Veneer House experience

Page 1

VENEER HOUSE EXPERIENCE

Hiroto Kobayashi Keio University Graduate School of Media and Governance Kobayashi Maki Design Workshop


CONTENTS 2

ESSAY The Venee House Experience: Creating Socially and Environmentally Conscious Place after Disaster

12

南三陸ベニアハウス Minamisanriku Veneer House, Miyagi, Japan

18

前網浜ベニアハウス Maeamihama Veneer House, Miyagi, Japan

24

マノヘリ村ラーニングセンター Manawhari Learning Center, Pathein, Myanmar

30

べニアハウスプロトタイプ 2x20x200x2000プロジェクト Veneer House Prototype 2x20x200x2000 Project

34

コゴン村保育園 Cogon Day School, Balilihan Bohol, Philippines

40

チャリコットベニアハウス Charikot Veneer House, Dolakha, Nepal

46

七ヶ浜ベニア・ビーチハウス Shichigahama Beach Pavilion

52

ヴィスベニア・茶屋 Vis Veneer Tea House

58

ベニアハウスパッケージ Veneer House Package

62

木塔プロトタイプ Wood Tower Prototype

68

受賞 Awards

70

オフィス プロフィール Office Profile

1


THE VENEER HOUSE EXPERIENCE: Creating Socially and Environmentally Conscious Place after Disaster Hiroto Kobayashi

Chapter 1: Developing the Veneer House 3.11 Tsunami On March 11th 2011, a magnitude-9.0 earthquake (officially known as the Great East Japan Earthquake) hit the Tohoku region of Japan, causing an enormous tsunami that devastated Tohoku’s rural coastal villages. The tsunami killed more than 17,000 victims and created 340,000 refugees within matter of minutes. This disaster made it extremely difficult for these rural villages to maintain their communities (see fig. 01). The extreme damage caused by the tsunami added to severe challenges that rural villages in Japan already face: depopulation, declining local industry, caring for an increasingly elderly population, and encroachment of wild animals. The earthquaketsunami disaster accelerated Japan’s already established demographic problem of young and working-age population moving to cities and away from the countryside. After a disaster, different scales of time must be considered in response. Beyond the immediate need to save lives, provide urgent medical care, and supply food and temporary housing, long-term planning strategies must be developed to avoid or reduce the risk of future crises. In attempting to recover from the tsunami, planners, together with people in devastated villages, have asked themselves how to establish a more sustainable local community and industry, resilient living environment, and quality of life – knowing that natural disasters of this magnitude will occur again sometime in the future. Architects have also asked ourselves what we can do for these people and places, what should be done in rebuilding the local environment, and how we can operate most effectively. Quite a few architects are currently involved in the reconstruction of Tohoku, struggling with difficult questions that cannot be resolved instantly and proposing ideas generated by goodwill. In this paper, the author (one such architect) describes his experiences in applying design expertise and an experimental approach to the problem of recovering community vitality from a desperate situation. Searching for a way to respond to the tsunami’s nearly incomprehensible devastation, we began a process of patiently comprehending and analyzing problems in the context of many related issues rather than focusing on isolated facts. We found not only technical but also temporal, social, cultural, and spiritual problems deeply embedded in many aspects of planning and reconstruction. Our challenge was to think holistically and to use the process of disaster recovery to address both immediate needs and underlying, pervasive problems of the Tohoku region. In considering our role we should play in this situation, we tried to comprehend problems from the victims’ points of view and to respond 2

fig. 01


accordingly. Frequently the victims wanted to know about recovery efforts that could be implemented immediately and by themselves. This attitude could provide a reality-check on our thinking and our proposals. From the beginning, we felt that involving these people directly in postdisaster planning was an important aspect in the recovery of community. Social relationships and a sense of ownership needed to be rebuilt, and recovery efforts could not achieve this simply by giving people homes and facilities without their involvement in key design and implementation issues. Respect of Locality Miyagi Prefecture is well known as one of the major wood-producing regions in Japan. A large number of engineered wood manufacturers are located in this prefecture, and many of their factories are located close to the Ishinomaki Bay, a local hub for domestic and international shipping. These factories were severely damaged by the tsunami on 3.11. Although the timber industry is both key for the prefectural economy and essential for revitalizing mountainous ecosystems, most of its activity was shut down by the tsunami. Plywood has been the construction material in highest demand for the reconstruction of the area after the tsunami, but local companies could not produce plywood for more than two years after the disaster. In light of this situation, one thing we could do to help the timber industry’s recovery here was to find a new way to use locally produced wood for the affected communities. Using their own products for themselves would be the fastest and most immediate way for tsunami survivors to recover not only their regional economy but also their regional pride. We decided that a good first step would be to provide a common space – a place for local people to gather, on a site familiar to the community – and to construct it using local wood products. As a team made up of university students and independent volunteers, we had a chance to work together at an important moment of the era. Although what we could do for the devastated area cannot be compared with the scale of the destruction, our team’s involvement in the design and construction of community facilities provided an incomparable experience in the lives of victims, students, and volunteers alike. Such a learning experience – at the exact site where people are in obvious and dire need –cannot be obtained in a classroom; it is precious and formative for all involved. Ultimately what we could do for the local people was to offer viewpoints and ideas reflecting our different backgrounds and design training. As outsiders, we could appreciate a beauty in the place that was not recognized as easily by the local people. We could also objectively identify several aspects of the daily environment that needed improvement (which they also frequently could not easily discern). As outsiders entering the traditional and sometimes conservative cultural arena of Tohoku, it was important that our ideas be seen as resources for the local people, to allow them choices as they tried to recover their normal lives. 3


