NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
NEIGHBORHOOD TOPOLOGIES 2014
MUSTAFA EL SAYED Alejandro Garcia Gadea + Ruxandra Metei + YoungAh Kang + Yooyeon Noh
This project explores the idea of hybridizing low and high-density ruleset behaviours through a controlled and defined cellular automata. As the CA grows, density conditions are analysed and the structure of the CA is reorganized according to certain defined parameters. Simultaneously exploring in Processing and Maya, rulesets and behaviours are shifted in order to design controlled local conditions and develop a complex interlocking structure which embodies our research.
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
1| CELLULAR AUTOMATA BEHAVIORS RESEARCH SETUPS RULESETS BEHAVIOR 2| COMPONENT CONNECTION RESEARCH 3| COMBINING RULESETS SHIFTING PROBABILITY EROSION 4| FINAL MODEL ANALYSIS AGE 2D NEIGHBORS 3D NEIGHBORS TYPES OF CONNECTIONS
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH This research focuses on typological cellular automata behaviours starting from different setups and rulesets, which later on will lead the project to hybrid of high and low density combined systems. We define setup as our image input, which we design in order to achieve certain results based on previous experiments. On the other hand, rulesets are basic rules applied in each layer for each voxel – the basic unit - according to the number of neighbours that surrounds it. Following the logic of the renowned game of live rule, we deployed different rules maintaining the three principles: crowdedness, loneliness and birth. As a result of this first exploration we identified the following behaviours: spreader, fractal, four states, symmetrical, snowflake, spiral, filler and killer.
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
INTRODUCTION The overall process of Cellular Automata research is divided into 3 steps: firstly, input images are designed in Photoshop by combining different elements and setups; secondly, different types of ruleset are applied to the input image to generate different complex behaviors.; finally, these behaviors are analyzed and categorized into different families based on their characteristics. Eight families have emerged from the research and they can be clearly defined as the following: SPREADER, FRACTAL, 4 STATE, SYMMETRICAL, SNOWFLAKE, ROTATION, FILLER and KILLER.
SPREADER
FRACTAL
CA PROCESS ELEMENT
1
2
SETUP
3
RULESET
BEHAVIOUR
PIXEL
ele01
CENTER
ref01
GAME OF LIFE
GOL
SPREADER
fam01
GLYDER
ele02
RING
ref02
NEIGHBORS CONDITIONS (27)
111
FRACTAL
fam02
CROSS
ref03
4 STATE
fam03
FRACTAL
FRAC
EXTERIOR
ref04
SYMMETRICAL
fam04
PATTERN
ref05
SNOWFLAKE
fam05
STRIPES
ref06
ROTATION
fam06
GRID
ref07
FILLER
fam07
DIAGONAL
ref08
KILLER
fam08
ROTATE
ref09
4 STATE
SYMMETRICAL
SNOWFLAKE
ROTATION
FILLER
KILLER
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT INPUT IMAGES (ELEMENT + SETUP) Game of Life Ruleset is as following; LONELINESS OVERCROWDED BIRTH
if else if else if
((voxels[i][j][0].state == 1) && (neighbors < 2)) ((voxels[i][j][0].state == 1) && (neighbors > 3)) ((voxels[i][j][0].state == 0) && (neighbors ==3))
PIXEL + CENTER_ele01 + ref01
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
PIXEL + RING_ele01 + ref02
PIXEL + CROSS_ele01 + ref03
PIXEL + EXTERIOR_ele01 + ref04
ref01a_Ruleset GOL
ref02c_Ruleset GOL
ref03c_Ruleset GOL
ref04b_Ruleset GOL
ref01b_Ruleset GOL
ref02d_Ruleset GOL
ref03d_Ruleset GOL
ref04c_Ruleset GOL
ref02a_Ruleset GOL
ref03a_Ruleset GOL
ref03e_Ruleset GOL
ref04d_Ruleset GOL
ref02b_Ruleset GOL
ref03b_Ruleset GOL
ref04a_Ruleset GOL
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
PIXEL + PATTERN_ele01 + ref05
PIXEL + STRIPE_ele01 + ref06
PIXEL + GRID_ele01 + ref07
GLIDER + SETUPS_ele02 +ref XX
ref05a_Ruleset GOL
ref06a_Ruleset GOL TWO BEHAVIOURS
ref07a_Ruleset GOL
29_ref17
ref05b_Ruleset GOL MASSIVE
ref06b_Ruleset GOL BUILD A TOWER
ref07b_Ruleset GOL
39_ref1
PIXEL + DIAGONAL_ele01 + ref08
ref05c_Ruleset GOL
ref06c_Ruleset GOL
29ref08_Ruleset GOL
ref39glider1
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS(Neighbors Condition) Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if
((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))
SETUP
ELEMENT PIXEL GLYDER
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
ele01 ele02
ele01-ref01
RULESET
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
RES: 29 RESZ: 50 HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
ele01_ref01_111.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// FRACTAL BEHAVIOUR
ele01_ref01_221.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// SNOWFLAKE BEHAVIOUR
ele01_ref01_231.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// SNOWFLAKE BEHAVIOUR
ele01_ref01_121.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// FILLER BEHAVIOIR
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if
((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))
SETUP
ELEMENT PIXEL GLYDER
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
ele01 ele02
ele02_ref01
RULESET
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
RES: 29 RESZ: 50 HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
ele02_ref01_212.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// SPREADER BEHAVIOUR
ele02_ref01_233.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// WALKER BEHAVIOUR
ele02_ref01_131.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// FILLER BEHAVIOUR
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if
((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))
SETUP
ELEMENT PIXEL GLYDER
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
ele01 ele02
ele01_ref03
RULESET
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
RES: 29 RESZ: 50 HIGH DENSITY
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1 LOW DENSITY
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
ele01_ref03_133.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// SNOWFLAKE BEHAVIOUR
ele01_ref03_232.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// SNOWFLAKE BEHAVIOUR
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if
((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))
SETUP
ELEMENT PIXEL GLYDER
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
ele01 ele02
ele01_ref03
RULESET
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
RES: 29 RESZ: 50 HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
ele01_ref03_133.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// SNOWFLAKE BEHAVIOUR
ele01_ref03_212.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// SNOWFLAKE BEHAVIOUR
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if
((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))
SETUP
ELEMENT PIXEL GLYDER
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
ele01 ele02
ele01_ref08
RULESET
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
RES: 29 RESZ: 50 HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
HIGH DENSITY
LOW DENSITY
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
ele01_ref06_212.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 41
// SYMMETRICAL BEHAVIOUR
ele01_ref06_231.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 41
// SEMMETRICAL BEHAVIOUR
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if
((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))
SETUP
ELEMENT PIXEL GLYDER
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
ele01 ele02
ele01_ref09
RULESET
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
RES: 29 RESZ: 50 HIGH DENSITY
LOW DENSITY
HIGH DENSITY
HIGH DENSITY
HIGH DENSITY
LOW DENSITY
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
ele01_ref09_133.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// ROTATION BEHAVIOUR
ele01_ref09_211.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// ROTATION BEHAVIOUR
ele01_ref09_322.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// ROTATION BEHAVIOUR
ele01_ref09_332.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// ROTATION BEHAVIOUR
1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if
((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))
SETUP
ELEMENT PIXEL GLYDER
voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;
ele01 ele02
dot29_121.001
RULESET
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
RES: 29 RESZ: 50 HIGH DENSITY
LOW DENSITY
HIGH DENSITY
HIGH DENSITY
HIGH DENSITY
LOW DENSITY
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1
Ruleset
p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
ele01_ref05_233.001
Generation 01
Generation 11
Generation 21
Generation31
Generation 41
Generation 45
// DECREASING BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
2| COMPONENT CONNECTION RESEARCH Alongside the study in the CA system, we also developed a component system that would embody the Processing research. The components will be able to grow and connect to one to another to produce a continuous surface throughout the structure we generate from the CA. The ‘information’ we get from the CA includes the position of each voxel (x, y, z), its number of neighbor, position of the neighbor (x+i, y+j, z+k), etc., which would act as a parameter and control the transformation of the component. The initial state of the voxel is chamfered and bevelled from a cube in order to provide faces to be extruded to all directions where a neighbour could possibly be located, i.e. the connection to its neighbouring component occurs. Depending on the position of the neighbour, there are three different connection types: face to face, edge to edge, and vertex to vertex connection. The face to face will produce a thick connection whereas the other two will generate a thinner, lattice-like connection. Using different sizes for the component works very effectively for visualizing the concept of cluster vs. lattice but it raises problems when it comes to connecting. The difference in scale doesn’t allow for a smooth connecting transition. Third system developed, thus, consists of two component types, each starting with different size of the initial status and grows in distinctive ways so that they run in two extreme appearance: the bigger component connects face to face and edge to edge as previous systems did, and vertex to vertex where applicable, whereas the smaller component would extrude the ‘face’ surface for the face to face connection but for the edge to edge connection, it would extrude the two adjacent ‘vertex’ surfaces instead of the ‘edge’ surface, which results in a thinner structure that also behaves to lock its arms to cling on the neighbor. These two component with different rules applied would grow simultaneously never touching each other, but only interlocking one another.
