = 5.4 kN/m
Dead load on Slab H-I / 2-3 (two way slab) Load is transferred to beam G-I / 2 in a triangular form Dead Load from slab E1-E / 1-5 = [Dead Load on slab x (Lx/2)] x 2/3 = 3.6 kN/m² x (3.25 m/2) x 2/3 = 3.6 kN/m² x 1.625 m x 2/3 = 3.9 kN/m
Dead load on Slab G-H / 2-3 (two way slab) Load is transferred to beam G-I / 2 in a triangular form Dead Load from slab F-E1 / 1-5 = [Dead Load on slab x (Lx/2)] x 2/3 = 3.6 kN/m² x (3.25 m/2) x 2/3 = 3.6 kN/m² x 1.625 m x 2/3 = 3.9 kN/m
Total Dead Load Diagram for beam G-I / 2
Beam Self-weight = 1.44 kN/m
Brick Wall Load = 8.55 kN/m
DL from Slab H-I / 1-2 = 5.4 kN/m
DL from Slab G-H / 1-2 = 5.4 kN/m
DL from Slab H-I / 2-3 = 3.9 kN/m
DL from Slab G-H / 2-3 = 3.9 kN/m kN/m 28.59 kN/m Total
Live load on Slab H-I / 1-2 (two way slab) Load is transferred to beam H / 1-2 in a triangular form. Convert the trapezoidal load into UDL. Live Load from slab E1-E / 1-5
= [Live Load on slab x (Lx/2)] = 3.0 kN/m² x (3 m/2) = 3.0 kN/m² x 1.5 m = 4.5 kN/m
Live load on Slab H-I / 2-3 (two way slab) Load is transferred to beam H / 1-2 in a triangular form. Convert the trapezoidal load into UDL. Live Load from slab E1-E / 1-5
= [Live Load on slab x (Lx/2)] = 3.0 kN/m² x (3 m/2) = 3.0 kN/m² x 1.5 m = 4.5 kN/m
Live load on Slab H-I / 2-3 (two way slab) Load is transferred to beam H / 1-2 in a trapezoidal form. Convert the triangular load into UDL. Live Load from slab H-I / 2-3
= [Live Load on slab x (Lx/2)] x 2/3 = 3.0 kN/m² x (3.25 m/2) x 2/3 = 3.0 kN/m² x 1.625 m x 2/3 = 3.25 kN/m
Live load on Slab G-H / 2-3 (two way slab) Load is transferred to beam H / 1-2 in a triangular form. Convert the triangular load into UDL. Live Load from slab G-H / 2-3
= [Live Load on slab x (Lx/2)] x 2/3 = 3.0 kN/m² x (3.25 m/2) x 2/3 = 3.0 kN/m² x 1.625 m x 2/3 = 3.25 kN/m
Total Live Load Diagram for beam G-I /2
DL from Slab H-I / 1-2 = 4.5 kN/m
DL from Slab G-H / 1-2 = 4.5 kN/m
DL from Slab H-I / 2-3 = 3.25 kN/m
DL from Slab G-H / 2-3 = 3.25 kN/m
15.5 kN/m Total
Ultimate Load Apply factor 1.4 and 1.6 to dead load and live load respectively Ultimate Load G-H
= DL x 1.4 + LL x 1.6 = 28.59 kN/m x 1.4 + 15.5 kN/m x 1.6 = 64.83 kN/m
Ultimate point load
= 76.5kN
Ultimate Load H-I
= DL x 1.4 + LL x 1.6 = 28.59 kN/m x 1.4 + 15.5 kN/m x 1.6 = 64.83 kN/m
∑ MA
=0
(64.83kN/m x 3.25m) x (3.25m/2) + 76.5kN x 3.25m + [64.83 x (3.25 + 3.25/2)] – RB x 6.5m =0 RB
= (342.38kNm + 248.625kNm + 316.05kNm) / 6.5m
38.47 kN/m
= 139.55kN
Total Load RA
= RA + RB
= Total Load – RB = (64.38kN/m x 3.25m) x 2 + 76.5kN – 139.55kN = 355.42kN
Let distance ab be x Distance ac be 3.25 – x
139.55/ (3.25-x) = 69.69/x
A1
139.55x = 226.49 – 69.69x 209.24x = 226.49 X = 1.08 (m)
A1 = [(146.185kN + 355.42kN) x (3.25m+1.08m)] / 2 = 1085.97 A2 = (139.55kN x 3.25m) / 2 = 226.77kNm
A2
