MANIFOLD ASSEMBLAGES | AADRL 2014 / 2016

Page 1

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan


2


INDEX

// CATALOGUE // HYBRIDIZATION // FABRICATION AND MATERIAL RESEARCH // OVERALL SYSTEM

// WORKFLOW

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

3


// STRATEGY FOR SPATIAL CATALOGUE // Forming generative strategies and developing a result based on intense production of process materials. Spirals Molecules Nodes Ribbons Spines Platforms

4


// CATALOGUE ITERATIONS SPIRALS

SETUP SPIRAL I - Single

SETUP SPIRAL II - Double

SETUP SPIRAL III -Triple

Translation X,Z,Y, Rotation Z, Mirrored Y

Translation X,Z,Y, Rotation Z, Mirrored Y

SETUP SPIRAL IV- Scaling

Translation X, Rotation Z

INSTANCE

INSTANCE

INSTANCE

INSTANCE

RESULT

RESULT

RESULT

RESULT

Translation X,Z,Y, Rotation Z

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

5


SETUP MOLECULE I Translation X,Z,Y

INSTANCE

RESULT

6 // CATALOGUE

MOLECULE AND NODE

SETUP MOLECULE II Translation X,Z,Y

INSTANCE

RESULT

SETUP NODE I

SETUP NODE II

SETUP NODE III

Translation X,Z

Translation X,Z, Rotation X,Z

INSTANCE

INSTANCE

INSTANCE

RESULT

RESULT

RESULT

Translation X,Z, Rotation X,Z


SETUP RIBBON I

SETUP RIBBON II

SETUP RIBBON III

SETUP RIBBON IV

SETUP RIBBON V

INSTANCE

INSTANCE

INSTANCE

INSTANCE

INSTANCE

RESULT

RESULT

RESULT

RESULT

RESULT

Translation X,Z,Y, Rotation X

// CATALOGUE RIBBON

Translation in object

Translation X,Z, Rotation Z

Translation Z,

Translation X, Y

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

7


SETUP SPINE I

SETUP SPINE II

SETUP PLATFORMS I

SETUP PLATFORMS II

SETUP PLATFORMS III

INSTANCE

INSTANCE

INSTANCE

INSTANCE

INSTANCE

RESULT

RESULT

RESULT

RESULT

RESULT

Translation X,Z,Y,

8

// CATALOGUE SPINE AND PLATFORMS

Translation X,Z,Y, Mirrored Z

Translation X,Z,Y, Rotation X,Z

Translation X,Z,Y

Translation X,Z,Y, Rotation X,Z,


SCALED SETUPS Develops organized setup of space and variation in scales and complexity

// HYBRIDIZATION PRINCIPLES

RIBBONED VOIDS INTERCONNECTED PLATFORMS Develops dynamic and continous spatial continuity Forms well developed instances into well integrated conthrough material nections

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

9


// ITERATION 02 //

// ITERATION 03 //

Combining the three important startegies from the research catalogue into a first iteration of a model.

Instances are further developed to become stackable and easily printed.

We decided to go back to our previous iteration and develop a more 3 dimensional setup in order to increase the size and bring more variation to out system.

Interconnected Platforms, Ribboned Voids based on a scaled and organized setup.

+

SET UP

// ITERATION 01 //

COMPONENT

SET UP

COMPONENT

Nº SPIRALS 3 Nº COMPONENTS 12 TOTAL SIZE 250 x 250 x 100 SYSTEM

// HYBRIDIZATION ATTEMPTS

Development in integrated joint connections that relates stronger to the continuity of the model.

+

SET UP

COMPONENT

Nº SPIRALS 4 Nº COMPONENTS 18 TOTAL SIZE 250 x 250 x 250

Nº SPIRALS 5 Nº COMPONENTS 18 TOTAL SIZE 200 x 250 x 250 SYSTEM

SPATIAL QUALITY CONTINUITY VARIATION SIZE

10

Creating a large and expanding model.

+

SYSTEM

SPATIAL QUALITY CONTINUITY VARIATION

SIZE

SPATIALITY CONTINUITY VARIATION SIZE


FABRICATION AND MATERIAL RESEARCH

// COMPONENT // JOINTS // 3D PRINTING OPTIMIZATION

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

11


// ITERATION 01 // This component brings spatiality and opportunity for a semicovered space.

// ITERATION 05 // Last iteration is a refined component which breaks down into two components in order to optimize its stackability. Every branch has the same connection.

// ITERATION 02 // A more 3-dimensional component to investigate a more complex setup.

// ITERATION 03 // Based on the first attempt , this refined iteration has more continuity and work in developing one single connection.

12

// COMPONENTS COMPARATIVE RESEARCH

// ITERATION 04 // This fourth iterarion divides the component into three parts and two different materials. It researchs the continuity of the overall system by highlighting the inner space.


// INTEGRATION // We tried different systems to use the spikes of our OVERLAPPING PIN model as integrated connections , resulting in two successful different techniques by overlapping and hooking or overlapping and pinning.