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
2| COMPONENT CONNECTION RESEARCH
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
CLUSTER + LATTICE
UNITS
CLUSTER
CONNECT
VOIDS
UNITS
LATTICE
CONNECT
A_COMPONENT CA INFORMATION
1 DENSITY
SIZE INITIAL STATUS
CA INFORMATION position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)
= face to face connection position of neighbor neighbor >= 6
10x10x10 chamfer width: 0.6 bevel fraction: 0.8
(+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)
= edge to edge connection
TRANSFORMATION
CONNECTION
extrude local trans z: 5 local scale x, y: 3.1
extrude local trans z: 8.7 local scale x: 1, y: 4.55
FACE TO FACE
position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)
= vertex to vertex connection
extrude local trans z: 12 local rotate z: 30
position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)
local translation z: 2.5 local scale x, y: 1.5
= face to face connection
neighbor < 6 && neighbor >= 3
15x15x15 chamfer width: 0.45 bevel fraction: 0.8
EDGE TO EDGE
position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)
local translation z: 5.4 local scale x: 1, y: 1.65
= edge to edge connection
position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)
local translation z: 7.8 local rotate z: 30
= vertex to vertex connection VERTEX TO VERTEX
position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)
local translation z: 0 local scale x, y: 1
= face to face connection neighbor < 3
20x20x20 chamfer width: 0.3 bevel fraction: 0.8
position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)
local translation z: 1.6 local scale x: 1, y: 1
= edge to edge connection
position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)
= vertex to vertex connection
local translation z: 3.4 local rotate z: 30
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
2| COMPONENT CONNECTION RESEARCH
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
A_COMPONENT + B SYSTEM
SINGLE CONNECTION STUDY
component size
replacement
merge distance: 2
10x10x10 if n >=6 15x15x15 if 3<= n <6 20x20x20 if n <3
component size
selection constraint area min: 80, max: 200 delete face
replacement
merge distance: 2
20x20x20 if n >=6 15x15x15 if 3<= n <6 10x10x10 if n <3
component size 20x20x20 if n >=6 15x15x15 if 3<= n <6 10x10x10 if n <3
transformation
transformation selection constraint area min: 80, max: 120 delete face
replacement
merge distance: 7.7
porous size=density extrude face local scale x: 1 if n>=19 0.75 if 15<= n <19 0.5 if 10<= n <15 0.25 if 5<= n <10 0 if n <5
poke distance=density poke face local scale x: -12 if n>=19 -8 if 15<= n <19 -4 if 10<= n <15 0 if 5<= n <10 4 if n <5
INITIAL STATUS
CA INFORMATION
TRANSFORMATION
position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)
ADDING CONNECTION TYPES
VERTEX TO VERTEX STUDY
face to face face to face
extruding v to v face surrounded by extruded faces
extrude local trans z: 2.5 delete face
= face to face connection cube size: 15x15x15 chamfer width: 0.5 bevel fraction: 0.8
position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)
= edge to edge connection
edge to edge
face to face + edge to edge
extrude local trans z: 5.5 delete face merge distance: 4
extruding all v to v faces
problematic
face to face + edge to edge + vertex to vertex
extruding all v to v faces TRANSFORMATION LATTICE
top elevation
merge distance: 4
merge distance: 5
CLUSTER
problematic
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
2| COMPONENT CONNECTION RESEARCH
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
RULESET 1 CLUSTER
RULESET 2 PARTICLES
2| COMPONENT CONNECTION RESEARCH A_COMPONENT + B SYSTEM
INITIAL STATUS
2 DENSITY SINGLE
ADDING CONNECTIONTYPE
CA INFORMATION
TRANSFORMATION
INITIAL STATUS
CA INFORMATION
TRANSFORMATION
position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)
face to face extrude local trans z: 2.5 delete face
position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)
= face to face connection cube size: 15x15x15 chamfer width: 0.5 bevel fraction: 0.8
position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)
= edge to edge connection
edge to edge extrude local trans z: 5.5 delete face
= vertex to vertex connection
vertex to vertex* extrude local trans z: 8.6 local rotate z: 30 merge distance: 4 * applied only when the CA system has no more than 2 vertex extrusion at one place.
CONNECTION STUDY
extrude local trans z: 7.5 delete face
= face to face connection position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)
= edge to edge connection
position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)
cube size: 5x5x5 chamfer width: 0.5 bevel fraction: 0.8
face to face
edge to edge extrude local trans z: 14 local rotate z: 60 delete face merge distance: 1 selection constraint neighbors min 2, max 5 merge distance: 2
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
CA INFORMATION IN RELATION WITH COMPONENT INFORMATION NEIGHBOR POSITION = CONNECTING FACE
The mechanism of data transfer from the CA to MAYA component building is basically matching the names that is used in the two different systems: the position of the neighbor in the CA world, which is identified by adding (+1), subtracting (-1) or leaving (0) the value of the position of the voxel (x, y, z), is named with numbers by coding, then each number is related to the face number that is already set automatically in MAYA world. In this way, MAYA can recognize which face of the component should be extruded and connected to the neighbor.