Column 1 Analysis Calculation-----Column I1 Roof Dead Load Slab 3.6kN/m² x (3.75m x 3.25m) Beam 1.44kN/m x (3.25m + 3.25 +3.75m) Total First Floor Dead Load Slab 3.6kN/m² x (3.75m x 3.25m) Beam 1.44kN/m x (3.25m + 3.25m +3.75m) Wall 8.55kN/m x (3.75m + 3.25m) Column 0.3m x 0.4m x 3m x 24kN/m3 Total Ground Floor Dead Load Slab 3.6kN/m² x (3.75m x 3.25m) Beam 1.44kN/m x (3.25m + 3.25m +3.75m) Wall 8.55kN/m x (3.75m + 3.25m + 3.25m) Column 0.3m x 0.4m x 3m x 24kN/m3 Total Total Dead Load Apply 1.4 factor
= 15.79kN = 14.76kN = 30.55kN
= 15.79kN
Live Load Bed Room (3.25m x 3.75m) x 1.5kN/m²
= 18.28kN
Live Load Kitchen (3.25m x 3.75m) x 3N/m²
= 36.56kN
Total Live Load Apply 1.6 factor
= 54.84kN = 87.74kN
= 14.76kN = 59.85kN = 8.64kN = 99.04kN
= 15.79kN = 14.76kN = 87.64kN = 8.64kN = 126.83kN = 256.42kN = 358.99kN
Ultimate load acting on Column I1 = 358.99kN + 87.74kN = 446.73kN Cross section of concrete column, Ac = 300 mm x 400mm = 120000 mm2 Steel content in a column, Asc = 2% x 120000mm2 = 2400mm2 Concrete strength, Fcu = 300N/mm2 Yield strength of steel, Fy = 460N/ mm2 Capacity of concrete, N = 0.4fcuAc + 0.8 Ascfy = 0.4(30) (120000) + 0.8(460) (2400) = 1440,000 + 883,200 = 2323200 N = 2323.2kN
Column 2 Analysis Calculation-----Column G1 Roof Dead Load Slab 3.6kN/m² x (6.3m x 1.5m) Beam 1.44kN/m x (1.5m x3 + 3.05 +3.25m) Total First Floor Dead Load Slab 3.6kN/m² x (6.3m x 1.5m) Beam 1.44kN/m x (1.5m x 3 + 3.05m +3.25m) Wall 8.55kN/m x (1.5m x 3 + 6.3m) Column 0.3m x 0.4m x 3m x 24kN/m3 Total Ground Floor Dead Load Slab 3.6kN/m² x (6.3m x 1.5m) Beam 1.44kN/m x (1.5m x 2 + 6.3m) Wall 8.55kN/m x (1.125m x 2 + 1.8m + 1.5m + 6.3m + 0.325m + 0.275m) Column 0.3m x 0.4m x 3m x 24kN/m3 Total Total Dead Load Apply 1.4 factor
= 34.02kN = 15.55kN = 49.57kN
= 34.02kN = 15.55kN
Live Load Bed Room [(1.5m x 1.5m) + (1.5m x 1.3m)] x 1.5kN/m² =6.3kN Bath Room [(1.75m x 1.5m) x 2] x 2.0kN/m² =10.5kN Total = 16.8kN
= 92.34kN = 8.64kN = 150.55kN
= 34.02kN = 13.39kN
= 106.45kN
Live Load Bath Room (1.8m x 1.125m) x 2kN/m² Maid Bedroom (3.25m x 1.5m – 1.8m x 1.125m) x 1.5m Living Room (1.5m x 3.05m) x 1.5kN/m² Total
= 4.05kN = 4.28kN = 6.86kN = 15.19kN
= 8.64kN = 162.5kN = 362.62kN = 507.67kN
Total Live Load Apply 1.6 factor
Ultimate load acting on Column G1 = 507.67kN + 51.18kN = 558.85kN Cross section of concrete column, Ac = 300 mm x 400mm = 120000 mm2 Steel content in a column, Asc = 2% x 120000mm2 = 2400mm2 Concrete strength, Fcu = 300N/mm2 Yield strength of steel, Fy = 460N/ mm2 Capacity of concrete, N = 0.4fcuAc + 0.8 Ascfy = 0.4(30) (120000) + 0.8(460)(2400) = 1440,000 + 883,200 = 2323200 N = 2323.2kN
= 31.99kN = 51.18kN
Column 3 Analysis Calculation-----Column G2 Roof Dead Load Slab 3.6kN/m² x (3.75m x 6.3m) Beam 1.44kN/m x (6.3m +3.75m x 3) Total
= 85.05kN = 25.27kN = 110.32kN
First Floor Dead Load Slab 3.6kN/m² x (3.75m x 6.3m) = 85.05kN Beam 1.44kN/m x (6.3m +3.75m x 3) = 25.27kN Wall 8.55kN/m x (3.75m + (1.5m x 2) + 3.5m) = 87.64kN Column 0.3m x 0.4m x 3m x 24kN/m3 = 8.64kN Total = 206.6kN Ground Floor Dead Load Slab 3.6kN/m² x (3.75m x 6.3m) Beam 1.44kN/m x (3.75m x 2 + 6.3m) Wall 8.55kN/m x (1.5m x 2 + 3.25m) Column 0.3m x 0.4m x 3m x 24kN/m3 Total Total Dead Load Apply 1.4 factor