// CLIPPING // Once we tested previous attempt of integrated connections we decided to have a simple connection that we could design and repeat over and over for every instance. Clipping proved to work easiest for this piece. OVERLAPPING + PIN

// MULTICONNECTION // As we decided to work with a single component in order to develop a comparative research of different printing techniques, materials and settings; we designed a simple connection that would allow the component to be assemble in several ways. Thus, we could study the possibilities of our components in terms of setups and later on design our system of 63 components (number of components that fits in a printing volume).

SUMMER CLIP

SUMMER CLIP

OVERLAPPING

OVERLAPPING

PIN

MALE/FEMALE + HOOK PRESSURE FITTED FLAT JOINT

OVERLAPPING + PIN

CLIP FOR CONNECTING TWO COMPONENTS

OVERLAPPING + PIN PINNING

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro Garcia Gadea

ITERATIONPIN nr 1 // FABRICATION JOINTS

OVERLAPPING + HOOKING

OVERLAPPING + PIN

SUMMER CLIP MALE/FEMALE + HOOK OVERLAPPING + PINNING

OVERLAPPING + PIN

CLIP FOR ASSEMBLING A COMPONENTS

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro GarciaMANIFOLD Gadea

// JOINTS COMPARATIVE RESEARCH

ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 MALE/FEMALE + HOOK Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

13


14


< geometry >

< rotations >

< support optimization >

< reduction methods >

ROTATION A

DESIGNED

Z HOLES EXTRUSION

< finishings >

OVERLAPPING + PIN

SUPPORT VOLUME WEIGHT

MALE/FEMALE + HOOK

SUPPORT STRUCTURE

REMOVING REDUCTION STRATEGY

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro Garcia Gadea

SANDING

ROTATION B

COMPONENT

SUPPORT AREA WEIGHT

GEOMETRY

MESHMIXER

SUPPORT STRUCTURE

Z STRIPS EXTRUSION REDUCTION STRATEGY

INSTANCE TO INSTANCE

ACETONE CURING

PRESSURE FITTED FLAT JOINT

INSTANCES

ROTATION C

STRENGTH WEIGHT

ITERATION nr 3 // FABRICATION CONNECTIONS

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro Garcia Gadea

// 3D PRINTING OPTIMIZATION STRATEGY

CURA

SUPPORT STRUCTURE

GH SHELL

REDUCTION STRATEGY

GLITCHING

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

15


// 3D MODEL

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 6.47 meters WEIGHT // 51 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA PRINTER // FDM (ULTIMAKER)

GEOMETRY// ONE COMPONENT ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // NONE FINISHING // NONE

16

// 3D PRINTING OPTIMIZATION ATTEMPT 01 // COMPONENT


// 3D MODEL

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.94 meters WEIGHT // 39 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA (SILVER) PRINTER // MAKERBOT

GEOMETRY // DIVIDED INTO 2 ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // UNKNOWN REDUCTION STRATEGY // NONE FINISHING // SANDING

// 3D PRINTING OPTIMIZATION ATTEMPT 02 // SILVER DIVIDED

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

17


// 3D MODEL

18

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.38 meters WEIGHT // 34 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA NINJAFLEX PRINTER // FDM (ULTIMAKER) 3DHUBS

GEOMETRY // THINNER ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // NONE FINISHING // NONE

// 3D PRINTING OPTIMIZATION ATTEMPT 03 // THIN NINJAFLEX


// 3D MODEL

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.38 meters WEIGHT // 34 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // XT-COPOLYESTER PRINTER // FDM (ULTIMAKER) 3D HUB

GEOMETRY // LIGHTER ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // NONE FINISHING // SANDING

// 3D PRINTING OPTIMIZATION ATTEMPT 04 // THIN “TRANSPARENT”

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

19


// 3D MODEL

20

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 3.81 meters WEIGHT // 30 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA NATURAL PRINTER // FDM (ULTIMAKER) DPL AASCHOOL

GEOMETRY // LIGHTER ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // MESHMIXER REDUCTION STRATEGY // NONE FINISHING // REMOVING


// 3D MODEL

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.5 meters WEIGHT // 36 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // ABS PRINTER // MAKERBOT 3D HUBS

GEOMETRY // HOLES ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // HOLES Z EXTRUSION FINISHING // “ACETONE CURING

// 3D PRINTING OPTIMIZATION ATTEMPT 06 // HOLES ABS

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

21


// 3D MODEL

22

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.5 meters WEIGHT // 36 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA NATURAL PRINTER // FDM (ULTIMAKER) DPL AASCHOOL

GEOMETRY // HOLES ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // MESHMIXER REDUCTION STRATEGY // HOLES Z EXTRUSION FINISHING // REMOVING


// 3D MODEL

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.12 meters WEIGHT // 33 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // 30% WOOD FIBRES + 70% PL PRINTER // FDM (ULTIMAKER) 3D HUBS