Another important aspect of our project was encouraging local people to participate in the process of construction. Involvement in the construction process enhanced individual participants’ attachment to the building and promoted a sense of ownership and responsibility for maintenance. Do-it-yourself (DIY) construction methods are generally popular because they are less expensive than hiring professional contractors; however, in cases like this one, the sense of ownership and communal responsibility that develops from this method may be a more significant outcome than achieving the highest possible construction quality. Idea of Pre-fabrication for Housing The widespread use of pre-fabrication in building construction was a key development in the history of industrialization. Beginning with the modularization of standard building components such as tatami in premodern Japan, and later adopted by mainstream International Modernism, pre-fabrication has been recognized as a strategy for reducing the length of time spent building on site while also improving construction quality. This method has been largely adopted by Japanese housing companies since the 1950s and has made producing new houses faster and more affordable; however, the pre-fabricated house’s main drawback has traditionally been reduced potential for individual customization. Both the economic virtues and the uniform (sometimes monotonous) appearance of standardized “pre-fab” construction can be seen in the many emergency buildings supplied to the Tohoku region after the 2011 tsunami. Applying the idea of pre-fabrication to devise new construction methods for emergency shelters is suitable for the following reasons. First, construction can be significantly expedited by having pre-fabricated elements that are supplied according to the needs of the place. Second, the simplicity of assembly allows for non-professional participation; this is important because of the general lack of skilled labor after natural disasters, not to mention the difficulty of finding different contractors when using a mix of conventional construction materials such as concrete, wood, and steel. Third, repeating the same construction method makes it easier and faster to build and improves the quality of construction. Today’s pre-fab housing mega-industry emerged in Japan out of the practical need for fast and cost-effective shelters in the wake of World War II. Daiwa House introduced the first steel pre-fabricated house in response to the shortage in housing caused by wartime air raids: the 1959 “Midget House” officially launched the pre-fab industry in Japan. (see fig. 02) Other companies soon began producing similar pre-fabricated houses using different materials and manufacturing systems. The houses were produced in a factory, sold at department stores, and assembled by professional staff. Small but relatively reasonable and ready-to-assemble houses soon became popular and rapidly changed the idea of a modern house in Japan. The pre-fab house developed an increasing variety of configurations, catering to the demands of larger families with bigger bathrooms and living spaces. New Engineered Wood Building Methodology In exploring the use of pre-fabricated building systems to address the 4

fig. 02


needs of the Tohoku region, we developed and introduced a method of structural plywood assembly using notch-cut joinery. The characteristics of this method are: Speed:

Economy:

Simplicity:

Innovation:

Flexibility:

Time is one of the most essential factors to consider in disaster response: the sooner living conditions improve, the less difficulty we face in recovering community. The rapid preparation of houses is imperative to the situation. Once all the necessary emergency shelters are built, subsidies for new buildings tend to diminish. Low-cost construction methods become a requirement. Due to the shortage of professional construction skills in the region, a simple construction method enables local civilians to build for their urgent needs. Using the most advanced computer-oriented technology enhances the productivity of prefabrication. The accuracy and speed of CNC (Computerized Numerically Controlled) routers and laser cutters facilitate construction. To reduce the materials and elements for construction, we introduced the notch-based joint method, based on a simple mechanism for connecting two panels without any additional elements. A perpendicular composition of two panels makes the structure firm. (see fig. 03) This assemblage is less complicated than other regular joint systems in wood construction; it is also fun to make and can be found in children’s toys. (see fig. 04)

fig. 03

fig. 04

In the next chapters, the author introduces these applications in two Veneer Houses built in Japan’s Tohoku region and a third built in a remote village in Myanmar. Chapter 2: The Minami-sanriku Community House (Veneer House 1) (see fig. 05) The first Veneer House project started in the fall of 2011 in the town of Minami-sanriku in Miyagi Prefecture, part of the Tohoku region. Temporary houses for tsunami victims had been constructed rapidly but without sufficient structures for serving community needs. The lack of community facilities was pointed out to us by a volunteer who lived in the area and was helping those who suffered from the tsunami. At his request, we decided to build a room for local gatherings.

