MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
2
INDEX
// CATALOGUE // HYBRIDIZATION // FABRICATION AND MATERIAL RESEARCH // OVERALL SYSTEM
// WORKFLOW
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
3
// STRATEGY FOR SPATIAL CATALOGUE // Forming generative strategies and developing a result based on intense production of process materials. Spirals Molecules Nodes Ribbons Spines Platforms
4
// CATALOGUE ITERATIONS SPIRALS
SETUP SPIRAL I - Single
SETUP SPIRAL II - Double
SETUP SPIRAL III -Triple
Translation X,Z,Y, Rotation Z, Mirrored Y
Translation X,Z,Y, Rotation Z, Mirrored Y
SETUP SPIRAL IV- Scaling
Translation X, Rotation Z
INSTANCE
INSTANCE
INSTANCE
INSTANCE
RESULT
RESULT
RESULT
RESULT
Translation X,Z,Y, Rotation Z
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
5
SETUP MOLECULE I Translation X,Z,Y
INSTANCE
RESULT
6 // CATALOGUE
MOLECULE AND NODE
SETUP MOLECULE II Translation X,Z,Y
INSTANCE
RESULT
SETUP NODE I
SETUP NODE II
SETUP NODE III
Translation X,Z
Translation X,Z, Rotation X,Z
INSTANCE
INSTANCE
INSTANCE
RESULT
RESULT
RESULT
Translation X,Z, Rotation X,Z
SETUP RIBBON I
SETUP RIBBON II
SETUP RIBBON III
SETUP RIBBON IV
SETUP RIBBON V
INSTANCE
INSTANCE
INSTANCE
INSTANCE
INSTANCE
RESULT
RESULT
RESULT
RESULT
RESULT
Translation X,Z,Y, Rotation X
// CATALOGUE RIBBON
Translation in object
Translation X,Z, Rotation Z
Translation Z,
Translation X, Y
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
7
SETUP SPINE I
SETUP SPINE II
SETUP PLATFORMS I
SETUP PLATFORMS II
SETUP PLATFORMS III
INSTANCE
INSTANCE
INSTANCE
INSTANCE
INSTANCE
RESULT
RESULT
RESULT
RESULT
RESULT
Translation X,Z,Y,
8
// CATALOGUE SPINE AND PLATFORMS
Translation X,Z,Y, Mirrored Z
Translation X,Z,Y, Rotation X,Z
Translation X,Z,Y
Translation X,Z,Y, Rotation X,Z,
SCALED SETUPS Develops organized setup of space and variation in scales and complexity
// HYBRIDIZATION PRINCIPLES
RIBBONED VOIDS INTERCONNECTED PLATFORMS Develops dynamic and continous spatial continuity Forms well developed instances into well integrated conthrough material nections
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
9
// ITERATION 02 //
// ITERATION 03 //
Combining the three important startegies from the research catalogue into a first iteration of a model.
Instances are further developed to become stackable and easily printed.
We decided to go back to our previous iteration and develop a more 3 dimensional setup in order to increase the size and bring more variation to out system.
Interconnected Platforms, Ribboned Voids based on a scaled and organized setup.
+
SET UP
// ITERATION 01 //
COMPONENT
SET UP
COMPONENT
Nº SPIRALS 3 Nº COMPONENTS 12 TOTAL SIZE 250 x 250 x 100 SYSTEM
// HYBRIDIZATION ATTEMPTS
Development in integrated joint connections that relates stronger to the continuity of the model.
+
SET UP
COMPONENT
Nº SPIRALS 4 Nº COMPONENTS 18 TOTAL SIZE 250 x 250 x 250
Nº SPIRALS 5 Nº COMPONENTS 18 TOTAL SIZE 200 x 250 x 250 SYSTEM
SPATIAL QUALITY CONTINUITY VARIATION SIZE
10
Creating a large and expanding model.
+
SYSTEM
SPATIAL QUALITY CONTINUITY VARIATION
SIZE
SPATIALITY CONTINUITY VARIATION SIZE
FABRICATION AND MATERIAL RESEARCH
// COMPONENT // JOINTS // 3D PRINTING OPTIMIZATION
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
11
// ITERATION 01 // This component brings spatiality and opportunity for a semicovered space.
// ITERATION 05 // Last iteration is a refined component which breaks down into two components in order to optimize its stackability. Every branch has the same connection.
// ITERATION 02 // A more 3-dimensional component to investigate a more complex setup.
// ITERATION 03 // Based on the first attempt , this refined iteration has more continuity and work in developing one single connection.
12
// COMPONENTS COMPARATIVE RESEARCH
// ITERATION 04 // This fourth iterarion divides the component into three parts and two different materials. It researchs the continuity of the overall system by highlighting the inner space.
// INTEGRATION // We tried different systems to use the spikes of our OVERLAPPING PIN model as integrated connections , resulting in two successful different techniques by overlapping and hooking or overlapping and pinning.