f [6]
(2) i-1 , j-1 , k
edge to edge
f [18]
(3) i-1 , j-1 , k+1
vertex to vertex
f [8]
(4) i-1 , j
, k-1
edge to edge
f [24]
(5) i-1 , j
,k
face to face
f [2]
edge to edge
f [20]
vertex to vertex
f [21]
(8) i-1 , j+1, k
edge to edge
f [22]
(9) i-1 , j+1, k+1
vertex to vertex
f [10]
(6) i-1 , j
, k+1
(7) i-1 , j+1, k-1
, j-1 , k-1
edge to edge
f [14]
(11) i
, j-1 , k
face to face
f [0]
(12) i
, j-1 , k+1
edge to edge
f [15]
(13) i
,j
, k-1
face to face
f [4]
(14) i
,j
,k
itself
NULL
(15) i
,j
, k+1
face to face
f [1]
(16) i
, j+1, k-1
edge to edge
f [17]
(17) i
, j+1, k
face to face
f [5]
(18) i
, j+1, k+1
edge to edge
f [16]
(19) i+1, j-1 , k-1
vertex to vertex
f [13]
(20) i+1, j-1 , k
edge to edge
f [19]
(21) i+1, j-1 , k+1
vertex to vertex
f [7]
(22) i+1, j
, k-1
edge to edge
f [25]
(23) i+1, j
,k
face to face
f [3]
(24) i+1, j
, k+1
edge to edge
f [21]
(25) i+1, j+1, k-1
vertex to vertex
f [11]
(26) i+1, j+1, k
edge to edge
f [23]
(27) i+1, j+1, k+1
vertex to vertex
f [9]
TOP
FRONT
(8) f [22]
(5) f [2]
LEFT
(10) i
(17) f [5]
(2) f [18]
TOP
(9) f [10] (6) f [20] (3) f [18]
RIGHT
vertex to vertex
(1) i-1 , j-1 , k-1
RIGHT
FACE NUMBER OF THE COMPONENT /MAYA DATA
LEFT
TYPE OF CONNECTION
BACK
3D NEIGHBOR POSITION /CA DATA
(4) f [24] (4) f [24] (7) f [12]
POSITION OF COMPONENT
POSITION OF NEIGHBOR
(x, y, z)
(x+i, y+j, z+k)
(15) f [1]
(12) f [15]
(27) f [9] (24) f [21] (21) f [7]
(11) f [0]
FRONT
BOTTOM
(18) f [16]
(10) f [14]
(13) f [4]
(16) f [17]
(19) f [13] (22) f [25] (25) f [11]
(26) f [23]
(23) f [3]
(20) f [19]
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
3| COMBINING RULESETS Component research lead us to the idea of a dualism: cluster and lattice, high and low density, two distinguished behaviours that merge and cooperate yet maintain their own principles. Firstly, we started shifting these two systems by layer according to basic principles as the layer height, number of voxels per layer or the average 2d density. These produced stacking results that were disproved since the aim was to achieve an integrated system. Therefore we moved forward to the idea of shifting rules per voxels, meaning that each voxel might change according to our decision-making principles. Following the previous attempt we introduced probability, the idea that it would be more probable for rules to shift as the layer height increased, according to the 2D density of each voxel. At this point, the model became more integrated but it was still lacking control. In order to further develop, two controllable rules were introduced to radically increase or decrease the population if the number of voxels per layer were exceeding a specified range. The complexity of the system produced interesting variation and integration, however the outcome was highly unpredictable and we could not control the areas where the shifting would happen. Consequently, the next strategy involves running a first ruleset to grow the CA and then eroding it or refining it with a second ruleset based on the 3D density condition of each voxel. Firstly, we tried to deploy our 3D rule according to the stability of the system, also defined in the project as â&#x20AC;&#x153;ageâ&#x20AC;?. This way our second rule would be deployed when the system was not participating in the modelling or remained stable for more than a certain number of iterations. In this case, it was observed that the results were not controlled as expected since both the age and 2D density were still parameters coming from the cellular automata. As a result, we decided to work with attractors that we could control to decide where the 3D rules would be deployed.
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
3| COMBINGING RULESETS
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
INTRODUCTION
PROBABILITY
NUMBER OF VOXELS / LAYER
SYSTEM 1
8 POSSIBLE 2D NEIGHBORS
SYSTEM 2
26 POSSIBLE 3D NEIGHBORS
8 POSSIBLE 2D NEIGHBORS
2D DENSITY
AGE
2D DENSITY
3D DENSITY FTF
8 POSSIBLE 2D NEIGHBORS
LAYER HEIGHT
NUMBER OF VOXELS / LAYER
2D DENSITY
ETE
VTV
8 POSSIBLE 2D NEIGHBORS
2D DENSITY
PROBABILITY
PROBABILITY
TYPE OF CONNECTION
ATTRACTOR
100% SHIFTING 100% SHIFTING
0% SHIFTING
2 BY VOXEL
PARAMETER
1 BY LAYER
LAYER HEIGHT
A_SHIFTING
NUMBER OF VOXELS / LAYER
2D DENSITY
2D DENSITY
1 B BY VOXEL O
2D DENSITY PROBABILITY
B_PROBABILITY SHIFTING
0% SHIFTING
2 BY VOXEL + LAYER
2D DENSITY PROBABILITY NUMBER OF VOXELS / LAYER
1 B BY VOXEL O
AGE TYPE OF CONNECTION
C_EROSION
ATTRACTOR 3D DENSITY PROBABILITY
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
3| COMBINGING RULESETS
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
A_SHITFING
8 POSSIBLE 2D NEIGHBORS
LAYER HEIGHT
2D DENSITY
NUMBER OF VOXELS / LAYER
IF A NUMBER OF LAYER >=3, APPLY RULE2. NUMBER OF LAYER
IF A NUMBER OF VOXELS IN A LAYER >=3, APPLY RULE2.
GENERATION
A NUMBER OF VOXELS IN A LAYER
RULE
04
GENERATION
IF A NUMBER OF NEIGHBOURS OF A VOXEL >=2, APPLY RULE2. A NUMBER OF NEIGHBOURS OF A VOXEL
RULE
GENERATION
RULE
09 04
04
03
04
09
RULE 2 03
03
RULE 1
02
02
RULE 1
01
01
RULE 1 P S 1 == 1 0 == 0
RULE 2 P S 1 == 0 0 == 1
RULE 1 P S 1 == 1 0 == 0
PER LAYER
R1 R2 R2 R2 R1 R1 R1 R1
R2 R2 R2 R2 R2 R1 R1 R1
02
02 03 03 06 02 03 01 02
02 01 03 02 02 02 02 01
R2 R2 R2 R2 R2 R2 R1 R2
R2 R1 R2 R2 R2 R2 R2 R1
01
01 02 02 02 02 01 00 01
01 00 02 01 01 01 01 01
R1 R2 R2 R2 R1 R2 R1 R1
R1 R1 R2 R1 R1 R1 R1 R1
RULE 2
03
01
02 02 04 02 03 01 01 01
RULE 2
09
02
03
01 02 02 02 01 01 01 01
RULE 2
RULE 2 P S 1 == 0 0 == 1
RULE 1 P S 1 == 1 0 == 0
PER LAYER
RULE 2 P S 1 == 0 0 == 1
PER VOXEL
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
3| COMBINGING RULESETS
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
A_SHITFING
1 BY LAYER
LAYER NUMBER
LAYER HEIGHT
NUMBER OF VOXELS / LAYER
LAYER HEIGHT
NUMBER OF VOXELS / LAYER
NUMBER OF VOXELS / LAYER
3| COMBINGING RULESETS A_SHITFING
2 BY VOXEL
2D DENSITY LOW DENSITY
// FRACTAL BEHAVIOR
HIGH DENSITY
ele01_ref01 RES: 29 RESZ: 100 SETUP
ELEMENT PIXEL GLYDER
ele01 ele02
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
SETUP
ELEMENT PIXEL GLYDER
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
RULESET
ele01 ele02
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
LD
LD Rule
HD
111.001
LD Rule HD Rule TOTAL Vox LD Vox
111.001(if d>=2) 221.001(if d<2) 2673 2376