fig. 05

The site prepared for construction was located in an area where former buildings had been washed away. We had to consider whether it was suitable to build a community shelter on a vulnerable site, not least because the government restricted building on such affected areas. However, considering that the site was within an area where people still had active commercial operations, we determined that this would be the best location available for sponsoring civic interaction. Eschewing such sites may discourage people from recovering a sense of community that is vital for their long-term recovery. 5


Here we decided to make a temporary community space for the people of Minami-sanriku, to nurture an attachment to the place and to remind them of their former lives. The sense of belonging and the psychological need for stability superseded any perceived threat. Our proposed house may well be washed away in the event of another disaster; accepting the reality, however, is also a demonstration of the people’s resilience. Our solution aims to build a much-needed facility for and with the people, in hope of rebuilding the community. The Veneer House 1 (VH1) in Minami-sanriku is a single-story building composed of one 50m2 open room, a small office (5m2), and 2 toilets. Its main function is to host meetings and occasional lodgings. The presence of 200 units of emergency housing nearby guarantees that VH1 will be used regularly by the residents who lack other communal buildings. First trial This VH1 was first designed in our architectural design studio by students in the master’s degree program at Keio University’s Graduate School of Media and Governance. We visited Minami-sanriku together and conducted research on what kind of problems the local people had and what they wanted for their future lives. We tried to understand their needs and expectations in terms of their community. What we learned through the research was that many communities were destroyed by the local government’s standards of fairness, which inadvertently diluted existing communities by assigning people to emergency shelters without regard to their existing social networks. People were forced to live with strangers in a new community. However, to build a new community, new relationships are required. One practical necessity is then a space where people can gather and get to know one another. Unlike the hypothetical studio work done in most architecture schools, our students were exposed to real problems that demanded viable solutions. To understand such problems, active on-site participation was necessary. The students studied the needs of the community and designed a building with the aim of promoting the local industry. The simple construction methods were designed to attract local participation. The distinctive characteristic of the Veneer House system is the use precut plywood panels that may be assembled by hand. The most used and popular size of plywood in Japan is 910mm x 1820mm, small enough to be handled by one person. Notches are pre-cut in the panels before they are brought to the site. These notches are used to assemble panels into columns, beams, and other structural elements of the building. The central concept of the Veneer House is to use this notch to make simple joints and to fasten the structure. As the length of the plywood is limited to 1820mm, several pieces are combined to make longer supportive elements such as columns and beams. Screws are used to connect the pieces. (see fig. 06) The design of VH1 required a foundation to be constructed from wood piles. The plywood structure was placed on top of the piles and fixed to the ground. Other materials used to finish the exterior and interior are corrugated zinc panels for the roofing, polycarbonate panels for the walls, glass-wool for insulation, and tatami mats for the floor. These 6

fig. 06


were assembled after the plywood structure was built. The assembly took time because of the variety of details. For the roof rafters and floor joists, 2x4 timbers were used because of the lack of longer plywood elements (this limitation was overcome in later projects). The use of Laminated Veneer Lumber (LVL) opens up new ways of deploying veneer products. LVLs cut to a thickness of 50mm were used for the flooring; the simple, fine texture of the flooring carries an impression of thick wood and provides the comfort appropriate to a living space. (see fig. 07)

