NEIGHBORHOOD TOPOLOGIES | AADRL 2013/2015

Page 1

NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

NEIGHBORHOOD TOPOLOGIES 2014

MUSTAFA EL SAYED Alejandro Garcia Gadea + Ruxandra Metei + YoungAh Kang + Yooyeon Noh


This project explores the idea of hybridizing low and high-density ruleset behaviours through a controlled and defined cellular automata. As the CA grows, density conditions are analysed and the structure of the CA is reorganized according to certain defined parameters. Simultaneously exploring in Processing and Maya, rulesets and behaviours are shifted in order to design controlled local conditions and develop a complex interlocking structure which embodies our research.


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

1| CELLULAR AUTOMATA BEHAVIORS RESEARCH SETUPS RULESETS BEHAVIOR 2| COMPONENT CONNECTION RESEARCH 3| COMBINING RULESETS SHIFTING PROBABILITY EROSION 4| FINAL MODEL ANALYSIS AGE 2D NEIGHBORS 3D NEIGHBORS TYPES OF CONNECTIONS



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

1| CELLULAR AUTOMATA BEHAVIOR RESEARCH This research focuses on typological cellular automata behaviours starting from different setups and rulesets, which later on will lead the project to hybrid of high and low density combined systems. We define setup as our image input, which we design in order to achieve certain results based on previous experiments. On the other hand, rulesets are basic rules applied in each layer for each voxel – the basic unit - according to the number of neighbours that surrounds it. Following the logic of the renowned game of live rule, we deployed different rules maintaining the three principles: crowdedness, loneliness and birth. As a result of this first exploration we identified the following behaviours: spreader, fractal, four states, symmetrical, snowflake, spiral, filler and killer.



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

1| CELLULAR AUTOMATA BEHAVIOR RESEARCH

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

INTRODUCTION The overall process of Cellular Automata research is divided into 3 steps: firstly, input images are designed in Photoshop by combining different elements and setups; secondly, different types of ruleset are applied to the input image to generate different complex behaviors.; finally, these behaviors are analyzed and categorized into different families based on their characteristics. Eight families have emerged from the research and they can be clearly defined as the following: SPREADER, FRACTAL, 4 STATE, SYMMETRICAL, SNOWFLAKE, ROTATION, FILLER and KILLER.

SPREADER

FRACTAL

CA PROCESS ELEMENT

1

2

SETUP

3

RULESET

BEHAVIOUR

PIXEL

ele01

CENTER

ref01

GAME OF LIFE

GOL

SPREADER

fam01

GLYDER

ele02

RING

ref02

NEIGHBORS CONDITIONS (27)

111

FRACTAL

fam02

CROSS

ref03

4 STATE

fam03

FRACTAL

FRAC

EXTERIOR

ref04

SYMMETRICAL

fam04

PATTERN

ref05

SNOWFLAKE

fam05

STRIPES

ref06

ROTATION

fam06

GRID

ref07

FILLER

fam07

DIAGONAL

ref08

KILLER

fam08

ROTATE

ref09

4 STATE

SYMMETRICAL

SNOWFLAKE

ROTATION

FILLER

KILLER


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT INPUT IMAGES (ELEMENT + SETUP) Game of Life Ruleset is as following; LONELINESS OVERCROWDED BIRTH

if else if else if

((voxels[i][j][0].state == 1) && (neighbors < 2)) ((voxels[i][j][0].state == 1) && (neighbors > 3)) ((voxels[i][j][0].state == 0) && (neighbors ==3))

PIXEL + CENTER_ele01 + ref01

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

PIXEL + RING_ele01 + ref02

PIXEL + CROSS_ele01 + ref03

PIXEL + EXTERIOR_ele01 + ref04

ref01a_Ruleset GOL

ref02c_Ruleset GOL

ref03c_Ruleset GOL

ref04b_Ruleset GOL

ref01b_Ruleset GOL

ref02d_Ruleset GOL

ref03d_Ruleset GOL

ref04c_Ruleset GOL

ref02a_Ruleset GOL

ref03a_Ruleset GOL

ref03e_Ruleset GOL

ref04d_Ruleset GOL

ref02b_Ruleset GOL

ref03b_Ruleset GOL

ref04a_Ruleset GOL


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

PIXEL + PATTERN_ele01 + ref05

PIXEL + STRIPE_ele01 + ref06

PIXEL + GRID_ele01 + ref07

GLIDER + SETUPS_ele02 +ref XX

ref05a_Ruleset GOL

ref06a_Ruleset GOL TWO BEHAVIOURS

ref07a_Ruleset GOL

29_ref17

ref05b_Ruleset GOL MASSIVE

ref06b_Ruleset GOL BUILD A TOWER

ref07b_Ruleset GOL

39_ref1

PIXEL + DIAGONAL_ele01 + ref08

ref05c_Ruleset GOL

ref06c_Ruleset GOL

29ref08_Ruleset GOL

ref39glider1


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS(Neighbors Condition) Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if

((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))

SETUP

ELEMENT PIXEL GLYDER

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

ele01 ele02

ele01-ref01

RULESET

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

RES: 29 RESZ: 50 HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

ele01_ref01_111.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// FRACTAL BEHAVIOUR

ele01_ref01_221.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// SNOWFLAKE BEHAVIOUR

ele01_ref01_231.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// SNOWFLAKE BEHAVIOUR

ele01_ref01_121.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// FILLER BEHAVIOIR


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if

((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))

SETUP

ELEMENT PIXEL GLYDER

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

ele01 ele02

ele02_ref01

RULESET

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

RES: 29 RESZ: 50 HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

ele02_ref01_212.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// SPREADER BEHAVIOUR

ele02_ref01_233.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// WALKER BEHAVIOUR

ele02_ref01_131.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// FILLER BEHAVIOUR


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if

((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))

SETUP

ELEMENT PIXEL GLYDER

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

ele01 ele02

ele01_ref03

RULESET

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

RES: 29 RESZ: 50 HIGH DENSITY

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1 LOW DENSITY

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

ele01_ref03_133.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// SNOWFLAKE BEHAVIOUR

ele01_ref03_232.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// SNOWFLAKE BEHAVIOUR


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if

((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))

SETUP

ELEMENT PIXEL GLYDER

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

ele01 ele02

ele01_ref03

RULESET

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

RES: 29 RESZ: 50 HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

ele01_ref03_133.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// SNOWFLAKE BEHAVIOUR

ele01_ref03_212.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// SNOWFLAKE BEHAVIOUR


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if

((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))

SETUP

ELEMENT PIXEL GLYDER

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

ele01 ele02

ele01_ref08

RULESET

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

RES: 29 RESZ: 50 HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

HIGH DENSITY

LOW DENSITY

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

ele01_ref06_212.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 41

// SYMMETRICAL BEHAVIOUR

ele01_ref06_231.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 41

// SEMMETRICAL BEHAVIOUR


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if

((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))

SETUP

ELEMENT PIXEL GLYDER

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

ele01 ele02

ele01_ref09

RULESET

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

RES: 29 RESZ: 50 HIGH DENSITY

LOW DENSITY

HIGH DENSITY

HIGH DENSITY

HIGH DENSITY

LOW DENSITY

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

ele01_ref09_133.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// ROTATION BEHAVIOUR

ele01_ref09_211.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// ROTATION BEHAVIOUR

ele01_ref09_322.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// ROTATION BEHAVIOUR

ele01_ref09_332.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// ROTATION BEHAVIOUR


1| CELLULAR AUTOMATA BEHAVIOR RESEARCH ACCORDING TO DIFFERNT RULESETS Neighbors Condition Ruleset is as following; X=1,2, or 3 if else if else if

((voxels[i][j][0].state == 1) && (neighbors < X)) ((voxels[i][j][0].state == 1) && (neighbors > X)) ((voxels[i][j][0].state == 0) && (neighbors ==X))