GEOMETRY // STRIPS ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // STRIPS Z EXTRUSION FINISHING // SANDING

// 3D PRINTING OPTIMIZATION ATTEMPT 08 // STRIPS EXTRUSION IN WOOD

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

23


// 3D MODEL

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.12 meters WEIGHT // 33 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // POWDER PRINTER // POWDER PRINTING DPL AASCHOOL

GEOMETRY // SHELL ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // GH SHELL FINISHING // WAXING

24


// 3D MODEL

// 3D MODEL

// 3D PRINT

< DESCRIPTION >

< STRATEGIES >

PRINT LENGTH // 4.40meters WEIGHT // 35 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA PRINTER // FDM (ULTIMAKER) DPL AASCHOOL

GEOMETRY // SHELL ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // MESHMIXER REDUCTION STRATEGY // GH SHELL FINISHING // NONE

// 3D PRINTING OPTIMIZATION ATTEMPT 10 // GLITCHING SHELL

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

25


< components >

26

material length material weight

4.94 m 39 gr

4.38 m 34 gr

3.81 m 30 gr

4.50 m 36 gr

material

pla silver

xt-copolyester

pla natural

pla natural

printer

makerbot replicator 2

makerbot replicator 2

ultimaker 2

ultimaker 2

finishing

sanding

sanding

removing

removing

layer heigth

0.2 mm

0.2 mm

0.2 mm

0.3 mm

fill density

20 %

20 %

10 %

15 %

print speed

50 mm/s

50 mm/s

50 mm/s

50 mm/s

print time print time cura print time meshmixer

03h 45m 04h 16m 04h 23m

03h 29m 04h 20m 05h 07m

02h 15 m 02h 55 m 03h 40 m

02h 35 m 03h 23 m 03h 45 m

// 3D PRINTING OPTIMIZATION COMPARASION CHART


4.50 m 36 gr

4.12 m 33 gr

4.12 m 33 gr

4.40 m 35 gr

4.38 m 34 gr

pla silver

30% wood fibers + 70% pla

powder

pla

pla ninjaflex

makerbot replicator 2x

ultimaker 2

powder printer

ultimaker 2

luzbot taz 4

acetone curing

sanding

waxing

glitch

removing

0.3 mm

0.2 mm

-

0.3 mm

0.3 mm

15 %

-

15 %

20 %

50 mm/s

-

50 mm/s

20 mm/s

03h 33 m 03h 59 m 03h 45 m

-

03h 13 m 03h 59 m 06h 49 m

05h 47 m 07h 45 m 08h 08 m

20 % 80 mm/s 02h 28 m 03h 15 m 03h 26 m

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

27


material based transparency

< transparency >

density based transparency

28

glitching

[

material behaviour discoveries

]

< deformation >

acetone curing


OVERALL SYSTEM

// STACKING // ASSEMBLING // PERSPECTIVES // UNITY

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

29


205mm

// OPTIMIZING PRINT VOLUME

225mm

ULTIMAKER 3D PRINT VOLUME

30

// STACKING

230mm

MODEL DIMENSION 2X PRINT VOLUME


// OPTIMIZING PRINT VOLUME : STACKING STRATEGIES

TWO-PART UNIT Total : 63 Whole units Assembled into 3x its print volume

THREE-PART UNIT Total : 93 Whole units Assembled into 6x its print volume

230 mm

WHOLE UNIT Total : 48 Whole units Assembled to 2x its print volume

205 m

m

225 mm

m

2x its print volume

23

5m

0m

m

22

3x its print volume

6x its print volume

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

31


// OPTIMIZING THE UNIT

UNIT AND CONNECTIVE ARMS -Connecting to the fifth supporting arm

180 Degree Connection Rotation between units -Yielding 2 rotations

1

100 mm

180 째

5

18mm

2 13 mm

4

3

1 Intersecting

2 Continuous

100 mm 180 째

32

// ASSEMBLING COMPONENT POTENTIAL


// ASSEMBLY

1 5 5

4

Arm 1 connected to arm 5 creates a vertical column when assembled. The geometry remains to linear and pathways uninteresting in terms of final continuous spatiality. High number of potential branches

Arm 4 connected to arm 5 creates linear and branching clusters. The pathway is celarly defines and the branches suggest for new routes. High number of potential branches ASSEMBLY

PATH

5 5

2

3

Arm 3 connected to arm 5 creates a linear and clustered assembly. It is however fragmented in the pathways. Intermediate number of potential branches

Arm 2 connected to arm 5 creates a complex spatial continuouity. However, the geometry intersects itself and creates obstructed paths. Low number of potential branches ASSEMBLY

// ASSEMBLING STUDY OF SETUPS

PATH

ASSEMBLY

PATH

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

33


// OVERALL SETUP AND SPATIAL VIEWS

34


// ASSEMBLY

63x

124x

63x

63x

// ASSEMBLING IKEA CATALOG

MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

35


36


MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan

37


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.