HD Vox
297
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
111.001(if d>=3) 221.001(if d<3) 7121 2428 4693
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
111.001(if d=1,2,3) 221.001(else if ) 2673
HD Rule TOTAL Vox
221.001 -
1188 1485
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
HD
LD LD Rule TOTAL Vox
113.001 1
LD Rules HD Rule TOTAL Vox LD Vox HD Voxe
113.001 (if d=2,3,4,5) 231.001 (else) 3553 2800 753
LD Rules HD Rule TOTAL Vox LD Vox HD Voxe
113.001 (if d=2,3) 231.001 (else) 3553 1804 1749
HD Rule TOTAL Vox
231.001 8710
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
LOW DENSITY
HIGH DENSITY
// SPREADER BEHAVIOR
ele02_ref01 RES: 29 RESZ: 100 SETUP
ELEMENT PIXEL GLYDER
ele01 ele02
RULESET
ele01 ele02
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
BEHAVIOR
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111
ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111
SETUP
ELEMENT PIXEL GLYDER
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
FRAC
RULESET
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
HD
LD
LD Rule
212.001
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
212.001(if d>=2) 121.101(if d<2) 4490 4003 487
LD Rules HD Rule TOTAL Vox LD Vox HD Voxe
212.001(if d>=3) 121.101(if d<3) 4846 691 4155
LD Rules HD Rules TOTAL Vox LD Vox HD Vox
212.001(if d>=4) 121.101(if d<4) 4846 305 4541
LD Rules HD Rules TOTAL Vox LD Vox HD Vox
212.001(if d=1,2,3) 121.101(else if ) 2104 1541 563
HD Rule
121.101
BEHAVIOR
FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER WALKER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08 fam09
LD
Setup ref08a RES 20X20X50 LD Rule
HD
233.001
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
233.001(if d>=2) 222.101(if d<2) 3585 3036 549
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
233.001(if d>=3) 222.101(if d<3) 5673 4154 1519
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
233.001(if d>=4) 222.101(if d<4) 21254 5316 15938
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
233.001(if d=3,4,5) 222.101(else if ) 28065 16436 11629
HD Rule
222.101
3| COMBINGING RULESETS A_SHITFING
2 BY VOXEL
2D DENSITY LOW DENSITY
// SYMMETRICAL BEHAVIOR
HIGH DENSITY
ele01_ref08 RES: 29 RESZ: 100
SETUP
ELEMENT PIXEL GLYDER
ele01 ele02
RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
SETUP
ELEMENT PIXEL GLYDER
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ele01 ele02
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
LD LD Setup RES LD Rule LD Rule TOTAL Vox
TOTAL Vox
HD 29_ref8 29X29X50 333.001 333.001 27
27
Setup Setup 29_ref8 RES RES 29X29X50 LD Rules 333.001 (if d<2 || d>3) LD Rules LD Rule 333.001(if d<2 || d>3) LD Rule HD Rule HD Rule 121.001 (else) HD TOTAL Rule Vox HD RuleTOTAL Vox 121.001(else) 196 TOTAL Vox TOTAL Vox LD Vox LD Vox 196 27 HD Voxe LD Vox LD Vox HD Voxe27 169 HD Vox 169 HD Vox
29_ref8 29X29X50 333.001 (if d=2,3,4) 333.001(if d=2,3,4) 121.001 (else) 121.001(else) 4983 4983 2947 2036 3947
2036
Setup 29_ref8 Setup 29_ref8 RES 29X29X50 RES 29X29X50 LD Rules 333.001 (if d=0,1,4,5) LD Rules 333.001 (if d=0,8) 333.001(if d=0,8) LD Rule 333.001(if d=0,1,4,5) LD Rule HD Rule 121.001 (else) HD Rule 121.001 (else) 121.001(else) HD Rule TOTAL Vox 196 121.001(else) TOTALHD VoxRule 196 TOTAL Vox 196 TOTAL Vox 196 LD Vox 27 LD Vox 27 Vox LD Vox 169 27 HDLD Voxe 169 27 HD Voxe HD Vox 169 HD Vox 169
Setup 29_ref8 Setup RES 29X29X100 RES LD RuleLD Rules232.001(if d<2 || d>3) LD Rule 232.001 (if d<2 || d>3) LD Rules HD RuleHD Rule 212.001(else) HD HD Rule 212.001 (else) Rule TOTAL Vox TOTAL Vox TOTAL Vox 1024310243 TOTAL Vox LD Vox LD Vox LD Vox 5454 5454 LD Vox HD Voxe 4789 HD Voxe HD Vox 4789
29_ref8 29X29X100 232.001(if 232.001 (ifd=2,3,4) d=2,3,4) 212.001(else) 212.001 (else) 488 488 2929 459
Setup 29_ref8 Setup 29_ref8 RES 29X29X100 RES 29X29X100 Rule 232.001 232.001(if d=0,1,4,5) LD Rule 232.001232.001(if LDLD Rules (if d=0,1,4,5) LD Rules (if d=0,8) d=0,8) Rule 212.001 212.001(else) HD Rule 212.001212.001(else) HDHD Rule (else) HD Rule (else) TOTAL VoxVox 10243 TOTALTOTAL Vox Vox 10243 10243 TOTAL 10243 LDLD VoxVox 39833983 LD Vox LD Vox 1003 1003 HD Voxe 6260 HD Voxe HD Vox 6260 HD Vox 9240 9240
Setup HD 29_ref8 RES 29X29X50 HD Rule HD Rule 121.001121.001 TOTALTOTAL Vox Vox10821 10821
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
LD LD Setup 29_ref8 RES 29X29X50 Rule 232.001 232.001 LDLD Rule TOTAL TOTAL VoxVox 488 488
HD Vox
459
HD HD Setup 29_ref8 RES 29X29X50 HD Rule 212.001 HD Rule 212.001 TOTAL Vox 10243 TOTAL Vox 10243
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
COMPONENT CONNECTION DUAL/INTERLOCKING
IMPORT FROM CA
COMPONENT TRANSFORMATION
initial cube
initial cube
15x15x15
5x5x5
face to face
face to face
extrude local trans z: 2.5 delete face
extrude local trans z: 7.5 delete face
edge to edge
edge to edge
extrude local trans z: 5.5 delete face
extrude local trans z: 14 local rotate z: 60 delete face merge distance: 1 selection constraint (v): neighbors min 2, max 5 merge distance: 2
vertex to vertex extrude local trans z: 8.6 local rotate z: 30 delete face merge distance: 4
COMPONENT CONNECTION
vertex to vertex extrude local trans z: 11.5 local rotate z: 30 delete face merge distance: 1
CASE-BY-CASE CUSTOMIZATION initial cube
initial cube
initial cube
initial cube
15x15x15
5x5x5
15x15x15
5x5x5
face to face
face to empty z
face to face
face to empty x, y, z
extrude local trans z: 2.5 delete face
extrude local trans z: 16 delete face ctrl+F9 (vertex) merge distance: 0.1 chamfer width: 0.5 selection constraint: area min 5.5, max 6 extrude local trans z: 13.2 local rotate z: -50 local scale x: 1.4 local scale y: 0.2 delete face merge distance: 1
extrude local trans z: 2.5 delete face
extrude local trans z: 5 local scale x, y: 2 vertex merge distance: 0.1 chamfer width: 0.3 selection constraint (face): order: triangles extrude local trans z: 11.9 delete face merge distance: 1 edge to edge extrude local trans z: 11.5 delete face merge distance: 1
edge to edge extrude local trans z: 5.5 delete face
vertex to vertex In this specific CA system, the two rulesets behave to sit on each other not interlocking one another at all, while connecting to its neighbor edge to edge in horizontal direction and vertex to vertex in vertical direction.