SETUP

ELEMENT PIXEL GLYDER

voxels[i][j][0].state=0; voxels[i][j][0].state=0; voxels[i][j][0].state=1;

ele01 ele02

dot29_121.001

RULESET

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

RES: 29 RESZ: 50 HIGH DENSITY

LOW DENSITY

HIGH DENSITY

HIGH DENSITY

HIGH DENSITY

LOW DENSITY

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<1 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<2 s=0 p=1 n>3 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>1 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>2 s=0 p=0 n=3 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=1 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=2 s=1

Ruleset

p=1 n<3 s=0 p=1 n>3 s=0 p=0 n=3 s=1


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

ele01_ref05_233.001

Generation 01

Generation 11

Generation 21

Generation31

Generation 41

Generation 45

// DECREASING BEHAVIOUR



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

2| COMPONENT CONNECTION RESEARCH Alongside the study in the CA system, we also developed a component system that would embody the Processing research. The components will be able to grow and connect to one to another to produce a continuous surface throughout the structure we generate from the CA. The ‘information’ we get from the CA includes the position of each voxel (x, y, z), its number of neighbor, position of the neighbor (x+i, y+j, z+k), etc., which would act as a parameter and control the transformation of the component. The initial state of the voxel is chamfered and bevelled from a cube in order to provide faces to be extruded to all directions where a neighbour could possibly be located, i.e. the connection to its neighbouring component occurs. Depending on the position of the neighbour, there are three different connection types: face to face, edge to edge, and vertex to vertex connection. The face to face will produce a thick connection whereas the other two will generate a thinner, lattice-like connection. Using different sizes for the component works very effectively for visualizing the concept of cluster vs. lattice but it raises problems when it comes to connecting. The difference in scale doesn’t allow for a smooth connecting transition. Third system developed, thus, consists of two component types, each starting with different size of the initial status and grows in distinctive ways so that they run in two extreme appearance: the bigger component connects face to face and edge to edge as previous systems did, and vertex to vertex where applicable, whereas the smaller component would extrude the ‘face’ surface for the face to face connection but for the edge to edge connection, it would extrude the two adjacent ‘vertex’ surfaces instead of the ‘edge’ surface, which results in a thinner structure that also behaves to lock its arms to cling on the neighbor. These two component with different rules applied would grow simultaneously never touching each other, but only interlocking one another.



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

2| COMPONENT CONNECTION RESEARCH

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

CLUSTER + LATTICE

UNITS

CLUSTER

CONNECT

VOIDS

UNITS

LATTICE

CONNECT


A_COMPONENT CA INFORMATION

1 DENSITY

SIZE INITIAL STATUS

CA INFORMATION position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)

= face to face connection position of neighbor neighbor >= 6

10x10x10 chamfer width: 0.6 bevel fraction: 0.8

(+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)

= edge to edge connection

TRANSFORMATION

CONNECTION

extrude local trans z: 5 local scale x, y: 3.1

extrude local trans z: 8.7 local scale x: 1, y: 4.55

FACE TO FACE

position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)

= vertex to vertex connection

extrude local trans z: 12 local rotate z: 30

position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)

local translation z: 2.5 local scale x, y: 1.5

= face to face connection

neighbor < 6 && neighbor >= 3

15x15x15 chamfer width: 0.45 bevel fraction: 0.8

EDGE TO EDGE

position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)

local translation z: 5.4 local scale x: 1, y: 1.65

= edge to edge connection

position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)

local translation z: 7.8 local rotate z: 30

= vertex to vertex connection VERTEX TO VERTEX

position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)

local translation z: 0 local scale x, y: 1

= face to face connection neighbor < 3

20x20x20 chamfer width: 0.3 bevel fraction: 0.8

position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)

local translation z: 1.6 local scale x: 1, y: 1

= edge to edge connection

position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)

= vertex to vertex connection

local translation z: 3.4 local rotate z: 30


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

2| COMPONENT CONNECTION RESEARCH

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

A_COMPONENT + B SYSTEM

SINGLE CONNECTION STUDY

component size

replacement

merge distance: 2

10x10x10 if n >=6 15x15x15 if 3<= n <6 20x20x20 if n <3

component size

selection constraint area min: 80, max: 200 delete face

replacement

merge distance: 2

20x20x20 if n >=6 15x15x15 if 3<= n <6 10x10x10 if n <3

component size 20x20x20 if n >=6 15x15x15 if 3<= n <6 10x10x10 if n <3

transformation

transformation selection constraint area min: 80, max: 120 delete face

replacement

merge distance: 7.7

porous size=density extrude face local scale x: 1 if n>=19 0.75 if 15<= n <19 0.5 if 10<= n <15 0.25 if 5<= n <10 0 if n <5

poke distance=density poke face local scale x: -12 if n>=19 -8 if 15<= n <19 -4 if 10<= n <15 0 if 5<= n <10 4 if n <5


INITIAL STATUS

CA INFORMATION

TRANSFORMATION

position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)

ADDING CONNECTION TYPES

VERTEX TO VERTEX STUDY

face to face face to face

extruding v to v face surrounded by extruded faces

extrude local trans z: 2.5 delete face

= face to face connection cube size: 15x15x15 chamfer width: 0.5 bevel fraction: 0.8

position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)

= edge to edge connection

edge to edge

face to face + edge to edge

extrude local trans z: 5.5 delete face merge distance: 4

extruding all v to v faces

problematic

face to face + edge to edge + vertex to vertex

extruding all v to v faces TRANSFORMATION LATTICE

top elevation

merge distance: 4

merge distance: 5

CLUSTER

problematic


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

2| COMPONENT CONNECTION RESEARCH

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

RULESET 1 CLUSTER

RULESET 2 PARTICLES


2| COMPONENT CONNECTION RESEARCH A_COMPONENT + B SYSTEM

INITIAL STATUS

2 DENSITY SINGLE

ADDING CONNECTIONTYPE

CA INFORMATION

TRANSFORMATION

INITIAL STATUS

CA INFORMATION

TRANSFORMATION

position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)

face to face extrude local trans z: 2.5 delete face

position of neighbor (+1, 0, 0) (-1, 0, 0) (0, +1, 0) (0, -1, 0) (0, 0, +1) (0, 0, -1)

= face to face connection cube size: 15x15x15 chamfer width: 0.5 bevel fraction: 0.8

position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)

= edge to edge connection

edge to edge extrude local trans z: 5.5 delete face

= vertex to vertex connection

vertex to vertex* extrude local trans z: 8.6 local rotate z: 30 merge distance: 4 * applied only when the CA system has no more than 2 vertex extrusion at one place.

CONNECTION STUDY

extrude local trans z: 7.5 delete face

= face to face connection position of neighbor (+1, +1, 0) (+1, -1, 0) (-1, +1, 0) (-1, -1, 0) (0, +1, +1) (0, -1, +1) (+1, 0, +1) (-1, 0, +1) (0, +1, -1) (0, -1, -1) (+1, 0, -1) (-1, 0, -1)

= edge to edge connection

position of neighbor (+1, +1, +1) (-1, +1, +1) (+1, -1, +1) (-1, -1, +1) (+1, +1, -1) (-1, +1, -1) (+1, -1, -1) (-1, -1, -1)

cube size: 5x5x5 chamfer width: 0.5 bevel fraction: 0.8

face to face

edge to edge extrude local trans z: 14 local rotate z: 60 delete face merge distance: 1 selection constraint neighbors min 2, max 5 merge distance: 2


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

CA INFORMATION IN RELATION WITH COMPONENT INFORMATION NEIGHBOR POSITION = CONNECTING FACE

The mechanism of data transfer from the CA to MAYA component building is basically matching the names that is used in the two different systems: the position of the neighbor in the CA world, which is identified by adding (+1), subtracting (-1) or leaving (0) the value of the position of the voxel (x, y, z), is named with numbers by coding, then each number is related to the face number that is already set automatically in MAYA world. In this way, MAYA can recognize which face of the component should be extruded and connected to the neighbor.

