Fisiopatología del SAHOS, Diagnóstico del SAHOS, Tratamiento del SAHO

Page 1

PEDIATRIC OBSTRUCTIVE SLEEP APNEA SÍNDROME Christian Guilleminault, MD, BiolD; Ji Hyun Lee, MD; Allison Chan, DO Stanford University Sleep Disorders Program, Stanford, California Objective: To review evidence-based knowledge of pediatric obstructive sleep apnea syndrome (OSAS). Data Sources and Extraction: We reviewed publishedarticles regarding pediatric OSAS; extracted the clinical symptoms, syndromes, polysomnographic findings and variables, and treatment options, and reviewed the authors’ recommendations. Data Synthesis: Orthodontic and craniofacial abnormalities related to pediatric OSAS are commonly ignored, despite their impact on public health. One area of controversy involves the use of a respiratory disturbance index to define various abnormalities, but apneas and hypopneas are not the only abnormalities obtained on polysomnograms, which can be diagnostic for sleepdisordered breathing. Adenotonsillectomy is often considered the treatment of choice for pediatric OSAS. However, many clinicians may not discern which patientpopulation is most appropriate for this type of intervention; the isolated finding of small tonsils is not sufficient to rule out the need for surgery. Nasal continuous positive airway pressure can be an effective treatment option, but it entails cooperation and training of the child and the family. A valid but often overlooked alternative, orthodontic treatment, may complement adenotonsillectomy. Conclusions: Many complaints and syndromes are associated with pediatric OSAS. This diagnosis should be considered in patients who report the presence of Duch symptoms and syndromes. UNDERSTANDING obstructive sleep apnea síndrome (OSAS) in children requires knowledge of the physiology of sleep and breathing. There is an immediate increase in upper airway resistance with sleep onset, with an initial “overshoot” in this resistance that decreases very quickly. Still, this resistance during established sleep is mildly higher than during wakefulness.1 There is also a slight decrease in tidal volume with sleep. This decrease will be more pronounced with the occurrence of rapid eye movement (REM) sleep. These mild decreases will be compensated by a slight increase in breathing frequency to keep minute ventilation normal. Breathing frequency decreases during the first 2 years of life but stays the same thereafter; it has been calculated to range from a maximum of 16 to 18 breaths/min in non-REM sleep and 17 to 19 breaths/min during REM sleep.(2,3) The obesity epidemic, evident in the United States and industrialized countries, has complicated the investigation of obstructive sleep apnea (OSA) and related syndromes. Fat distribution varies according to genetic, sex, and hormonal patterns and the inherent relationship among these 3 factors. It is common for fat to deposit in the abdominal region. Such abdominal obesity will lead to chest-bellows impairment, as seen in restrictive thoracic disorders. Although it may not lead to upper airway obstruction, abdominal obesity may worsen the poor gas exchange that may already exist because of OSAS. Sleep will always worsen the gas exchange in these subjects when they are in the supine position and when they achieveREMsleep.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.