extrude local trans z: 8.6 local rotate z: 30 merge distance: 4
edge to edge Since there is not too crowded vertex to vertex situation, the component rule for vertex is applied. The two systems would start interlocking only in case the red component extrudes its face towards the empty space upward and cling onto the vertex arms of the blue components, for which a bit different rule is applied as shown in the customization.
extrude local trans z: 11.5 delete face merge distance: 1
edge to edge extrude local trans z: 5.5 delete face
vertex to vertex extrude local trans z: 5.1 local rotate z: 30 ctrl+F9 (vertex) merge distance: 0.1 chamfer width: 0.5 delete face selection constraint (face): area min 5.5, max 6 extrude local trans z: 6.9 local rotate z: 60 delete face merge distance: 2 selection constraint (vertex): neighbors min1, max 3 merge distance: 5
3| COMBINGING RULESETS A_SHITFING
2 BY VOXEL
2D DENSITY LOW DENSITY
// ROTATION BEHAVIOR
HIGH DENSITY
ele01_ref09 RES: 29 RESZ: 100 SETUP
ELEMENT PIXEL GLYDER
ele01 ele02
RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
SETUP
ELEMENT PIXEL GLYDER
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
ele01 ele02
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
HD
LD
LD Rule
332.001
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001 (if d>=2) 333.111(if d<2) 10692 8184 2508
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001(if d>=3) 333.111(if d<3) 1344 0 1344
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001(if d>=4) 333.111(if d<4) 9952 3188 6764
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001(if d=1,2,3) 333.111(else if ) 5788 3456 9244
HD Rule
333.111
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
HD
LD
LD Rule
332.001 LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001 (if d>=2) 233.001(if d<2) 4756 2720 2036
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001(if d>=3) 233.001(if d<3) 64 0 64
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001(if d>=4) 233.001(if d<4) 2264 116 2148
LD Rule HD Rule TOTAL Vox LD Vox HD Vox
332.001(if d=2,3,4) 233.001(else if ) 4756 2560 2196
HD Rule
233.001
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
3| COMBINGING RULESETS
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
B_PROBABILITY SHIFTING
PROBABILITY IF PROBABILITY <= LIMIT, APPLY RULE2.
100% SHIFTING 8 POSSIBLE 2D NEIGHBORS
GENERATION
? ? ?
04
03
02
RULE
RANDOM CHOICE
0% SHIFTING
RULE SHIFTING PROBABILITY
LIMIT
PROBABILITY
2D DENSITY
1323
<=
100%
RULE 1 RULE 2 RULE 2
66%
RULE 1 RULE 2 RULE 2
33%
RULE 1 RULE 2 RULE 2
100% SHIFTING
1++
122 3 <=
8 POSSIBLE 2D NEIGHBORS
1++
1123 01
RULE 1 P S 1 == 1 0 == 0
RULE 2 P S 1 == 0 0 == 1
<=
2D DENSITY
PROBABILITY
NUMBER OF VOXELS / LAYER 0% SHIFTING
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
3| COMBINGING RULESETS
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
B_PROBABILITY SHIFTING
1 BY VOXEL
2D DENSITY + PROBABILITY
100% SHIFTING
8 POSSIBLE 2D NEIGHBORS
2D DENSITY
PROBABILITY
0% SHIFTING
3| COMBINGING RULESETS B_PROBABILITY SHIFTING
2 BY VOXEL + LAYER
2D DENSITY + PROBABILITY + NUMBER OF VOXELS / LAYER // SPREADER BEHAVIOR
INITIAL CONDITIONS RULESET 01=LOW DENSITY
RULESET 02=HIGH DENSITY
RULESET 03=KILLER
RULESET 04=HULK
ele02_ref09 RES: 39 RESZ: 200 MAX VOX: 304,200 SETUP
ELEMENT PIXEL GLYDER
ele01 ele02
CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE
RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09
BEHAVIOR
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL
111 FRAC
SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER
fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08
Setup ele02_ref09 RES 39X39X200 LD Rule TOTAL VOX PCT. TOTAL
Setup rele02_ref09 RES 39X39X200 LD Rule 121.101 TOTAL VOX 97.232 PCT. TOTAL 31.96 %
121.101 52.948 17.40 %
SETUP ELE02_REF09 RES 39X39X200 LD RULE 333.011 TOTAL VOX 48 PCT. TOTAL 0.02 %
Setup ele02_ref09 RES 39X39X200 LD Rule TOTAL VOX PCT. TOTAL
222.101 67.735 22.27 %
SHIFTING SHIFTING RULES 04 RULESET 01: 122.000 RULESET 02: 211.101 RULESET 03: 213.100 RULESET 04: 212.001
SHIFTING RULES 01 RULESET 01: 121.101 RULESET 02: 121.101 RULESET 03: 333.011 RULESET 04: 222.101
SHIFTING RULES 02 RULESET 01: 121.101 RULESET 02: 121.101 RULESET 03: 333.011 RULESET 04: 222.101
SHIFTING RULES 03 RULESET 01: 121.101 RULESET 02: 121.101 RULESET 03: 333.011 RULESET 04: 222.101
VOXELS/LAYER <50 VOXELS/LAYER 50>300 VOXELS/LAYER >300
RULESET 02 RULESET 01/04 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50>300 VOXELS/LAYER >300
RULESET 04 RULESET 01/02 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50>250 VOXELS/LAYER >250
RULESET 04 RULESET 01/02 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50~250 VOXELS/LAYER >250
RULESET 04 RULESET 01/02/04 RULESET 03
PROBABILITY<LIMIT { 2D DENSITY =1,2,3 2D DENSITY= (else) }
RULESET 01 RULESET 04
PROBABILITY<LIMIT { 2D DENSITY =1,2,3 2D DENSITY= (else) }
RULESET 01 RULESET 02
PROBABILITY<LIMIT { 2D DENSITY =1,2 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 01 RULESET 02
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
(PROBABILITY INCREASE AS IT GOES UP)
(PROBABILITY INCREASE AS IT GOES UP)
VOX RULE1 VOX RULE2 VOXRULE3 VOX RULE4
14.236 3.326 6.001 7.128
4% 1% 1% 2%
VOX RULE1 VOX RULE2 VOXRULE3 VOX RULE4
15.001 6.834 3.961 6.321
4% 2% 1% 2%
TOTAL VOX
30.691
10 %
TOTAL VOX
32.117
10 %
RULESET 04
(PROBABILITY INCREASE AS IT GOES UP) VOX RULE1 9,548 3% VOX RULE2 8,727 2% VOX RULE3 6,151 2% VOX RULE4 12,088 3% TOTAL VOX
36,564
12 %
RULESET 04
(PROBABILITY INCREASE AS IT GOES UP) VOX RULE1 6,150 2% VOX RULE2 4,663 1% VOX RULE3 6,895 2% VOX RULE4 6,450 2% TOTAL VOX
24,158
7%
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
SHIFTING RULES 05
SHIFTING RULES 07
SHIFTING RULES 06
SHIFTING RULES 08
RULESET 01: 122.000 RULESET 02: 313.101 RULESET 03: 111.100 RULESET 04: 112.001