f [6]

(2) i-1 , j-1 , k

edge to edge

f [18]

(3) i-1 , j-1 , k+1

vertex to vertex

f [8]

(4) i-1 , j

, k-1

edge to edge

f [24]

(5) i-1 , j

,k

face to face

f [2]

edge to edge

f [20]

vertex to vertex

f [21]

(8) i-1 , j+1, k

edge to edge

f [22]

(9) i-1 , j+1, k+1

vertex to vertex

f [10]

(6) i-1 , j

, k+1

(7) i-1 , j+1, k-1

, j-1 , k-1

edge to edge

f [14]

(11) i

, j-1 , k

face to face

f [0]

(12) i

, j-1 , k+1

edge to edge

f [15]

(13) i

,j

, k-1

face to face

f [4]

(14) i

,j

,k

itself

NULL

(15) i

,j

, k+1

face to face

f [1]

(16) i

, j+1, k-1

edge to edge

f [17]

(17) i

, j+1, k

face to face

f [5]

(18) i

, j+1, k+1

edge to edge

f [16]

(19) i+1, j-1 , k-1

vertex to vertex

f [13]

(20) i+1, j-1 , k

edge to edge

f [19]

(21) i+1, j-1 , k+1

vertex to vertex

f [7]

(22) i+1, j

, k-1

edge to edge

f [25]

(23) i+1, j

,k

face to face

f [3]

(24) i+1, j

, k+1

edge to edge

f [21]

(25) i+1, j+1, k-1

vertex to vertex

f [11]

(26) i+1, j+1, k

edge to edge

f [23]

(27) i+1, j+1, k+1

vertex to vertex

f [9]

TOP

FRONT

(8) f [22]

(5) f [2]

LEFT

(10) i

(17) f [5]

(2) f [18]

TOP

(9) f [10] (6) f [20] (3) f [18]

RIGHT

vertex to vertex

(1) i-1 , j-1 , k-1

RIGHT

FACE NUMBER OF THE COMPONENT /MAYA DATA

LEFT

TYPE OF CONNECTION

BACK

3D NEIGHBOR POSITION /CA DATA

(4) f [24] (4) f [24] (7) f [12]

POSITION OF COMPONENT

POSITION OF NEIGHBOR

(x, y, z)

(x+i, y+j, z+k)

(15) f [1]

(12) f [15]

(27) f [9] (24) f [21] (21) f [7]

(11) f [0]

FRONT

BOTTOM

(18) f [16]

(10) f [14]

(13) f [4]

(16) f [17]

(19) f [13] (22) f [25] (25) f [11]

(26) f [23]

(23) f [3]

(20) f [19]



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

3| COMBINING RULESETS Component research lead us to the idea of a dualism: cluster and lattice, high and low density, two distinguished behaviours that merge and cooperate yet maintain their own principles. Firstly, we started shifting these two systems by layer according to basic principles as the layer height, number of voxels per layer or the average 2d density. These produced stacking results that were disproved since the aim was to achieve an integrated system. Therefore we moved forward to the idea of shifting rules per voxels, meaning that each voxel might change according to our decision-making principles. Following the previous attempt we introduced probability, the idea that it would be more probable for rules to shift as the layer height increased, according to the 2D density of each voxel. At this point, the model became more integrated but it was still lacking control. In order to further develop, two controllable rules were introduced to radically increase or decrease the population if the number of voxels per layer were exceeding a specified range. The complexity of the system produced interesting variation and integration, however the outcome was highly unpredictable and we could not control the areas where the shifting would happen. Consequently, the next strategy involves running a first ruleset to grow the CA and then eroding it or refining it with a second ruleset based on the 3D density condition of each voxel. Firstly, we tried to deploy our 3D rule according to the stability of the system, also defined in the project as “age�. This way our second rule would be deployed when the system was not participating in the modelling or remained stable for more than a certain number of iterations. In this case, it was observed that the results were not controlled as expected since both the age and 2D density were still parameters coming from the cellular automata. As a result, we decided to work with attractors that we could control to decide where the 3D rules would be deployed.



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

3| COMBINGING RULESETS

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

INTRODUCTION

PROBABILITY

NUMBER OF VOXELS / LAYER

SYSTEM 1

8 POSSIBLE 2D NEIGHBORS

SYSTEM 2

26 POSSIBLE 3D NEIGHBORS

8 POSSIBLE 2D NEIGHBORS

2D DENSITY

AGE

2D DENSITY

3D DENSITY FTF

8 POSSIBLE 2D NEIGHBORS

LAYER HEIGHT

NUMBER OF VOXELS / LAYER

2D DENSITY

ETE

VTV

8 POSSIBLE 2D NEIGHBORS

2D DENSITY

PROBABILITY

PROBABILITY

TYPE OF CONNECTION

ATTRACTOR

100% SHIFTING 100% SHIFTING

0% SHIFTING

2 BY VOXEL

PARAMETER

1 BY LAYER

LAYER HEIGHT

A_SHIFTING

NUMBER OF VOXELS / LAYER

2D DENSITY

2D DENSITY

1 B BY VOXEL O

2D DENSITY PROBABILITY

B_PROBABILITY SHIFTING

0% SHIFTING

2 BY VOXEL + LAYER

2D DENSITY PROBABILITY NUMBER OF VOXELS / LAYER

1 B BY VOXEL O

AGE TYPE OF CONNECTION

C_EROSION

ATTRACTOR 3D DENSITY PROBABILITY



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

3| COMBINGING RULESETS

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

A_SHITFING

8 POSSIBLE 2D NEIGHBORS

LAYER HEIGHT

2D DENSITY

NUMBER OF VOXELS / LAYER

IF A NUMBER OF LAYER >=3, APPLY RULE2. NUMBER OF LAYER

IF A NUMBER OF VOXELS IN A LAYER >=3, APPLY RULE2.