fig. 07

Limitations Although we designed VH1 as a simple structural system to encourage local participation, the number of construction participants from the local community was limited due to the long hours already required to recover and maintain their own businesses, houses and properties. While their insight and involvement was still essential to the project, we had to look elsewhere for the labor. In total, we sent more than 100 students from Tokyo and Sendai City to construct VH1. Aside from limited local participation, we encountered several other difficulties during construction. One was in making the foundation of the building: we could not get professional carpenters for more than a month because of the shortage of skilled labor in the area. Another was in using different materials to construct the different parts of the building. We had to alter our methods depending on the material; the installation of insulation, for instance, was strenuous and time-consuming because we could not obtain the right stapler for that purpose. We had no choice but to become accustomed to using alternative tools. These problems extended the construction period and eventually called for professional assistance. Response of the local people The most unexpected criticism we received in the process of construction was in using salvaged plywood that showed signs of tsunami damage. We were told by a local resident that using damaged plywood with dark spots reminded them of the devastation. Since its use was implicitly avoided by the community, he insisted that we paint or hide these panels completely. We were therefore obliged to rethink the idea of using local materials; the community’s emotional response to such reminders of the disaster was far more sensitive than we had imagined. Another point to be mentioned is that the house lost its original function when the person in charge left his position. As a volunteer, our client ran VH1 as a community facility for the local people but found it difficult to sustain voluntarily support amid insufficient funding and unpredictable policy changes from the government. As a result, the building was passed to the site’s landlord without any conditions, including guarantees that the original function be maintained. The lack of a consolidated policy toward recovery meant that the social conditions were changing day by day. Once facilities such as Veneer House were constructed, there was no telling how changes in policy might affect the building. The lesson we learned is that such facilities must be adaptable to changes in social and political conditions. In the long run, society will define how buildings are to be shaped and operated. The flexibility of VH-1’s assembly and disassembly method may help adjust to such potential changes. 7


The cost of construction was paid for using government and NGO funding supplemented by charitable donations. A total of ¥3.5 million (approximately $35K) was spent on construction. All travel expenses for students and other volunteers were covered by a different fund. The fundraising process was itself a productive learning experience for the students. Chapter 3: The Maeami-hama Community House (Veneer House 2) (see fig. 08) Maeami-hama of Ishinomaki City, Miyagi Prefecture, is located in the Ojika Peninsula. Originally composed of 40 households that depended on the fishing industry, only five remained after the tsunami. All ships and fishing equipment were destroyed in a day. What the survivors needed was a place to gather and to work together, also to store equipment and supplies. The local fishermen told us we could expect help from them, though they could only work in the afternoons after returning from the sea.

fig. 08

②パネル組立 2.梁の組み立て

Ძ Ჯ଺᧓

ⅲ.Y2/Y3の梁

or

In Maeami-hama, however, we did not have sufficient time on-site to share all the design details with the fishermen. Therefore, we prepared an Assemblage Manual to illustrate the procedures of construction. (see fig. 09) This manual explains the number of people, duration of time, amount of building elements, and the order of assembly required for building certain structural elements such as beams and columns.

2枚

2枚

1枚

1枚

6枚

12枚

2枚

2枚

2枚

2枚

[完成図]

ST2 or ST3

LT4 ST2 or ST3

B3 SB

B4 SB

T4

A shortage of labor delayed the project; as it turned out, we could not get the fishermen to help every day because their availability depended on the weather and the fishing schedule, which shifted day to day. The inconsistent supply of labor made it difficult to estimate the required working hours and the overall duration of the project. This unpredictability obliged us to reduce each building task. For this, the manual was helpful in composing a series of shortened construction processes.

ST2 or ST3

Veneer House 2 was sponsored by Architecture For Humanity, based in San Francisco in the United States. The construction cost ¥3 million (approximately $30K) excluding the labor, travel, and living expenses of the 8

SB SB

LT4 SB LT3

B2

T3

B2

B1

※Y2とY3の違いはSTの違いのみ ※材料の幅に気を付けること

fig. 09-a

In this project, we hired an engineer who could use CNC (Computerized Numerically Controlled) routers to precut the panels. The precise cutting of notches helped the builders assemble elements faster and more smoothly. CNC routers and laser cutters unmistakably reduce the labor and time required for building, making it worthwhile to promote the pre-cut panel supply system. (see fig. 10) Participation Despite some delays, the construction was primarily carried out by the fishermen themselves, who are also the future users of the facility. Participating in the construction process engages the people and creates a sense of ownership, which in turn develops a sense of responsibility in maintaining the building. Buildings that are built by the users are therefore effective in eliminating unnecessary labor costs and in raising the level of motivation. (see fig. 11)