RULESET 01: 122.000 RULESET 02: 121.001 RULESET 03: 111.100 RULESET 04: 111.001
RULESET 01: 112.000 RULESET 02: 112.101 RULESET 03: 111.100 RULESET 04: 112.001
RULESET 01: 122.000 RULESET 02: 313.101 RULESET 03: 111.100 RULESET 04: 112.001
VOXELS/LAYER <50 VOXELS/LAYER 50~150 VOXELS/LAYER >150
RULESET 04 RULESET 01/02/04 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50~300 VOXELS/LAYER >300
RULESET 04 RULESET 01/02/04 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50~150 VOXELS/LAYER >150
RULESET 04 RULESET 01/02/04 RULESET 03
PROBABILITY<LIMIT { 2D DENSITY = 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
RULESET 04
RULESET 04
RULESET 04
VOXELS/LAYER <50 VOXELS/LAYER 50~350 VOXELS/LAYER >350
RULESET 04 RULESET 01/02/04 RULESET 03
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01 RULESET 04
(PROBABILITY INCREASE AS IT GOES UP)
(PROBABILITY INCREASE AS IT GOES UP)
(PROBABILITY INCREASE AS IT GOES UP)
(PROBABILITY INCREASE AS IT GOES UP)
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
2,638 6,369 3,952 6,280
0% 2% 1% 2%
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
2,639 3,211 706 5,758
0% 1% 0% 1%
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
1,419 2,403 314 8,661
0% 0% 0% 2%
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
1,364 2,195 0 12,149
0% 0% 0% 3%
TOTAL VOX
19,239
6%
TOTAL VOX
12,314
4%
TOTAL VOX
12,797
4%
TOTAL VOX
15,708
5%
SHIFTING RULES 09 RULESET 01: 122.000 RULESET 02: 123.001 RULESET 03: 211.100 RULESET 04: 112.101
SHIFTING RULES 10
SHIFTING RULES 11
RULESET 01: 122.000 RULESET 02: 121.001 RULESET 03: 211.100 RULESET 04: 112.001
SHIFTING RULES 12
RULESET 01: 122.000 RULESET 02: 212.101 RULESET 03: 211.100 RULESET 04: 212.001
RULESET 01: 122.000 RULESET 02: 212.101 RULESET 03: 211.100 RULESET 04: 212.001
VOXELS/LAYER <50 VOXELS/LAYER 50~250 VOXELS/LAYER >250
RULESET 04 RULESET 01/02/04 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50~250 VOXELS/LAYER >250
RULESET 04 RULESET 01/02/04 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50~300 VOXELS/LAYER >300
RULESET 04 RULESET 01/02/04 RULESET 03
VOXELS/LAYER <50 VOXELS/LAYER 50~300 VOXELS/LAYER >300
RULESET 04 RULESET 01/02/04 RULESET 03
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT
RULESET 02 RULESET 01
RULESET 04
RULESET 04
RULESET 04
RULESET 04
(PROBABILITY INCREASE AS IT GOES UP)
(PROBABILITY INCREASE AS IT GOES UP)
(PROBABILITY INCREASE AS IT GOES UP)
(PROBABILITY INCREASE AS IT GOES UP)
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
317 411 765 15,895
0% 0% 0% 5%
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
3,860 9,153 14,155 6,506
1% 3% 4% 2%
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
9,349 9,579 6,316 10,767
3% 3% 2% 3%
VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4
10,241 12,254 6,738 9,046
3% 4% 2% 2%
TOTAL VOX
17,388
5%
TOTAL VOX
33,674
11 %
TOTAL VOX
36,011
11 %
TOTAL VOX
38,279
12 %
COMPONENT CO O CONNECTION CO C O SINGLE
IMPORT FROM CA
COMPONENT CONNECTION
COMPONENT TRANSFORMATION
initial cube 15x15x15 face to face extrude local trans z: 2.5 delete face edge to edge extrude local trans z: 5.5 delete face vertex to vertex extrude local trans z: 8.6 local rotate z: 30 delete face merge distance: 4
As there were 4 rulesets applied to grow this structure in the CA, it rather is translated as one structure than divided into two distinct systems. Therefore, the single component system is applied, which would more concentrate on the cluster vs. lattice that is happening within one system depending on the connection type and density of each voxel.
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
3| COMBINGING RULESETS
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
C_EROSION
EROSION
1ST GENERATION
2ND GENERATION
STEP1_GROWING
STEP2_EROSION FTF
ETE
VTV
04 AGE
TYPE OF CONNECTION
03
02 26 POSSIBLE 3D NEIGHBORS
01
RULE 1 P S 1 == 1 0 == 0
RULE 2 P S 1 == 0 0 == 1
RULE 3 P==1 N==1 S==0
ATTRACTOR
3D DENSITY
PROBABILITY
3| COMBINGING RULESETS C_EROSION
1 BY VOXEL
AGE + TYPE OF CONNECTION
GROWING RULESET
ele01_ref01 RES: 29 RESZ: 100
EROSION RULESET AGE <= 5
PreviousState NumbersOfNeighbors NewState 1 1 0
<2 <3 >1
PreviousState
0 0 1
1
type of connection
> AGE 5 AGE 4 AGE 3 AGE 2 AGE 1
0
NewState
>=1
type of connection
FACE TO FACE
If AGE>5, they adon’t erode.
type of connection
If AGE<=5,
FACE TO FACE EDGE TO EDGE VERTEX TO VERTEX
NumbersOf FacetoFaceConnection
they erode to make all voxels have edge to edge connection not face to face. NEW RULESET : Find the numbers of facetoface Connection, If you have more than one face to face connection, you die.
FACE TO FACE
type of connection
FACE TO FACE EDGE TO EDGE VERTEX TO VERTEX
FACE TO FACE EDGE TO EDGE & VERTEX TO VERTEX
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
COMPONENT CONNECTION DUAL/INTERLOCKING IMPORT FROM CA
COMPONENT TRANSFORMATION
initial cube
initial cube
15x15x15
5x5x5
face to face
face to face
extrude local trans z: 2.5 delete face
extrude local trans z: 7.5 delete face
edge to edge
edge to edge
extrude local trans z: 5.5 delete face
extrude local trans z: 11.6 delete face
merge distance: 4
vertex to vertex extrude local trans z: 14.7 local rotate z: 30 delete face merge distance: 1
In this system, the major connection type that appears in the blue ruleset is face to face, with which the cluster chunk is further emphasized by applying the bigger component. The red system is spread out throughout the structure creating a wall around the blue cluster and it has mostly edge to edge or vertex to vertex connection type, i.e. more lattice. Vertex to vertex transformations are applied to the red system as the voxels are not too dense, to say it again, there are no more than 2 vertex to vertex situation at one place. The contrast of the two systems is demonstrated effectively by having extreme scenario case in both CA and component system.