GENERATION

A NUMBER OF VOXELS IN A LAYER

RULE

04

GENERATION

IF A NUMBER OF NEIGHBOURS OF A VOXEL >=2, APPLY RULE2. A NUMBER OF NEIGHBOURS OF A VOXEL

RULE

GENERATION

RULE

09 04

04

03

04

09

RULE 2 03

03

RULE 1

02

02

RULE 1

01

01

RULE 1 P S 1 == 1 0 == 0

RULE 2 P S 1 == 0 0 == 1

RULE 1 P S 1 == 1 0 == 0

PER LAYER

R1 R2 R2 R2 R1 R1 R1 R1

R2 R2 R2 R2 R2 R1 R1 R1

02

02 03 03 06 02 03 01 02

02 01 03 02 02 02 02 01

R2 R2 R2 R2 R2 R2 R1 R2

R2 R1 R2 R2 R2 R2 R2 R1

01

01 02 02 02 02 01 00 01

01 00 02 01 01 01 01 01

R1 R2 R2 R2 R1 R2 R1 R1

R1 R1 R2 R1 R1 R1 R1 R1

RULE 2

03

01

02 02 04 02 03 01 01 01

RULE 2

09

02

03

01 02 02 02 01 01 01 01

RULE 2

RULE 2 P S 1 == 0 0 == 1

RULE 1 P S 1 == 1 0 == 0

PER LAYER

RULE 2 P S 1 == 0 0 == 1

PER VOXEL



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

3| COMBINGING RULESETS

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

A_SHITFING

1 BY LAYER

LAYER NUMBER

LAYER HEIGHT

NUMBER OF VOXELS / LAYER

LAYER HEIGHT

NUMBER OF VOXELS / LAYER

NUMBER OF VOXELS / LAYER


3| COMBINGING RULESETS A_SHITFING

2 BY VOXEL

2D DENSITY LOW DENSITY

// FRACTAL BEHAVIOR

HIGH DENSITY

ele01_ref01 RES: 29 RESZ: 100 SETUP

ELEMENT PIXEL GLYDER

ele01 ele02

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

SETUP

ELEMENT PIXEL GLYDER

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

RULESET

ele01 ele02

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

LD

LD Rule

HD

111.001

LD Rule HD Rule TOTAL Vox LD Vox

111.001(if d>=2) 221.001(if d<2) 2673 2376

HD Vox

297

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

111.001(if d>=3) 221.001(if d<3) 7121 2428 4693

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

111.001(if d=1,2,3) 221.001(else if ) 2673

HD Rule TOTAL Vox

221.001 -

1188 1485

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

HD

LD LD Rule TOTAL Vox

113.001 1

LD Rules HD Rule TOTAL Vox LD Vox HD Voxe

113.001 (if d=2,3,4,5) 231.001 (else) 3553 2800 753

LD Rules HD Rule TOTAL Vox LD Vox HD Voxe

113.001 (if d=2,3) 231.001 (else) 3553 1804 1749

HD Rule TOTAL Vox

231.001 8710


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

LOW DENSITY

HIGH DENSITY

// SPREADER BEHAVIOR

ele02_ref01 RES: 29 RESZ: 100 SETUP

ELEMENT PIXEL GLYDER

ele01 ele02

RULESET

ele01 ele02

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

BEHAVIOR

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111

ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111

SETUP

ELEMENT PIXEL GLYDER

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

FRAC

RULESET

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

HD

LD

LD Rule

212.001

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

212.001(if d>=2) 121.101(if d<2) 4490 4003 487

LD Rules HD Rule TOTAL Vox LD Vox HD Voxe

212.001(if d>=3) 121.101(if d<3) 4846 691 4155

LD Rules HD Rules TOTAL Vox LD Vox HD Vox

212.001(if d>=4) 121.101(if d<4) 4846 305 4541

LD Rules HD Rules TOTAL Vox LD Vox HD Vox

212.001(if d=1,2,3) 121.101(else if ) 2104 1541 563

HD Rule

121.101

BEHAVIOR

FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER WALKER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08 fam09

LD

Setup ref08a RES 20X20X50 LD Rule

HD

233.001

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

233.001(if d>=2) 222.101(if d<2) 3585 3036 549

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

233.001(if d>=3) 222.101(if d<3) 5673 4154 1519

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

233.001(if d>=4) 222.101(if d<4) 21254 5316 15938

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

233.001(if d=3,4,5) 222.101(else if ) 28065 16436 11629

HD Rule

222.101


3| COMBINGING RULESETS A_SHITFING

2 BY VOXEL

2D DENSITY LOW DENSITY

// SYMMETRICAL BEHAVIOR

HIGH DENSITY

ele01_ref08 RES: 29 RESZ: 100

SETUP

ELEMENT PIXEL GLYDER

ele01 ele02

RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

SETUP

ELEMENT PIXEL GLYDER

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ele01 ele02

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

LD LD Setup RES LD Rule LD Rule TOTAL Vox

TOTAL Vox

HD 29_ref8 29X29X50 333.001 333.001 27

27

Setup Setup 29_ref8 RES RES 29X29X50 LD Rules 333.001 (if d<2 || d>3) LD Rules LD Rule 333.001(if d<2 || d>3) LD Rule HD Rule HD Rule 121.001 (else) HD TOTAL Rule Vox HD RuleTOTAL Vox 121.001(else) 196 TOTAL Vox TOTAL Vox LD Vox LD Vox 196 27 HD Voxe LD Vox LD Vox HD Voxe27 169 HD Vox 169 HD Vox

29_ref8 29X29X50 333.001 (if d=2,3,4) 333.001(if d=2,3,4) 121.001 (else) 121.001(else) 4983 4983 2947 2036 3947

2036

Setup 29_ref8 Setup 29_ref8 RES 29X29X50 RES 29X29X50 LD Rules 333.001 (if d=0,1,4,5) LD Rules 333.001 (if d=0,8) 333.001(if d=0,8) LD Rule 333.001(if d=0,1,4,5) LD Rule HD Rule 121.001 (else) HD Rule 121.001 (else) 121.001(else) HD Rule TOTAL Vox 196 121.001(else) TOTALHD VoxRule 196 TOTAL Vox 196 TOTAL Vox 196 LD Vox 27 LD Vox 27 Vox LD Vox 169 27 HDLD Voxe 169 27 HD Voxe HD Vox 169 HD Vox 169

Setup 29_ref8 Setup RES 29X29X100 RES LD RuleLD Rules232.001(if d<2 || d>3) LD Rule 232.001 (if d<2 || d>3) LD Rules HD RuleHD Rule 212.001(else) HD HD Rule 212.001 (else) Rule TOTAL Vox TOTAL Vox TOTAL Vox 1024310243 TOTAL Vox LD Vox LD Vox LD Vox 5454 5454 LD Vox HD Voxe 4789 HD Voxe HD Vox 4789

29_ref8 29X29X100 232.001(if 232.001 (ifd=2,3,4) d=2,3,4) 212.001(else) 212.001 (else) 488 488 2929 459

Setup 29_ref8 Setup 29_ref8 RES 29X29X100 RES 29X29X100 Rule 232.001 232.001(if d=0,1,4,5) LD Rule 232.001232.001(if LDLD Rules (if d=0,1,4,5) LD Rules (if d=0,8) d=0,8) Rule 212.001 212.001(else) HD Rule 212.001212.001(else) HDHD Rule (else) HD Rule (else) TOTAL VoxVox 10243 TOTALTOTAL Vox Vox 10243 10243 TOTAL 10243 LDLD VoxVox 39833983 LD Vox LD Vox 1003 1003 HD Voxe 6260 HD Voxe HD Vox 6260 HD Vox 9240 9240

Setup HD 29_ref8 RES 29X29X50 HD Rule HD Rule 121.001121.001 TOTALTOTAL Vox Vox10821 10821

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

LD LD Setup 29_ref8 RES 29X29X50 Rule 232.001 232.001 LDLD Rule TOTAL TOTAL VoxVox 488 488

HD Vox

459

HD HD Setup 29_ref8 RES 29X29X50 HD Rule 212.001 HD Rule 212.001 TOTAL Vox 10243 TOTAL Vox 10243


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

COMPONENT CONNECTION DUAL/INTERLOCKING

IMPORT FROM CA

COMPONENT TRANSFORMATION

initial cube

initial cube

15x15x15

5x5x5

face to face

face to face

extrude local trans z: 2.5 delete face

extrude local trans z: 7.5 delete face

edge to edge

edge to edge

extrude local trans z: 5.5 delete face

extrude local trans z: 14 local rotate z: 60 delete face merge distance: 1 selection constraint (v): neighbors min 2, max 5 merge distance: 2

vertex to vertex extrude local trans z: 8.6 local rotate z: 30 delete face merge distance: 4

COMPONENT CONNECTION

vertex to vertex extrude local trans z: 11.5 local rotate z: 30 delete face merge distance: 1

CASE-BY-CASE CUSTOMIZATION initial cube

initial cube

initial cube

initial cube

15x15x15

5x5x5

15x15x15

5x5x5

face to face

face to empty z

face to face

face to empty x, y, z

extrude local trans z: 2.5 delete face

extrude local trans z: 16 delete face ctrl+F9 (vertex) merge distance: 0.1 chamfer width: 0.5 selection constraint: area min 5.5, max 6 extrude local trans z: 13.2 local rotate z: -50 local scale x: 1.4 local scale y: 0.2 delete face merge distance: 1

extrude local trans z: 2.5 delete face

extrude local trans z: 5 local scale x, y: 2 vertex merge distance: 0.1 chamfer width: 0.3 selection constraint (face): order: triangles extrude local trans z: 11.9 delete face merge distance: 1 edge to edge extrude local trans z: 11.5 delete face merge distance: 1

edge to edge extrude local trans z: 5.5 delete face

vertex to vertex In this specific CA system, the two rulesets behave to sit on each other not interlocking one another at all, while connecting to its neighbor edge to edge in horizontal direction and vertex to vertex in vertical direction.