Live Load Bed Room (3.75m x 6.3m - 1.5m x 3.5m) x 1.5kN/m² = 19.69kN Bath Room (3.5m x 1.5m) x 2.0kN/m² = 10.5kN Total = 30.19kN
= 8.64kN = 167kN
Live Load Bath Room (1.8m x 1.125m) x 2kN/m² Maid Bedroom (3.25m x 1.5m – 1.8m x 1.125m) x 1.5m Living Room (3.75m x 3.05m) x 1.5kN/m² Dry Kitchen (3.25m x 2.25m) x 3kN/m² Total
= 483.92kN = 677.49kN
Total Live Load Apply 1.6 factor
= 85.05kN = 19.87kN = 53.44kN
Ultimate load acting on Column G2 = 677.49kN + 124.19kN = 801.68kN Cross section of concrete column, Ac = 300 mm x 400mm = 120000 mm2 Steel content in a column, Asc = 2% x 120000mm2 = 2400mm2 Concrete strength, Fcu = 300N/mm2 Yield strength of steel, Fy = 460N/ mm2 Capacity of concrete, N = 0.4fcuAc + 0.8 Ascfy = 0.4(30)(120000) + 0.8(460)(2400) = 1440,000 + 883,200 = 2323200 N = 2323.2kN
= 4.05kN = 4.28kN = 17.16kN = 21.94kN = 47.43kN = 77.62kN = 124.19kN
Column 4 Analysis Calculation-----Column F2 Roof Dead Load Slab 3.6kN/m² x (3.75m x 4.525m) Beam 1.44kN/m x (4.525m +3.75m) Total First Floor Dead Load Slab 3.6kN/m² x (3.75m x 4.525m) Beam 1.44kN/m x (3.05m +3.75m) Wall 8.55kN/m x 3.75m Column 0.3m x 0.4m x 3m x 24kN/m3 Total Ground Floor Dead Load Slab 3.6kN/m² x (3.75m x 4.525m) Beam 1.44kN/m x (1.475m + 3.75m + 3.05m) Wall 8.55kN/m x (3.6m + 1.475m) Column 0.3m x 0.4m x 3m x 24kN/m3 Total Total Dead Load Apply 1.4 factor
= 61.09kN = 11.92kN = 73.01kN
= 61.09kN = 9.79kN
Live Load Bed Room (3.75m x 3.05m) x 1.5kN/m² Staircase (residential) (1.475m x 3.75m) x 2.0kN/m² Total
= 17.16kN = 11.06kN = 28.22kN
= 32.06kN = 8.64kN = 111.58kN
= 61.09kN = 11.92kN = 43.39kN
Live Load Living Room (3.05m x 3.75m) x 1.5kN/m² Staircase (residential) (3.6m x 1.475m) x 2m Toilet (0.15m x 1.475m) x 2kN/m² Total
= 17.16kN = 10.62kN = 0.44kN = 28.22kN
= 8.64kN = 125.04N = 309.63N = 433.48kN
Total Live Load Apply 1.6 factor
Ultimate load acting on Column F2 = 433.48kN + 90.3kN = 523.78kN Cross section of concrete column, Ac = 300 mm x 400mm = 120000 mm2 Steel content in a column, Asc = 2% x 120000mm2 = 2400mm2 Concrete strength, Fcu = 300N/mm2 Yield strength of steel, Fy = 460N/ mm2 Capacity of concrete, N = 0.4fcuAc + 0.8 Ascfy = 0.4(30) (120000) + 0.8(460) (2400) = 1440,000 + 883,200 = 2323200 N = 2323.2kN
= 56.44kN = 90.3N
Reference Ppj. (1984). Ubbl 4th schedule. Retrieved 13 November, 2015, from http://www.scribd.com/doc/30457115/13282147-Uniform-Building-by-Laws
Taylors, B.L (2015). How to Draw: SFD & BMD. Retrieved 16 November, 2015, from https://www.youtube.com/watch?v=q0DghZBR-AU
Taylors, M.N.J. (2015). Slab. Retrieved 16 November, 2015, from https://attachment.fbsbx.com/file_download.php?id=1649978338620092
Taylors, M.A.R. (2015). Beams. Retrieved 16 November, 2015, from https://attachment.fbsbx.com/file_download.php?id=442395825948652
Taylors, M.N.J. (2015). Slab. Retrieved 16 November, 2015, from https://attachment.fbsbx.com/file_download.php?id=442395825948652