// CLIPPING // Once we tested previous attempt of integrated connections we decided to have a simple connection that we could design and repeat over and over for every instance. Clipping proved to work easiest for this piece. OVERLAPPING + PIN
// MULTICONNECTION // As we decided to work with a single component in order to develop a comparative research of different printing techniques, materials and settings; we designed a simple connection that would allow the component to be assemble in several ways. Thus, we could study the possibilities of our components in terms of setups and later on design our system of 63 components (number of components that fits in a printing volume).
SUMMER CLIP
SUMMER CLIP
OVERLAPPING
OVERLAPPING
PIN
MALE/FEMALE + HOOK PRESSURE FITTED FLAT JOINT
OVERLAPPING + PIN
CLIP FOR CONNECTING TWO COMPONENTS
OVERLAPPING + PIN PINNING
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro Garcia Gadea
ITERATIONPIN nr 1 // FABRICATION JOINTS
OVERLAPPING + HOOKING
OVERLAPPING + PIN
SUMMER CLIP MALE/FEMALE + HOOK OVERLAPPING + PINNING
OVERLAPPING + PIN
CLIP FOR ASSEMBLING A COMPONENTS
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro GarciaMANIFOLD Gadea
// JOINTS COMPARATIVE RESEARCH
ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 MALE/FEMALE + HOOK Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
13
14
< geometry >
< rotations >
< support optimization >
< reduction methods >
ROTATION A
DESIGNED
Z HOLES EXTRUSION
< finishings >
OVERLAPPING + PIN
SUPPORT VOLUME WEIGHT
MALE/FEMALE + HOOK
SUPPORT STRUCTURE
REMOVING REDUCTION STRATEGY
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro Garcia Gadea
SANDING
ROTATION B
COMPONENT
SUPPORT AREA WEIGHT
GEOMETRY
MESHMIXER
SUPPORT STRUCTURE
Z STRIPS EXTRUSION REDUCTION STRATEGY
INSTANCE TO INSTANCE
ACETONE CURING
PRESSURE FITTED FLAT JOINT
INSTANCES
ROTATION C
STRENGTH WEIGHT
ITERATION nr 3 // FABRICATION CONNECTIONS
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL, 2014 | Necdet Yağız Özkan, Suzan Ibrahim, Alejandro Garcia Gadea
// 3D PRINTING OPTIMIZATION STRATEGY
CURA
SUPPORT STRUCTURE
GH SHELL
REDUCTION STRATEGY
GLITCHING
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
15
// 3D MODEL
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 6.47 meters WEIGHT // 51 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA PRINTER // FDM (ULTIMAKER)
GEOMETRY// ONE COMPONENT ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // NONE FINISHING // NONE
16
// 3D PRINTING OPTIMIZATION ATTEMPT 01 // COMPONENT
// 3D MODEL
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.94 meters WEIGHT // 39 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA (SILVER) PRINTER // MAKERBOT
GEOMETRY // DIVIDED INTO 2 ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // UNKNOWN REDUCTION STRATEGY // NONE FINISHING // SANDING
// 3D PRINTING OPTIMIZATION ATTEMPT 02 // SILVER DIVIDED
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
17
// 3D MODEL
18
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.38 meters WEIGHT // 34 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA NINJAFLEX PRINTER // FDM (ULTIMAKER) 3DHUBS
GEOMETRY // THINNER ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // NONE FINISHING // NONE
// 3D PRINTING OPTIMIZATION ATTEMPT 03 // THIN NINJAFLEX
// 3D MODEL
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.38 meters WEIGHT // 34 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // XT-COPOLYESTER PRINTER // FDM (ULTIMAKER) 3D HUB
GEOMETRY // LIGHTER ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // NONE FINISHING // SANDING
// 3D PRINTING OPTIMIZATION ATTEMPT 04 // THIN “TRANSPARENT”
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
19
// 3D MODEL
20
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 3.81 meters WEIGHT // 30 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA NATURAL PRINTER // FDM (ULTIMAKER) DPL AASCHOOL
GEOMETRY // LIGHTER ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // MESHMIXER REDUCTION STRATEGY // NONE FINISHING // REMOVING
// 3D MODEL
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.5 meters WEIGHT // 36 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // ABS PRINTER // MAKERBOT 3D HUBS
GEOMETRY // HOLES ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // HOLES Z EXTRUSION FINISHING // “ACETONE CURING
// 3D PRINTING OPTIMIZATION ATTEMPT 06 // HOLES ABS
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
21
// 3D MODEL
22
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.5 meters WEIGHT // 36 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA NATURAL PRINTER // FDM (ULTIMAKER) DPL AASCHOOL