extrude local trans z: 8.6 local rotate z: 30 merge distance: 4

edge to edge Since there is not too crowded vertex to vertex situation, the component rule for vertex is applied. The two systems would start interlocking only in case the red component extrudes its face towards the empty space upward and cling onto the vertex arms of the blue components, for which a bit different rule is applied as shown in the customization.

extrude local trans z: 11.5 delete face merge distance: 1

edge to edge extrude local trans z: 5.5 delete face

vertex to vertex extrude local trans z: 5.1 local rotate z: 30 ctrl+F9 (vertex) merge distance: 0.1 chamfer width: 0.5 delete face selection constraint (face): area min 5.5, max 6 extrude local trans z: 6.9 local rotate z: 60 delete face merge distance: 2 selection constraint (vertex): neighbors min1, max 3 merge distance: 5


3| COMBINGING RULESETS A_SHITFING

2 BY VOXEL

2D DENSITY LOW DENSITY

// ROTATION BEHAVIOR

HIGH DENSITY

ele01_ref09 RES: 29 RESZ: 100 SETUP

ELEMENT PIXEL GLYDER

ele01 ele02

RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

SETUP

ELEMENT PIXEL GLYDER

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

ele01 ele02

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

HD

LD

LD Rule

332.001

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001 (if d>=2) 333.111(if d<2) 10692 8184 2508

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001(if d>=3) 333.111(if d<3) 1344 0 1344

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001(if d>=4) 333.111(if d<4) 9952 3188 6764

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001(if d=1,2,3) 333.111(else if ) 5788 3456 9244

HD Rule

333.111

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

HD

LD

LD Rule

332.001 LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001 (if d>=2) 233.001(if d<2) 4756 2720 2036

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001(if d>=3) 233.001(if d<3) 64 0 64

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001(if d>=4) 233.001(if d<4) 2264 116 2148

LD Rule HD Rule TOTAL Vox LD Vox HD Vox

332.001(if d=2,3,4) 233.001(else if ) 4756 2560 2196

HD Rule

233.001


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

3| COMBINGING RULESETS

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

B_PROBABILITY SHIFTING

PROBABILITY IF PROBABILITY <= LIMIT, APPLY RULE2.

100% SHIFTING 8 POSSIBLE 2D NEIGHBORS

GENERATION

? ? ?

04

03

02

RULE

RANDOM CHOICE

0% SHIFTING

RULE SHIFTING PROBABILITY

LIMIT

PROBABILITY

2D DENSITY

1323

<=

100%

RULE 1 RULE 2 RULE 2

66%

RULE 1 RULE 2 RULE 2

33%

RULE 1 RULE 2 RULE 2

100% SHIFTING

1++

122 3 <=

8 POSSIBLE 2D NEIGHBORS

1++

1123 01

RULE 1 P S 1 == 1 0 == 0

RULE 2 P S 1 == 0 0 == 1

<=

2D DENSITY

PROBABILITY

NUMBER OF VOXELS / LAYER 0% SHIFTING



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

3| COMBINGING RULESETS

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

B_PROBABILITY SHIFTING

1 BY VOXEL

2D DENSITY + PROBABILITY

100% SHIFTING

8 POSSIBLE 2D NEIGHBORS

2D DENSITY

PROBABILITY

0% SHIFTING


3| COMBINGING RULESETS B_PROBABILITY SHIFTING

2 BY VOXEL + LAYER

2D DENSITY + PROBABILITY + NUMBER OF VOXELS / LAYER // SPREADER BEHAVIOR

INITIAL CONDITIONS RULESET 01=LOW DENSITY

RULESET 02=HIGH DENSITY

RULESET 03=KILLER

RULESET 04=HULK

ele02_ref09 RES: 39 RESZ: 200 MAX VOX: 304,200 SETUP

ELEMENT PIXEL GLYDER

ele01 ele02

CENTER RING CROSS EXTERIOR PATTERN STRIPES GRID DIAGONAL ROTATE

RULESET ref01 ref02 ref03 ref04 ref05 ref06 ref07 ref08 ref09

BEHAVIOR

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL

111 FRAC

SPREADER FRACTAL 4 STATE SYMMETRICAL SNOWFLAKE ROTATION FILLER KILLER

fam01 fam02 fam03 fam04 fam05 fam06 fam07 fam08

Setup ele02_ref09 RES 39X39X200 LD Rule TOTAL VOX PCT. TOTAL

Setup rele02_ref09 RES 39X39X200 LD Rule 121.101 TOTAL VOX 97.232 PCT. TOTAL 31.96 %

121.101 52.948 17.40 %

SETUP ELE02_REF09 RES 39X39X200 LD RULE 333.011 TOTAL VOX 48 PCT. TOTAL 0.02 %

Setup ele02_ref09 RES 39X39X200 LD Rule TOTAL VOX PCT. TOTAL

222.101 67.735 22.27 %

SHIFTING SHIFTING RULES 04 RULESET 01: 122.000 RULESET 02: 211.101 RULESET 03: 213.100 RULESET 04: 212.001

SHIFTING RULES 01 RULESET 01: 121.101 RULESET 02: 121.101 RULESET 03: 333.011 RULESET 04: 222.101

SHIFTING RULES 02 RULESET 01: 121.101 RULESET 02: 121.101 RULESET 03: 333.011 RULESET 04: 222.101

SHIFTING RULES 03 RULESET 01: 121.101 RULESET 02: 121.101 RULESET 03: 333.011 RULESET 04: 222.101

VOXELS/LAYER <50 VOXELS/LAYER 50>300 VOXELS/LAYER >300

RULESET 02 RULESET 01/04 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50>300 VOXELS/LAYER >300

RULESET 04 RULESET 01/02 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50>250 VOXELS/LAYER >250

RULESET 04 RULESET 01/02 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50~250 VOXELS/LAYER >250

RULESET 04 RULESET 01/02/04 RULESET 03

PROBABILITY<LIMIT { 2D DENSITY =1,2,3 2D DENSITY= (else) }

RULESET 01 RULESET 04

PROBABILITY<LIMIT { 2D DENSITY =1,2,3 2D DENSITY= (else) }

RULESET 01 RULESET 02

PROBABILITY<LIMIT { 2D DENSITY =1,2 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 01 RULESET 02

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

(PROBABILITY INCREASE AS IT GOES UP)

(PROBABILITY INCREASE AS IT GOES UP)

VOX RULE1 VOX RULE2 VOXRULE3 VOX RULE4

14.236 3.326 6.001 7.128

4% 1% 1% 2%

VOX RULE1 VOX RULE2 VOXRULE3 VOX RULE4

15.001 6.834 3.961 6.321

4% 2% 1% 2%

TOTAL VOX

30.691

10 %

TOTAL VOX

32.117

10 %

RULESET 04

(PROBABILITY INCREASE AS IT GOES UP) VOX RULE1 9,548 3% VOX RULE2 8,727 2% VOX RULE3 6,151 2% VOX RULE4 12,088 3% TOTAL VOX

36,564

12 %

RULESET 04

(PROBABILITY INCREASE AS IT GOES UP) VOX RULE1 6,150 2% VOX RULE2 4,663 1% VOX RULE3 6,895 2% VOX RULE4 6,450 2% TOTAL VOX

