№ 881.
( (
))′ (x
1) log 2 x3 − x 2 − 1 =
(
2) (log 2 x )
3
3x3 − 2 x 3
)′ = 3 ⋅ (xlogln 2x)
2
2
3) (sin (log 3 x ))′ =
)
− x 2 + 1 ln 2 =
3 ln 2 x x ln 3 2
;
;
cos(log 3 x ) ; 4) (cos 3x)′= –sin 3 x⋅3 x⋅ln 3. x ln 3
№ 882.
y′=(e–x)= –e–x
y′=(ln(–x))′=
график г) у=ψ(x);
−1 1 = −x x
график a) y=f(x);
y′=(sin2x)=2cos 2x график в) y=ϕ(x); y′=(2cos x)′= –2sin x график б) y=g(x).
№ 883.
1) f ′(x)=(2 x+2 –x)′=2 x ln2–2 –xln 2, f ′(x)=0, ln2(2 x–2 –x)=0, ln2 ≠0, 2 x–2 –x=0, 2 x=2 –x ⇒ x= –x, f ′(x)>0 при x>0; f ′(x)<0 при x<0; – +
x=0,
0 x 2) f ′(x)=(3 2x–2xln3)′=2⋅3 2x ln3–2ln 3 f ′(x)=0, ln3(3 2x–1)=0, 2ln3 ≠0, 3 2x–1=0⇒3 2x=1⇒3 2x=30 ⇒ 2x=0, x=0. f ′(x)>0 при x>0; f ′(x)<0 при x<0;
–
+ 0
x 2 1 1 3) f ′(x)=(x+ln2x)′=1+ =1+ , x>0, f ′(x)=0, 1+ =0 ⇒ x= –1, 2x x x f ′(x)>0
+
при –1
x>0; f ′(x)<0 –
+
0
не существует; x
2 , 2x+1>0 2x + 1 3 2 2x + 3 =0 ⇒ =0 ⇒ х= − f ′(x)=0, 1+ 2x + 1 2x +1 2 1 f ′(x)>0 при x> − ; f ′(x)<0 не существует 2 4) f ′(x)=(x+ln(2x+1))′=1+
38