GEOMETRY // HOLES ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // MESHMIXER REDUCTION STRATEGY // HOLES Z EXTRUSION FINISHING // REMOVING
// 3D MODEL
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.12 meters WEIGHT // 33 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // 30% WOOD FIBRES + 70% PL PRINTER // FDM (ULTIMAKER) 3D HUBS
GEOMETRY // STRIPS ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // STRIPS Z EXTRUSION FINISHING // SANDING
// 3D PRINTING OPTIMIZATION ATTEMPT 08 // STRIPS EXTRUSION IN WOOD
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
23
// 3D MODEL
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.12 meters WEIGHT // 33 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // POWDER PRINTER // POWDER PRINTING DPL AASCHOOL
GEOMETRY // SHELL ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // CURA REDUCTION STRATEGY // GH SHELL FINISHING // WAXING
24
// 3D MODEL
// 3D MODEL
// 3D PRINT
< DESCRIPTION >
< STRATEGIES >
PRINT LENGTH // 4.40meters WEIGHT // 35 gr. DIMENSIONS // 100 x 100 x100 mm MATERIAL // PLA PRINTER // FDM (ULTIMAKER) DPL AASCHOOL
GEOMETRY // SHELL ROTATION // LEAST SUPPPORT VOLUME SUPPORT STRUCTURE // MESHMIXER REDUCTION STRATEGY // GH SHELL FINISHING // NONE
// 3D PRINTING OPTIMIZATION ATTEMPT 10 // GLITCHING SHELL
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
25
< components >
26
material length material weight
4.94 m 39 gr
4.38 m 34 gr
3.81 m 30 gr
4.50 m 36 gr
material
pla silver
xt-copolyester
pla natural
pla natural
printer
makerbot replicator 2
makerbot replicator 2
ultimaker 2
ultimaker 2
finishing
sanding
sanding
removing
removing
layer heigth
0.2 mm
0.2 mm
0.2 mm
0.3 mm
fill density
20 %
20 %
10 %
15 %
print speed
50 mm/s
50 mm/s
50 mm/s
50 mm/s
print time print time cura print time meshmixer
03h 45m 04h 16m 04h 23m
03h 29m 04h 20m 05h 07m
02h 15 m 02h 55 m 03h 40 m
02h 35 m 03h 23 m 03h 45 m
// 3D PRINTING OPTIMIZATION COMPARASION CHART
4.50 m 36 gr
4.12 m 33 gr
4.12 m 33 gr
4.40 m 35 gr
4.38 m 34 gr
pla silver
30% wood fibers + 70% pla
powder
pla
pla ninjaflex
makerbot replicator 2x
ultimaker 2
powder printer
ultimaker 2
luzbot taz 4
acetone curing
sanding
waxing
glitch
removing
0.3 mm
0.2 mm
-
0.3 mm
0.3 mm
15 %
-
15 %
20 %
50 mm/s
-
50 mm/s
20 mm/s
03h 33 m 03h 59 m 03h 45 m
-
03h 13 m 03h 59 m 06h 49 m
05h 47 m 07h 45 m 08h 08 m
20 % 80 mm/s 02h 28 m 03h 15 m 03h 26 m
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
27
material based transparency
< transparency >
density based transparency
28
glitching
[
material behaviour discoveries
]
< deformation >
acetone curing
OVERALL SYSTEM
// STACKING // ASSEMBLING // PERSPECTIVES // UNITY
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
29
205mm
// OPTIMIZING PRINT VOLUME
225mm
ULTIMAKER 3D PRINT VOLUME
30
// STACKING
230mm
MODEL DIMENSION 2X PRINT VOLUME
// OPTIMIZING PRINT VOLUME : STACKING STRATEGIES
TWO-PART UNIT Total : 63 Whole units Assembled into 3x its print volume
THREE-PART UNIT Total : 93 Whole units Assembled into 6x its print volume
230 mm
WHOLE UNIT Total : 48 Whole units Assembled to 2x its print volume
205 m
m
225 mm
m
2x its print volume
23
5m
0m
m
22
3x its print volume
6x its print volume
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
31
// OPTIMIZING THE UNIT
UNIT AND CONNECTIVE ARMS -Connecting to the fifth supporting arm
180 Degree Connection Rotation between units -Yielding 2 rotations
1
100 mm
180 째
5
18mm
2 13 mm
4
3
1 Intersecting
2 Continuous
100 mm 180 째
32
// ASSEMBLING COMPONENT POTENTIAL
// ASSEMBLY
1 5 5
4
Arm 1 connected to arm 5 creates a vertical column when assembled. The geometry remains to linear and pathways uninteresting in terms of final continuous spatiality. High number of potential branches
Arm 4 connected to arm 5 creates linear and branching clusters. The pathway is celarly defines and the branches suggest for new routes. High number of potential branches ASSEMBLY
PATH
5 5
2
3
Arm 3 connected to arm 5 creates a linear and clustered assembly. It is however fragmented in the pathways. Intermediate number of potential branches
Arm 2 connected to arm 5 creates a complex spatial continuouity. However, the geometry intersects itself and creates obstructed paths. Low number of potential branches ASSEMBLY
// ASSEMBLING STUDY OF SETUPS
PATH
ASSEMBLY
PATH
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
33
// OVERALL SETUP AND SPATIAL VIEWS
34
// ASSEMBLY
63x
124x
63x
63x
// ASSEMBLING IKEA CATALOG
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
35
36
MANIFOLD ASSEMBLAGES | OLIVIU LOGOJAN-GHENCIU + ROBERT STUART-SMITH | AADRL 2014 Alejandro Garcia Gadea + Suzan Ibrahim + Necdet Yağız Özkan
37