24,158

7%


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

SHIFTING RULES 05

SHIFTING RULES 07

SHIFTING RULES 06

SHIFTING RULES 08

RULESET 01: 122.000 RULESET 02: 313.101 RULESET 03: 111.100 RULESET 04: 112.001

RULESET 01: 122.000 RULESET 02: 121.001 RULESET 03: 111.100 RULESET 04: 111.001

RULESET 01: 112.000 RULESET 02: 112.101 RULESET 03: 111.100 RULESET 04: 112.001

RULESET 01: 122.000 RULESET 02: 313.101 RULESET 03: 111.100 RULESET 04: 112.001

VOXELS/LAYER <50 VOXELS/LAYER 50~150 VOXELS/LAYER >150

RULESET 04 RULESET 01/02/04 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50~300 VOXELS/LAYER >300

RULESET 04 RULESET 01/02/04 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50~150 VOXELS/LAYER >150

RULESET 04 RULESET 01/02/04 RULESET 03

PROBABILITY<LIMIT { 2D DENSITY = 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

RULESET 04

RULESET 04

RULESET 04

VOXELS/LAYER <50 VOXELS/LAYER 50~350 VOXELS/LAYER >350

RULESET 04 RULESET 01/02/04 RULESET 03

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01 RULESET 04

(PROBABILITY INCREASE AS IT GOES UP)

(PROBABILITY INCREASE AS IT GOES UP)

(PROBABILITY INCREASE AS IT GOES UP)

(PROBABILITY INCREASE AS IT GOES UP)

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

2,638 6,369 3,952 6,280

0% 2% 1% 2%

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

2,639 3,211 706 5,758

0% 1% 0% 1%

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

1,419 2,403 314 8,661

0% 0% 0% 2%

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

1,364 2,195 0 12,149

0% 0% 0% 3%

TOTAL VOX

19,239

6%

TOTAL VOX

12,314

4%

TOTAL VOX

12,797

4%

TOTAL VOX

15,708

5%

SHIFTING RULES 09 RULESET 01: 122.000 RULESET 02: 123.001 RULESET 03: 211.100 RULESET 04: 112.101

SHIFTING RULES 10

SHIFTING RULES 11

RULESET 01: 122.000 RULESET 02: 121.001 RULESET 03: 211.100 RULESET 04: 112.001

SHIFTING RULES 12

RULESET 01: 122.000 RULESET 02: 212.101 RULESET 03: 211.100 RULESET 04: 212.001

RULESET 01: 122.000 RULESET 02: 212.101 RULESET 03: 211.100 RULESET 04: 212.001

VOXELS/LAYER <50 VOXELS/LAYER 50~250 VOXELS/LAYER >250

RULESET 04 RULESET 01/02/04 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50~250 VOXELS/LAYER >250

RULESET 04 RULESET 01/02/04 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50~300 VOXELS/LAYER >300

RULESET 04 RULESET 01/02/04 RULESET 03

VOXELS/LAYER <50 VOXELS/LAYER 50~300 VOXELS/LAYER >300

RULESET 04 RULESET 01/02/04 RULESET 03

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

PROBABILITY<LIMIT { 2D DENSITY =1 2D DENSITY= (else) } PROBABILITY>LIMIT

RULESET 02 RULESET 01

RULESET 04

RULESET 04

RULESET 04

RULESET 04

(PROBABILITY INCREASE AS IT GOES UP)

(PROBABILITY INCREASE AS IT GOES UP)

(PROBABILITY INCREASE AS IT GOES UP)

(PROBABILITY INCREASE AS IT GOES UP)

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

317 411 765 15,895

0% 0% 0% 5%

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

3,860 9,153 14,155 6,506

1% 3% 4% 2%

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

9,349 9,579 6,316 10,767

3% 3% 2% 3%

VOX RULE1 VOX RULE2 VOX RULE3 VOX RULE4

10,241 12,254 6,738 9,046

3% 4% 2% 2%

TOTAL VOX

17,388

5%

TOTAL VOX

33,674

11 %

TOTAL VOX

36,011

11 %

TOTAL VOX

38,279

12 %

COMPONENT CO O CONNECTION CO C O SINGLE

IMPORT FROM CA

COMPONENT CONNECTION

COMPONENT TRANSFORMATION

initial cube 15x15x15 face to face extrude local trans z: 2.5 delete face edge to edge extrude local trans z: 5.5 delete face vertex to vertex extrude local trans z: 8.6 local rotate z: 30 delete face merge distance: 4

As there were 4 rulesets applied to grow this structure in the CA, it rather is translated as one structure than divided into two distinct systems. Therefore, the single component system is applied, which would more concentrate on the cluster vs. lattice that is happening within one system depending on the connection type and density of each voxel.



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

3| COMBINGING RULESETS

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

C_EROSION

EROSION

1ST GENERATION

2ND GENERATION

STEP1_GROWING

STEP2_EROSION FTF

ETE

VTV

04 AGE

TYPE OF CONNECTION

03

02 26 POSSIBLE 3D NEIGHBORS

01

RULE 1 P S 1 == 1 0 == 0

RULE 2 P S 1 == 0 0 == 1

RULE 3 P==1 N==1 S==0

ATTRACTOR

3D DENSITY

PROBABILITY


3| COMBINGING RULESETS C_EROSION

1 BY VOXEL

AGE + TYPE OF CONNECTION

GROWING RULESET

ele01_ref01 RES: 29 RESZ: 100

EROSION RULESET AGE <= 5

PreviousState NumbersOfNeighbors NewState 1 1 0

<2 <3 >1

PreviousState

0 0 1

1

type of connection

> AGE 5 AGE 4 AGE 3 AGE 2 AGE 1

0

NewState

>=1

type of connection

FACE TO FACE

If AGE>5, they adon’t erode.

type of connection

If AGE<=5,

FACE TO FACE EDGE TO EDGE VERTEX TO VERTEX

NumbersOf FacetoFaceConnection

they erode to make all voxels have edge to edge connection not face to face. NEW RULESET : Find the numbers of facetoface Connection, If you have more than one face to face connection, you die.

FACE TO FACE

type of connection

FACE TO FACE EDGE TO EDGE VERTEX TO VERTEX

FACE TO FACE EDGE TO EDGE & VERTEX TO VERTEX


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

COMPONENT CONNECTION DUAL/INTERLOCKING IMPORT FROM CA

COMPONENT TRANSFORMATION

initial cube

initial cube

15x15x15

5x5x5

face to face

face to face

extrude local trans z: 2.5 delete face

extrude local trans z: 7.5 delete face

edge to edge

edge to edge

extrude local trans z: 5.5 delete face

extrude local trans z: 11.6 delete face

merge distance: 4

vertex to vertex extrude local trans z: 14.7 local rotate z: 30 delete face merge distance: 1

In this system, the major connection type that appears in the blue ruleset is face to face, with which the cluster chunk is further emphasized by applying the bigger component. The red system is spread out throughout the structure creating a wall around the blue cluster and it has mostly edge to edge or vertex to vertex connection type, i.e. more lattice. Vertex to vertex transformations are applied to the red system as the voxels are not too dense, to say it again, there are no more than 2 vertex to vertex situation at one place. The contrast of the two systems is demonstrated effectively by having extreme scenario case in both CA and component system.