SB

B4 B3

fig. 09-b

fig. 10

LT3

B1


supervising design team. Compared to wooden buildings constructed in a conventional way, the Veneer House is arguably more cost-effective per square meter and therefore worth further application. (see fig. 12) Chapter 4: The Myanmar Ma Naw Heri Village Learning Center (Veneer House 3) (see fig. 13) Veneer House 3 (VH3) is located in Myanmar, in a small country village called Ma Naw Heri near the city of Pathein. Living conditions in the village are very poor in terms of sanitation, privacy, and durability of buildings. The residents of this village were forced to move here after the region where they had been living was hit by a severe hurricane and then a drought in consecutive years; the government had designated Ma Naw Heri as a residential district for refugees. Some families were relocated from Myanmar’s biggest city, Yangon, others from smaller villages. It is not well-established settlement; most houses are poorly constructed and relatively small for the average family size of four to six members. Infrastructure for sewage, fresh water, electricity, and gas are completely lacking. The village’s only wells were dug some years ago by an international NPO. The weather is dry and sunny for nine months of the year, but between July and September the region experiences an extremely wet rainy season. The village becomes inundated for weeks at a time, with water rising above the floors of houses and making living and sanitary conditions far worse for this destitute population. (see fig. 14) Our design team – again, the Kobayashi Laboratory of Keio University – was introduced to this village by the local YMCA, which takes responsibility for maintaining a facility for the people of Ma Naw Heri. The YMCA took an interest in our work in Tohoku and asked us to study whether a similar kind of communal facility might be adapted to the climate and social conditions of this village. In the process of researching the village’s condition, we held a series of workshops with local children and adults and learned that surviving the rainy season was a serious concern. During the rains and floods, fathers and other potential wage-earners could not work (farming is the main industry of the region), and children could not go out to play either; the extended family must stay together within limited space for a long time. (see fig. 15). Living space in these homes is quite limited and without any privacy; and likely as a result, domestic violence increased markedly during the rainy season. During our initial visit, we also noticed that the village lacked the kind of communal space that would allow children and adults to escape the restrictions of their small houses and to devote time to education and other productive or fun activities. In response to these conditions, we proposed a village learning center as the program for VH3; the building is mainly intended as a school for local children, but it also invites adults to visit at any time for study and communal activity. This building would be an important place for people to escape their enclosed domestic spaces, especially in the rainy season. The YMCA of Pathein would also use the building for an annual medical clinic it runs for villagers. Process After returning from the workshops in Myanmar, our team developed the learning center program in greater detail and designed the building

fig. 11

fig. 12

fig. 13-a

fig. 13-b

fig. 14

fig. 15 9


using the same Veneer House system we had piloted in Tohoku. The precut panel assembly method offered clear advantages in reducing the on-site construction time and making the construction cost more economical than using local construction methods. We investigated supply routes for local plywood (imported from Thailand rather than produced in Myanmar at the time of VH3) and tested the quality of these panels; though different from Japanese plywood, we found that the Thai plywood available in Myanmar was suitable for the construction method we had devised in Japan. As plywood production is expected to increase in Myanmar in the near future, we expect that local residents can build additional structures for less cost soon. In this project, the construction period was limited by the availability and cost of on-site accommodation for students involved in the construction. We settled on a three-week construction period and determined the construction process accordingly. Because of the condition of the site and small improvements to our methods, we could make the construction period shorter than the previous two projects in Tohoku. After a base of brick and cement had been built to the specifications of local engineers, we erected the main plywood structure within a week (see fig. 16) and then used the two remaining weeks to complete the work, including the outer finish layers of roof, wall, and balcony. After the construction of foundations, only three weeks were needed to construct this 60sqm learning center – extremely fast compared with ordinary house construction in Myanmar. Hybrid use of advanced and local materials We used plywood panels imported from neighboring Thailand for the primary structure of this building, and local materials for roof (corrugated zinc panels), walls (woven bamboo sheets), and balconies (hardwood posts and beams). While the plywood structure is expected to last a long time, the other locally produced finishes may be replaced more frequently. As local materials, these finish layers are familiar and easily maintained; they also give Veneer House 3 the outward appearance of other local structures, allowing the learning center to appear well integrated into the village. Maintaining harmony with the existing environment – while strategically using affordable new materials and technologies – plays an important role in preserving their local culture. (see fig. 17). Participation The involvement of children from the village was essential in the construction of this learning center; they were to be the primary users, and their participation in all phases of design and construction was critical to their understanding of the building and its future use. Experience shows that every person who participates in constructing a building gains some sense of ownership; this is especially true for children, for whom the shared experience of creating a building where there was none before can be sensational, even life-altering. The sense of empowerment that this construction process gave the children of Ma Naw Heri is perhaps a more profound lesson than any others to be imparted by the learning center in coming years. (see fig. 18) 10