COMPONENT CONNECTION
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014
3| COMBINGING RULESETS
Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
C_EROSION. DEPENDING ON ATTRACTORS SETUP
RULESET growth
RULESET erosion 01
RULESET erosion 02
RULESET erosion 03
RULESET erosion 04
RULESET erosion 05
RULESET erosion 06
Setup 29_ref12 RES 29X29X100 MAX vox
84.100 LONELINESS (state==1) && (2Ddens<3) state==0 CROWDNESS (state==1) && (2Ddens<3) state==0 BIRTH (state==0) && (2Ddens==2) state==1
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>24) state==0 BIRTH (state==0) && (3Ddens==7,10) state==1
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>24) state==0 BIRTH (state==0) && (3Ddens==7,10) state==1
6.155 (7 %) 24.776 (29 %) 30.931 (36 %)
6.155 (7 %) 20.262 (24 %)
LONELINESS (state==1) && (2Ddens<2) state==0 CROWDNESS (state==1) && (2Ddens<1) state==0 BIRTH (state==0) && (2Ddens==2) state==1
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8,13,18)state==1
TOTAL VOX 52.948 (17.40 %)
8.918 (5 %) 11.258 (7 %) 20.176 (13%)
TOTAL VOX 52.948 (17.40 %)
LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==6,8,12,18) state==1
LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==6,8,12,18) state==1
LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==8,15-18) state==1
LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==8,15-18) state==1
6.155 (7 %) 13.723 (16 %) 19,878 (23 %)
3.786 (4 %) 10.004 (11 %) 13.790 (16 %)
3.822 (4 %) 6.880 (7 %)
5.833 (6 %) 8.772 (10 %)
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8,13,18)state==1
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8,13,18)state==1
LONELINESS (state==1) && (3Ddens<14) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==14,12,5,7) state==1
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==14,11,8,6) state==1
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==8,6,26,18) state==1
8.918 (5 %) 11.258 (7 %) 20.176 (13%)
11.247 (7 %) 6.741 (4 %) 17.896 (11 %)
3.819 (3 %) 9.638 (6 %)
3.819 (2 %) 18.831 (12 %) 22.650 (14 %)
4.821 (3 %) 19.119 (12 %)
14.107 (16
2.858 (3 %)
2.939 (3 %)
SETUP
Setup 39_glider_1 RES 39X39X100 MAX vox
152.100
5.819 (2 %) 14.298 (9 %)
3| COMBINGING RULESETS C_EROSION. DEPENDING ON ATTRACTORS SETUP
RULESET growth
RULESET erosion 01
RULESET erosion 02
RULESET erosion 03
RULESET erosion 04
RULESET erosion 05
RULESET erosion 06
Setup 39_glider_1 RES 39X39X100 MAX vox
152.100 LONELINESS (state==1) && (2Ddens<1) state==0 CROWDNESS (state==1) && (2Ddens<1) state==0 BIRTH (state==0) && (2Ddens==1) state==1 TOTAL VOX 52.948 (17.40 %)
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==14,12,8,5) state==1 2.354 (2 %) 16.073 (10 %) 18.427 (12 %)
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==14,12,8,5)state==1
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==5,8,12,14) state==1
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==5,8,12,14) state==1
LONELINESS (state==1) && (3Ddens<5) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==10) state==1
LONELINESS (state==1) && (3Ddens<5) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==10) state==1
5.654 (3 %) 12.435 (8 %) 18.089 (11 %)
19.860 (13 %) 12.747 (8%) 32.607 (21 %)
10.144 (6 %) 23.592 (15 %)
6.123 (7 %) 20.173 (13 %)
6.123 (7 %) 20.173 (13 %)
SETUP
Setup 29_ref8 RES 29X29X100 MAX vox
152.100 LONELINESS (state==1) && (2Ddens<1) state==0 CROWDNESS (state==1) && (2Ddens<2) state==0 BIRTH (state==0) && (2Ddens==2) state==1
LONELINESS (state==1) && (3Ddens=7,10-15) state==0 CROWDNESS (state==1) && (3Ddens>17-26) state==0 BIRTH (state==0) && (3Ddens==9,14) state==1
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==4,8,12,18)state==1
TOTAL VOX 52.948 (17.40 %)
8.318 (5 %) 11.253 (7 %) 20.173 (13%)
8.918 (5 %) 11.258 (7 %) 20.176 (13%)
13.448 (8 %)
14.050 (6 %)
14.050 (6 %)
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh SETUP
RULESET growth
RULESET erosion 01
RULESET erosion 02
RULESET erosion 03
RULESET erosion 04
Setup 39_glider_1 RES 39X39X100 MAX vox
152.100 LONELINESS (state==1) && (2Ddens<2) state==0 CROWDNESS (state==1) && (2Ddens<3) state==0 BIRTH (state==0) && (2Ddens==3) state==1
LONELINESS (state==1) && (3Ddens<7) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==4,26,8,18)state==1
LONELINESS (state==1) && (3Ddens<1) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==7,8,12,14) state==1
LONELINESS (state==1) && (3Ddens<1) state==0 CROWDNESS (state==1) && (3Ddens>6) state==0 BIRTH (state==0) && (3Ddens==18,12) state==1
TOTAL VOX 52.948 (17.40 %)
LONELINESS (state==1) && (3Ddens<=1) state==0 CROWDNESS (state==1) && (3Ddens>5) state==0 BIRTH (state==0) && (3Ddens==26,12,6,20 state==1 2.354 (2 %) 16.073 (10 %) 18.427 (12 %)
5.654 (3 %) 12.435 (8 %) 18.089 (11 %)
19.860 (13 %) 12.747 (8%) 32.607 (21 %)
10.144 (6 %) 23.592 (15 %)
LONELINESS (state==1) && (2Ddens<1) state==0 CROWDNESS (state==1) && (2Ddens<1) state==0 BIRTH (state==0) && (2Ddens==1) state==1
LONELINESS (state==1) && (3Ddens<7) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1
TOTAL VOX 52.948 (17.40 %)
8.318 (5 %) 11.253 (7 %) 20.173 (13%)
8.918 (5 %) 11.258 (7 %) 20.176 (13%)
8.918 (5 %) 11.258 (7 %) 20.176 (13%)
8.918 (5 %) 11.258 (7 %) 20.176 (13%)
13.448 (8 %)
SETUP
Setup 49_dot RES 49X49X100 MAX vox
152.100
// COMBINING RULESETS EROSION. DEPENDING ON ATTRACTORS
3| COMBINGING RULESETS C_EROSION. DEPENDING ON ATTRACTORS
GROW LATTICE ADD CLUSTER The second ruleset grows continuous clusters along the lattice base
STRATEGY 1 SETUP - DOT
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8, 12,13) state==1 8.918 (5 %) 11.258 (7 %) 20.176 (13%)
THE GROWTH RULE BUILDS UP LOW DENSITY - LATTICE CONDITION
EROSION BEGINS AND MELTS THE DENSITY AROUND THE CENTRAL ATTRACTOR
THE SECOND RULE STARTS BUILDING ITSELF
RULESET TWO CREATES CLUSTERS THAT CONNECT TO EACHOTHER
THE TWO SYSTEMS ARE UNIFIED
THE GROWTH RULE BUILDS UP LOW DENSITY- LATTICE CONDITION
THE SECOND RULESET STARTS BUILDING DENSITY
AS DENSITY INCREASES THE TWO SYSTEMS START CONNECTING
BOTH RULESETS ARE CONTINUOUS BUT WITH DISTINCT CHARACTER
FINAL RESULT OF THE TWO RULESETS
SETUP - GLIDER DIFFERENT ORIENTATIONS
LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13) state==1 8.918 (5 %) 11.258 (7 %) 20.176 (13%)
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
GROW CLUSTER ERODE LATTICE The erosion ruleset kills and then grow from the top and from the bottom towards the centre in order to form a continuous surface.