COMPONENT CONNECTION



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014

3| COMBINGING RULESETS

Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

C_EROSION. DEPENDING ON ATTRACTORS SETUP

RULESET growth

RULESET erosion 01

RULESET erosion 02

RULESET erosion 03

RULESET erosion 04

RULESET erosion 05

RULESET erosion 06

Setup 29_ref12 RES 29X29X100 MAX vox

84.100 LONELINESS (state==1) && (2Ddens<3) state==0 CROWDNESS (state==1) && (2Ddens<3) state==0 BIRTH (state==0) && (2Ddens==2) state==1

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>24) state==0 BIRTH (state==0) && (3Ddens==7,10) state==1

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>24) state==0 BIRTH (state==0) && (3Ddens==7,10) state==1

6.155 (7 %) 24.776 (29 %) 30.931 (36 %)

6.155 (7 %) 20.262 (24 %)

LONELINESS (state==1) && (2Ddens<2) state==0 CROWDNESS (state==1) && (2Ddens<1) state==0 BIRTH (state==0) && (2Ddens==2) state==1

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8,13,18)state==1

TOTAL VOX 52.948 (17.40 %)

8.918 (5 %) 11.258 (7 %) 20.176 (13%)

TOTAL VOX 52.948 (17.40 %)

LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==6,8,12,18) state==1

LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==6,8,12,18) state==1

LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==8,15-18) state==1

LONELINESS (state==1) && (3Ddens<6) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==8,15-18) state==1

6.155 (7 %) 13.723 (16 %) 19,878 (23 %)

3.786 (4 %) 10.004 (11 %) 13.790 (16 %)

3.822 (4 %) 6.880 (7 %)

5.833 (6 %) 8.772 (10 %)

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8,13,18)state==1

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8,13,18)state==1

LONELINESS (state==1) && (3Ddens<14) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==14,12,5,7) state==1

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==14,11,8,6) state==1

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==8,6,26,18) state==1

8.918 (5 %) 11.258 (7 %) 20.176 (13%)

11.247 (7 %) 6.741 (4 %) 17.896 (11 %)

3.819 (3 %) 9.638 (6 %)

3.819 (2 %) 18.831 (12 %) 22.650 (14 %)

4.821 (3 %) 19.119 (12 %)

14.107 (16

2.858 (3 %)

2.939 (3 %)

SETUP

Setup 39_glider_1 RES 39X39X100 MAX vox

152.100

5.819 (2 %) 14.298 (9 %)


3| COMBINGING RULESETS C_EROSION. DEPENDING ON ATTRACTORS SETUP

RULESET growth

RULESET erosion 01

RULESET erosion 02

RULESET erosion 03

RULESET erosion 04

RULESET erosion 05

RULESET erosion 06

Setup 39_glider_1 RES 39X39X100 MAX vox

152.100 LONELINESS (state==1) && (2Ddens<1) state==0 CROWDNESS (state==1) && (2Ddens<1) state==0 BIRTH (state==0) && (2Ddens==1) state==1 TOTAL VOX 52.948 (17.40 %)

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==14,12,8,5) state==1 2.354 (2 %) 16.073 (10 %) 18.427 (12 %)

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==14,12,8,5)state==1

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==5,8,12,14) state==1

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==5,8,12,14) state==1

LONELINESS (state==1) && (3Ddens<5) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==10) state==1

LONELINESS (state==1) && (3Ddens<5) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==10) state==1

5.654 (3 %) 12.435 (8 %) 18.089 (11 %)

19.860 (13 %) 12.747 (8%) 32.607 (21 %)

10.144 (6 %) 23.592 (15 %)

6.123 (7 %) 20.173 (13 %)

6.123 (7 %) 20.173 (13 %)

SETUP

Setup 29_ref8 RES 29X29X100 MAX vox

152.100 LONELINESS (state==1) && (2Ddens<1) state==0 CROWDNESS (state==1) && (2Ddens<2) state==0 BIRTH (state==0) && (2Ddens==2) state==1

LONELINESS (state==1) && (3Ddens=7,10-15) state==0 CROWDNESS (state==1) && (3Ddens>17-26) state==0 BIRTH (state==0) && (3Ddens==9,14) state==1

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==4,8,12,18)state==1

TOTAL VOX 52.948 (17.40 %)

8.318 (5 %) 11.253 (7 %) 20.173 (13%)

8.918 (5 %) 11.258 (7 %) 20.176 (13%)

13.448 (8 %)

14.050 (6 %)

14.050 (6 %)


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh SETUP

RULESET growth

RULESET erosion 01

RULESET erosion 02

RULESET erosion 03

RULESET erosion 04

Setup 39_glider_1 RES 39X39X100 MAX vox

152.100 LONELINESS (state==1) && (2Ddens<2) state==0 CROWDNESS (state==1) && (2Ddens<3) state==0 BIRTH (state==0) && (2Ddens==3) state==1

LONELINESS (state==1) && (3Ddens<7) state==0 CROWDNESS (state==1) && (3Ddens>11) state==0 BIRTH (state==0) && (3Ddens==4,26,8,18)state==1

LONELINESS (state==1) && (3Ddens<1) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==7,8,12,14) state==1

LONELINESS (state==1) && (3Ddens<1) state==0 CROWDNESS (state==1) && (3Ddens>6) state==0 BIRTH (state==0) && (3Ddens==18,12) state==1

TOTAL VOX 52.948 (17.40 %)

LONELINESS (state==1) && (3Ddens<=1) state==0 CROWDNESS (state==1) && (3Ddens>5) state==0 BIRTH (state==0) && (3Ddens==26,12,6,20 state==1 2.354 (2 %) 16.073 (10 %) 18.427 (12 %)

5.654 (3 %) 12.435 (8 %) 18.089 (11 %)

19.860 (13 %) 12.747 (8%) 32.607 (21 %)

10.144 (6 %) 23.592 (15 %)

LONELINESS (state==1) && (2Ddens<1) state==0 CROWDNESS (state==1) && (2Ddens<1) state==0 BIRTH (state==0) && (2Ddens==1) state==1

LONELINESS (state==1) && (3Ddens<7) state==0 CROWDNESS (state==1) && (3Ddens>10) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13)state==1

TOTAL VOX 52.948 (17.40 %)

8.318 (5 %) 11.253 (7 %) 20.173 (13%)

8.918 (5 %) 11.258 (7 %) 20.176 (13%)

8.918 (5 %) 11.258 (7 %) 20.176 (13%)

8.918 (5 %) 11.258 (7 %) 20.176 (13%)

13.448 (8 %)

SETUP

Setup 49_dot RES 49X49X100 MAX vox

152.100

// COMBINING RULESETS EROSION. DEPENDING ON ATTRACTORS


3| COMBINGING RULESETS C_EROSION. DEPENDING ON ATTRACTORS

GROW LATTICE ADD CLUSTER The second ruleset grows continuous clusters along the lattice base

STRATEGY 1 SETUP - DOT

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8, 12,13) state==1 8.918 (5 %) 11.258 (7 %) 20.176 (13%)

THE GROWTH RULE BUILDS UP LOW DENSITY - LATTICE CONDITION

EROSION BEGINS AND MELTS THE DENSITY AROUND THE CENTRAL ATTRACTOR

THE SECOND RULE STARTS BUILDING ITSELF

RULESET TWO CREATES CLUSTERS THAT CONNECT TO EACHOTHER

THE TWO SYSTEMS ARE UNIFIED

THE GROWTH RULE BUILDS UP LOW DENSITY- LATTICE CONDITION

THE SECOND RULESET STARTS BUILDING DENSITY

AS DENSITY INCREASES THE TWO SYSTEMS START CONNECTING

BOTH RULESETS ARE CONTINUOUS BUT WITH DISTINCT CHARACTER

FINAL RESULT OF THE TWO RULESETS

SETUP - GLIDER DIFFERENT ORIENTATIONS

LONELINESS (state==1) && (3Ddens<8) state==0 CROWDNESS (state==1) && (3Ddens>13) state==0 BIRTH (state==0) && (3Ddens==6,8,12,13) state==1 8.918 (5 %) 11.258 (7 %) 20.176 (13%)


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

GROW CLUSTER ERODE LATTICE The erosion ruleset kills and then grow from the top and from the bottom towards the centre in order to form a continuous surface.