fig. 16

fig. 17

fig. 18-a

fig. 18-b


Limited construction tools In this construction site, we could not rely on a regular supply of electricity. Without electricity, we came to appreciate the importance of having prepared (pre-fabricated) materials requiring only minimal additional treatment on site. The lack of electricity was frustrating at times as we attempted to cut plywood or screw pieces together, but in the process we found that we can assemble plywood and many other materials with simple tools such as saw and hammer; this made us realize that diverse construction methods can be imagined and improvised in situations where the local level of technical advancement and available resources are not what we are used to. Application to new housing system in Myanmar Since constructing VH3, we have started to design a simple house using the same plywood construction system; the house prototype is intended to raise the living standard of a low-income group of people. If we can provide a small but relatively cheaper house where families can enjoy at least a minimum level of privacy, that will surely make some people’s lives better. For that purpose, we are currently proposing a formula of 2 x 20 x 200 x 2000; that is, a house that can be built by 2 people, 20 square meters in size, requiring 200 minutes and 2000 US dollars to construct. This is the ambition for the next phase of our Veneer House project. (see fig. 19) Conclusion In helping local communities recover from the devastation caused by the Tohoku tsunami (and from other natural disasters such as earthquakes, hurricanes, floods, and so on), we have learned the importance of maintaining and enhancing community ties during the rebuilding process. Despite being torn apart by disasters – or perhaps because of it – these communities display a strong will, finding ways to gather and share their experiences and hopes for the future. Sharing time together and coming to agreements about the work that must be done is an essential part of rebuilding devastated communities. In each of our Veneer House projects, we have tried as much as possible to involve local people in the process of building communal facilities that they themselves will use, enjoy, and maintain. This process instills in participants a sense of individual ownership and responsibility, as much as it recreates a shared sense of community. Our new construction method is based not only on technical invention but also on our commitment to a social dimension: helping people recover a sense of stability and normalcy in everyday life and – if all goes well – weaving an element of renewed joy into those lives. (see fig. 20)

fig. 19

fig. 20

11


南三陸ベニヤハウス 宮城、 日本

Minamisanriku Veneer House Miyagi, Japan

用途 :

地域交流施設

竣工 :

2012年

業務範囲 :

設計・施工

協働者:

慶應義塾大学 SFC、地域住民

Use : Completion : Scope of Work : Collaborated:

Community Center 2012 Design, Construction Keio University SFC, Local Residents and others

東日本大震災後、仮設住宅における住環境の改善が求められる中、風呂 に対する要求は大きい。家の狭い風呂よりも大きな風呂に皆で一緒に入 りたい、そんな従来のコミュニティの結束を促す共同浴場が期待されて いる。 南三陸ベニヤハウスは共同浴場計画の第一期として、地域の人たちが気 軽に立ち寄れるスペースとなるよう設計・建設された。宮城県産の間伐 材から作られるベニヤ合板を用い、 プロの技術に頼らず学生や素人によ って組立てられる簡便で廉価、かつ地域産業振興・環境改善に貢献する 建築工法となっている。 市場に最も出回っているベニヤ合板の三六板(910x1820mmボード)を 無駄の出ないよう455mm単位で分割し、それらに組み立て用の切り込み (ノッチ)をプレカットで入れておく。部材同士の接合は、 ノッチを相互に

While there has been a vital need for improvements in the environments of temporary housing after the Great East Japan Earthquake, there have also been a number of requests for public bathing facilities. Instead of bathing privately, many local residents wish to bathe in spacious baths communally. A public bathing facility was anticipated to encourage the strengthening of bonds within the community. The Minamisanriku Veneer House was designed and constructed as the first phase of a public bath project with its objective to serve as a casual gathering space for local residents. Using veneer boards made from local forest thinnings, assembled by amateurs, it demonstrates a unique construction method which is both simple fast, cost-effective, and contributes to both the local industrial development and environmental improvement. The 910x1820mm veneer boards are divided into units of 455mm and are provided with precut notches. The boards are assembled by interlocking notches and reinforcing the joints with wood scraps and screws.

差し込むことで行い、端材とビスを用いて補強する。 簡便な組立てと解体移築が可能なこの工法は、被災地や緊急・仮設的な 建築の需要に適したものであり、部材のプリファブリケートによるより迅 速なシステムの構築を構想している。 12

This construction method is easy to build and can also be disassembled and relocated, making it suitable for disaster sites and urgent/temporary building demands. Construction time can be further reduced by prefabricating building components.