STRATEGY 2 SETUP - GLIDER DIFFERENT ORIENTATIONS
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==5,8,12,14) state==1 10.144 (6 %) 13.448 (8 %) 23.592 (15 %)
THE GROWTH RULE BUILDS UP HIGH DENSITY
EROSION BEGINS AND MELTS THE DENSITY AROUND THE 2 ATTRACTORS
THE SECOND RULE STARTS TO CONNECT CREATING A LATTICE CONDITION
THE TWO SYSTEMS BECOME UNIFIED
FINAL RESULT OF THE TWO RULESETS
THE GROWTH RULE BUILDS UP HIGH DENSITY
EROSION BEGINS AND MELTS THE DENSITY AROUND THE 2 ATTRACTORS
THE SECOND RULE STARTS TO CONNECT CREATING A LATTICE CONDITION
THE SECOND RULEST STARTS REGROWING ITSELF
FINAL RESULT OF THE TWO RULESETS
SETUP - GLIDER SAME ORIENTATION
LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8, 13,18) state==1 8.918 (5 %) 11.258 (7 %) 20.176 (13%)
3| COMBINGING RULESETS SUMMERZE
A_SHIFTING PARAMETER
1 BY LAYER
LAYER HEIGHT
2 BY VOXEL
NUMBER OF VOXELS / LAYER
2D DENSITY
2D DENSITY
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
B_PROBABILITY SHIFTING 1 BY VOXEL
2D DENSITY PROBABILITY
C_EROSION 2 BY VOXEL + LAYER
2D DENSITY PROBABILITY NUMBER OF VOXELS / LAYER
1 BY VOXEL
AGE TYPE OF CONNECTION
ATTRACTOR 3D DENSITY PROBABILITY
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
4| FINAL MODEL ANALYSIS According to the cellular automata research, we designed a setup that would combine three different behaviours: spreader, snowflake and spiral by rotating gliders clockwise in a cross layout. Thus, we could bring variation and different conditions for the second rule to be deployed according to the number of 3D neighbours. As a conclusion, we came up with a totally controlled model made out of two continuous systems that will interlock once we replace the voxels with the designed components in Maya. The two systems clearly embody two opposite behaviours creating a complete geometry, yet maintaining their individual characters. If we were to continue this research we would explore how cluster and lattice would either connect or blend if we could define gradients within our cellular automata. Summarizing, we would foster the reinforcement of the two systems cooperation.
4| FINAL MODEL ANALYSIS FINAL MODEL TOP VIEW SEQUENCE
LAYERS OF INFORMATION FOR PROCESSING
INITIAL CONDITIONS
2D DENSITY
RULESET GROWTH First, we ran our growth rule based on 2d density game of life. We used a setup that combines some of our previously researched behaviours, so that the model brings different opportunities and situations for the second ruleset to react either by decreasing or increasing the 3d density .
39_ref1 RES: 39 RESZ: 100 ELEMENT
SETUP
RULESET
PIXEL ele01 GLYDER ele02
CENTER ref01 RING ref02 CROSS ref03 EXTERIOR ref04 PATTERN ref05 STRIPES ref06
GAME OF LIFE
GOL
NEIGHBORS CONDITIONS (27) FRACTAL FRAC
111
BEHAVIOR SPREADER fam01 FRACTAL fam02 4 STATE fam03 SYMMETRICAL fam04 SNOWFLAKE fam05 ROTATION fam06
<2 N
GROWTH RULESET LONELINESS
(state==1)
&&
(2Ddens<1)
state==0
CROWDNESS (state==1)
&&
(2Ddens>2)
state==0
BIRTH
(state==0)
&&
1N
2N
2N
2-5 N
3N
5-7 N
4N
7-10 N
>5 N
>10 N
EROSION
LAYERS OF INFORMATION FOR MAYA RULESET
AGE Secondly, we ran our erosion rule based on the local 3d density of each voxel and some external input, attractors. These are controllable parameters that define the probability for erosion ruleset to be deployed at certain areas. As showed in the sequence, the second rule erodes quite radically the first geometry but then they both start negotiating in different areas. Eventually they stabilize and form a continuous interlocking system.
(2Ddens==2)
state==1
EROSION RULESET LONELINESS
(state==1)
&&
(3Ddens<6)
CROWDNESS (state==1)
&&
(3Ddens>11)
BIRTH
(state==0)
&&
state==0 state==0 (3Ddens==10)
state==1
RESULTS TOTAL Nยบ VOXELS (17%)
27.092
RULESET 01 VOXELS (7%)
11.401
RULESET 02 VOXELS
15.691
(10%)
1 AGES LATTICE
2- 6 AGES
CLUSTER
6-8 AGES
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
EROSION
GROWTH
4| FINAL MODEL ANALYSIS
Generation 05
Generation 10
Generation 20
Generation 30
Generation 50
Generation 60
Generation 70
Generation 80
Generation 90
Generation 40
EROSION
GROWTH
Generation 01
Generation 100
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
COMPONENT TRANSFORMATION
initial cube
initial cube
15x15x15
5x5x5
face to face
face to face
extrude local trans z: 2.5 delete face
extrude local trans z: 7.5 delete face
edge to edge
edge to edge
extrude local trans z: 5.5 delete face
extrude local trans z: 14 local rotate z: 60 delete face merge distance: 1 selection constraint (v): neighbors min 2, max 5 merge distance: 3
merge distance: 4
IMPORT FROM CA
As the CA ruleset remained the face to face connection, which is the blue area, while eroded and recreated the rest of the area by applying the second ruleset, which is shown as red, the two distinctive behavior coexist interlocking each other.
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
APPENDIX
// FRACTAL BEHAVIOR
ref01_111
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// SNOWFLAKE BEHAVIOR
ele01_ref01_221.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// FILLER BEHAVIOR
ele01_ref01_121.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// SPREADER BEHAVIOR
ele02_ref01_212.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// WALKER BEHAVIOR
ele02_ref01_233.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// FILLER BEHAVIOR
ele02_ref01_131.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// SNOWFLAKE BEHAVIOR
ele01_ref03_133.001 RES: 19, RESZ: 50
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// SNOWFLAKE BEHAVIOR
ele01_ref03_222.001 RES: 19, RESZ: 50
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// SNOWFLAKE BEHAVIOR
ele01_ref03_212.001 RES: 19, RESZ: 50
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// SNOWFLAKE BEHAVIOR
ele01_ref03_133.001 RES: 19, RESZ: 50
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// SYMMETRICAL BEHAVIOR
ele01_ref06_212.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// SYMMETRICAL + FILLER BEHAVIOR
ele01_ref06_231.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// ROTATION BEHAVIOR
ele01_ref09_133.001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// ROTATION BEHAVIOR
ele01_ref09_211..001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// ROTATION BEHAVIOR
ele01_ref09_322..001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
// ROTATION BEHAVIOR
ele01_ref09_332..001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
// DECREASING BEHAVIOR
ele01_ref05_233..001
Generation 01
Generation 02
Generation 03
Generation 04
Generation 05
Generation 06
Generation 07
Generation 08
Generation 09
Generation 10
Generation 11
Generation 12
Generation 13
Generation 14
Generation 15
Generation 16
Generation 17
Generation 18
Generation 19
Generation 20
Generation 21
Generation 22
Generation 23
Generation 24
Generation 25
Generation 26
Generation 27
Generation 28
Generation 29
Generation 30
Generation31
Generation 32
Generation 33
Generation 34
Generation 35
Generation 36
Generation 37
Generation 38
Generation 39
Generation 40
Generation 41
Generation 42
Generation 43
Generation 44
Generation 45
Generation 46
Generation 47
Generation 48
Generation 49
// CELULAR AUTOMATA RESEARCH BEHAVIOUR
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh
2014
MUSTAFA EL SAYED Alejandro Garcia Gadea + Ruxandra Metei + YoungAh Kang + Yooyeon Noh