STRATEGY 2 SETUP - GLIDER DIFFERENT ORIENTATIONS

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>15) state==0 BIRTH (state==0) && (3Ddens==5,8,12,14) state==1 10.144 (6 %) 13.448 (8 %) 23.592 (15 %)

THE GROWTH RULE BUILDS UP HIGH DENSITY

EROSION BEGINS AND MELTS THE DENSITY AROUND THE 2 ATTRACTORS

THE SECOND RULE STARTS TO CONNECT CREATING A LATTICE CONDITION

THE TWO SYSTEMS BECOME UNIFIED

FINAL RESULT OF THE TWO RULESETS

THE GROWTH RULE BUILDS UP HIGH DENSITY

EROSION BEGINS AND MELTS THE DENSITY AROUND THE 2 ATTRACTORS

THE SECOND RULE STARTS TO CONNECT CREATING A LATTICE CONDITION

THE SECOND RULEST STARTS REGROWING ITSELF

FINAL RESULT OF THE TWO RULESETS

SETUP - GLIDER SAME ORIENTATION

LONELINESS (state==1) && (3Ddens<10) state==0 CROWDNESS (state==1) && (3Ddens>20) state==0 BIRTH (state==0) && (3Ddens==6,8, 13,18) state==1 8.918 (5 %) 11.258 (7 %) 20.176 (13%)


3| COMBINGING RULESETS SUMMERZE

A_SHIFTING PARAMETER

1 BY LAYER

LAYER HEIGHT

2 BY VOXEL

NUMBER OF VOXELS / LAYER

2D DENSITY

2D DENSITY


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

B_PROBABILITY SHIFTING 1 BY VOXEL

2D DENSITY PROBABILITY

C_EROSION 2 BY VOXEL + LAYER

2D DENSITY PROBABILITY NUMBER OF VOXELS / LAYER

1 BY VOXEL

AGE TYPE OF CONNECTION

ATTRACTOR 3D DENSITY PROBABILITY



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

4| FINAL MODEL ANALYSIS According to the cellular automata research, we designed a setup that would combine three different behaviours: spreader, snowflake and spiral by rotating gliders clockwise in a cross layout. Thus, we could bring variation and different conditions for the second rule to be deployed according to the number of 3D neighbours. As a conclusion, we came up with a totally controlled model made out of two continuous systems that will interlock once we replace the voxels with the designed components in Maya. The two systems clearly embody two opposite behaviours creating a complete geometry, yet maintaining their individual characters. If we were to continue this research we would explore how cluster and lattice would either connect or blend if we could define gradients within our cellular automata. Summarizing, we would foster the reinforcement of the two systems cooperation.


4| FINAL MODEL ANALYSIS FINAL MODEL TOP VIEW SEQUENCE

LAYERS OF INFORMATION FOR PROCESSING

INITIAL CONDITIONS

2D DENSITY

RULESET GROWTH First, we ran our growth rule based on 2d density game of life. We used a setup that combines some of our previously researched behaviours, so that the model brings different opportunities and situations for the second ruleset to react either by decreasing or increasing the 3d density .

39_ref1 RES: 39 RESZ: 100 ELEMENT

SETUP

RULESET

PIXEL ele01 GLYDER ele02

CENTER ref01 RING ref02 CROSS ref03 EXTERIOR ref04 PATTERN ref05 STRIPES ref06

GAME OF LIFE

GOL

NEIGHBORS CONDITIONS (27) FRACTAL FRAC

111

BEHAVIOR SPREADER fam01 FRACTAL fam02 4 STATE fam03 SYMMETRICAL fam04 SNOWFLAKE fam05 ROTATION fam06

<2 N

GROWTH RULESET LONELINESS

(state==1)

&&

(2Ddens<1)

state==0

CROWDNESS (state==1)

&&

(2Ddens>2)

state==0

BIRTH

(state==0)

&&

1N

2N

2N

2-5 N

3N

5-7 N

4N

7-10 N

>5 N

>10 N

EROSION

LAYERS OF INFORMATION FOR MAYA RULESET

AGE Secondly, we ran our erosion rule based on the local 3d density of each voxel and some external input, attractors. These are controllable parameters that define the probability for erosion ruleset to be deployed at certain areas. As showed in the sequence, the second rule erodes quite radically the first geometry but then they both start negotiating in different areas. Eventually they stabilize and form a continuous interlocking system.

(2Ddens==2)

state==1

EROSION RULESET LONELINESS

(state==1)

&&

(3Ddens<6)

CROWDNESS (state==1)

&&

(3Ddens>11)

BIRTH

(state==0)

&&

state==0 state==0 (3Ddens==10)

state==1

RESULTS TOTAL Nยบ VOXELS (17%)

27.092

RULESET 01 VOXELS (7%)

11.401

RULESET 02 VOXELS

15.691

(10%)

1 AGES LATTICE

2- 6 AGES

CLUSTER

6-8 AGES


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh


EROSION

GROWTH

4| FINAL MODEL ANALYSIS

Generation 05

Generation 10

Generation 20

Generation 30

Generation 50

Generation 60

Generation 70

Generation 80

Generation 90

Generation 40

EROSION

GROWTH

Generation 01

Generation 100


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

COMPONENT TRANSFORMATION

initial cube

initial cube

15x15x15

5x5x5

face to face

face to face

extrude local trans z: 2.5 delete face

extrude local trans z: 7.5 delete face

edge to edge

edge to edge

extrude local trans z: 5.5 delete face

extrude local trans z: 14 local rotate z: 60 delete face merge distance: 1 selection constraint (v): neighbors min 2, max 5 merge distance: 3

merge distance: 4

IMPORT FROM CA

As the CA ruleset remained the face to face connection, which is the blue area, while eroded and recreated the rest of the area by applying the second ruleset, which is shown as red, the two distinctive behavior coexist interlocking each other.



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

APPENDIX


// FRACTAL BEHAVIOR

ref01_111

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// SNOWFLAKE BEHAVIOR

ele01_ref01_221.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// FILLER BEHAVIOR

ele01_ref01_121.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// SPREADER BEHAVIOR

ele02_ref01_212.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// WALKER BEHAVIOR

ele02_ref01_233.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// FILLER BEHAVIOR

ele02_ref01_131.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// SNOWFLAKE BEHAVIOR

ele01_ref03_133.001 RES: 19, RESZ: 50

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// SNOWFLAKE BEHAVIOR

ele01_ref03_222.001 RES: 19, RESZ: 50

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// SNOWFLAKE BEHAVIOR

ele01_ref03_212.001 RES: 19, RESZ: 50

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// SNOWFLAKE BEHAVIOR

ele01_ref03_133.001 RES: 19, RESZ: 50

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// SYMMETRICAL BEHAVIOR

ele01_ref06_212.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// SYMMETRICAL + FILLER BEHAVIOR

ele01_ref06_231.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// ROTATION BEHAVIOR

ele01_ref09_133.001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// ROTATION BEHAVIOR

ele01_ref09_211..001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// ROTATION BEHAVIOR

ele01_ref09_322..001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

// ROTATION BEHAVIOR

ele01_ref09_332..001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


// DECREASING BEHAVIOR

ele01_ref05_233..001

Generation 01

Generation 02

Generation 03

Generation 04

Generation 05

Generation 06

Generation 07

Generation 08

Generation 09

Generation 10

Generation 11

Generation 12

Generation 13

Generation 14

Generation 15

Generation 16

Generation 17

Generation 18

Generation 19

Generation 20

Generation 21

Generation 22

Generation 23

Generation 24

Generation 25

Generation 26

Generation 27

Generation 28

Generation 29

Generation 30

Generation31

Generation 32

Generation 33

Generation 34

Generation 35

Generation 36

Generation 37

Generation 38

Generation 39

Generation 40

Generation 41

Generation 42

Generation 43

Generation 44

Generation 45

Generation 46

Generation 47

Generation 48

Generation 49

// CELULAR AUTOMATA RESEARCH BEHAVIOUR


NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh



NEIGHBOURHOOD TOPOLOGIES | MUSTAFA EL SAYED | AADRL, 2014 Alejandro Garcia Gadea + Ruxandra Matei + YoungAh Kang + Yooyeon Noh

2014

MUSTAFA EL SAYED Alejandro Garcia Gadea + Ruxandra Metei + YoungAh Kang + Yooyeon Noh


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.