13


2011年9月30日 ・SFCの大学院デザインスタジオとしてSFCDesign/Build 3.11プロジェクトをスタート ・南三陸町にてフィールドワーク 10月 ・ベニヤによるパネル工法の検討 11月 ・ノッチを用いた組立て工法により7.2mx7.2mの休憩室を 中心とした空間の設計 12月12日 ・大学にて1:1のモックアップ作成 ・組立てのスピードや構造強度を確認 12月13日 ・鈴木啓氏と1:10模型を使っての構造システム確認 2012 年2月12日 ・木杭基礎工事 ・凍土状の地面は固く、人力での杭の高さ調整は困難を極 める ・プレカットされた部材のノッチ同士を相互に差込み補強プ レートを充てて梁・柱を組立て始める ・ノッチの位置や組立て部材の間違いなどを修正しながら 組立てを行う 梁の全長は9mにおよぶが、4人で移動が可能 ・組立てられた床梁から基礎に固定していく 2月26日 ・床梁の上に柱を組立て、建物の形が姿を現す ・ユニック車のクレーンを使って梁を柱に載せ 固定する ・たわみを抑えるため、補強プレートを打ち直す ・8の字状の構造体を8列並べ、それを横つなぎ材で固定 3月 ・屋根の垂木を固定するための台形の補助部材を取り付 け、垂木を載せる ・野地板を垂木に固定し、その上に胴差し、波板屋根の取り 付けを行う ・壁の断熱は構造体の外に、屋根は垂木の間に入れる ・部分的にプラスチック段ボールにより野地板に開けた開 口にトップライトを作る 4月3日 ・暴風により屋根一部工事中に破損、修繕 ・フローリングおよび座卓として宮城県産杉のLVL(厚み 40mm) を縦使いしベニアの繊細さを表現する ・一部外壁、内壁ペンキ塗装 5月2日 竣工 14


༡୕㝣࡭ࢽ࢔ࣁ࢘ࢫ

ᖹᡂࡢ᳃௬タఫᏯ

配置図

Site Plan

scale = NA

平面図

断面図

Section

Plan

scale = 1/200

scale = 1/200

スケッチ

Sketch

scale = NA

15


16


17


前網浜ベニヤハウス 宮城、 日本

Maeamihama Veneer House Miyagi, Japan

用途 :

地域交流施設、倉庫

竣工 :

2013年

業務範囲 :

設計・施工

協働者:

慶應義塾大学 SFC、地域住民

Use : Completion : Scope of Work : Collaborated:

Community Center, Storage 2013 Design, Construction Keio University SFC, Local Residents and others

前網浜ベニヤハウスは、前掲の南三陸ベニヤハウスを改良して構想され たベニヤハウス第二弾である。地域間伐材を利用した被災者のコミュニ ティのための集会所兼倉庫計画であり、地元の漁業組合有志によって施 工された。 前網浜ベニヤハウスでは、建設の全ての工程と手順を「建設マニュアル」 に図示し、設計図面を解読しなくても簡単に建設の過程を理解できる仕 組みを導入した。 これにより、建設の手戻りがなくなったことと、その場に 居合わせた建設要員が次に何をやらなければならないか即座に理解で きるようになった。 またインターネットによる工程の公開により関係各人 に工事の進捗が詳細に伝えられていった。地域のリソースを生かして 「早 く安く簡単に」を合言葉に、 メディアの改良を加えられたベニヤハウスに は、引き続き新たな建築の工法を模索する試行錯誤が行われている。

18

The Maeamihama Veneer House is the second version of the Minamisanriku Veneer House, with improvements made from the prior. The building includes a gathering space and a storehouse for the victims of the Great East Japan Earthquake. It was constructed by volunteers of the local fishermen’s union using local forest thinnings for material. The entire construction process was diagrammatically illustrated in a construction manual, so that the process could be easily understood without design drawings. This reduced errors during construction and all construction personnel were able to understand the sequence of construction. In addition to the manual, the construction progress was shared in detail among all persons involved through the internet. This veneer house which utilizes local resource is now furnished with media improvements, is one step in the development and exploration of an innovative “fast, low-cost, and easy” construction method.


19


20

配置図

Site Plan

scale = 1/1000

断面図

Section

scale = 1/200

矩計図

Section Detail

scale = 1/50

平面図

Plan

scale = 1/200


[全体スケジュール]

●=人手多数必要 ▲=大工さん必要 ・プレカット作業(外注)

■=ユニック車必要 ★=コンプレッサー必要

①基礎工事 ※基礎業者へ発注

①ネコ土台/土台の緊結 1. 防腐防蟻処理

①ネコ土台/土台の緊結

Ხ଺᧓

11/5

଺᧓

week 1

②パネル組立 1.基礎梁の組み立て 2.梁の組み立て 3.補強材の固定

week 2

Ϻ

基礎工事終了 1.ネコ土台/土台の緊結 Ţ

11/12

Ϲ ϼ

week 3

11/19

week 4

4.基礎梁の移動/固定 Ū 5.構造壁の挿入 6.柱の組み立てと補強材固定 ŪŢŠ 7.梁上げ 上棟

Ϻ

ϻ

Ϻ

11/26

LVL 110x110 (長さ455mm) 8本

LVL110x110 (長さ910mm) 18本

※ここまでは順番通りに行うこと

⑤屋根

⑦外壁 1.プラ段/断熱材取付 2.胴差しの取付 3.波板の取付

⑧開口 1.合板カット 2.組み立て 3.鴨居作成/取り付け Ţ 4.敷居レール取り付け Ţ 5.サッシ取付

⑥床

12/10

12/17

week 7

⑥床 1.根太の固定 2.合板の捨て貼り Ŭ

week 6

⑤屋根の続き 3.胴縁の固定 4.断熱材の固定 5.波板取り付け Ţ

⑦外壁

LVL 303x455(厚100mm) 8枚

LVL 303x255(厚み100mm) 2枚

*ⅰ〜ⅵの土台の緊結方法を次ページで確認して下さい。

1/7

*土台の高さが合っているか、 レーザー水準器にて確認する事。

ネコ土台(市販品) 土台 LVL角材

1/21

合板303x130 (厚12mm) 30枚

LVL455x910 (厚100mm) 2枚

土台 LVL角材

※基本的には⑤⑥⑦⑧の順序で行うが、 人手が多くある場合は先行して行っても良い

week 11/12/13

LVL 303x455 (厚み110mm) 5枚

Ϻ

1/14

⑨仕上げ 1.床仕上げ 2.コーキング 3.電気工事(外注)

Ͻ

ϸ 西

⑧開口

12/24

week 9/10

⑤屋根 1.垂木の固定 2.野地板の固定 Ŭ

week 5

ŢŠ

施工期間 約3カ月

12/3

week 8

③位置決定 1.垂直水平の補正 2.腰壁の固定 3.内壁の作成

[防腐防蟻処理リスト]

1週間

着工

合板455x130 (厚12mm) 15枚

*寸法に合わせてカットして下さい

*防腐防蟻処理を行うこと。 *枚数が足りているか・寸法は正しいか確認すること。

この番号のものは全て防腐防蟻処理を行ってください。

ネコ土台(市販品)

1/28

※アンカーボルトに落としこむ

竣工

2/4 (予定)

②パネル組立

②パネル組立

4.基礎梁の移動/固定

Ძ଺᧓

ⅲ.X1の基礎梁の固定

②パネル組立

6.柱の組立てと補強材固定

Წ଺᧓

ⅱ.柱の組立て (Y2/Y5)

*注意点*

1.Y6の梁を柱の直下まで手で運ぶ 2.梁の中心でバンドを括りつける

2枚

2枚

2枚

2枚

2枚

2枚

3.各柱の下に脚立を用意する

24枚

Ჭ଺᧓gᲰ Ჭଐ

ⅰ.ユニックによる梁上げ

・手順

フィンから40m離して固定すること (補強材がこの後くるため)

②パネル組立

7.梁上げ

4.柱に2人ずつ、ユニック操作1人、全体指揮1人の配置につく 5.ユニックで梁を持ち上げる その際に梁が暴れないように柱にいる人が支えながら上げる

ー風が強い日に無理をしてやらない ー人数が十分でない時もやらない ー必ず”ゆっくり”行うこと ー1箇所を先に入れてしまうと他が入らなく なる事があるので必ず3箇所同時に行う ーY6⇒Y5⇒Y4⇒Y3⇒Y2⇒Y1の順で行う

6.柱の上部まで上がったら徐々に下ろして切り込み部を合わせる 7.一気に入れようとせずに水平に下げるよう気をつけながら行う 8.完全に下ろしたらバンドをはずして終了

SC3

ビスを打ち込み辛い懸念があるので、 場合によってはグレーの部分を 適宜切り落としてください。

SC3

C3

C6

SC3

SC3

SC3

SC3

C4

C7

SC3

SC3

SC3

SC3

C6

C3

SC3

SC3

SC3

SC3

C5

C8

SC3

SC3

SC3

SC3

C7

C4

SC3

SC3

9.垂直水平の補正 ⅱ.補強材の固定

Წଐ

・上棟した時点で垂直水平が保てているか確認する必要アリ ・大工さんよく相談して補正を行う ・確認するポイントとしては、 1.梁がたわんでいないかどうか →たわんでいた場合下から上げて、20㎜程の”むくり”をつけておく 2.柱が垂直かどうか 3.Y1からY6までのピッチが正しいか 4.梁が曲がっていないかどうか →内壁や垂木を固定する前に必ず補正しておく

SC3

SC3

C5

C8

SC3

SC3

*中心に括りつける

各柱部分に脚立2台で2人ずつ配置 or 外周部に足場を組む(現場で要相談)

建設マニュアル

Construction manual

フェースブックページ

Project’s facebook page 21


22


23


マノヘリ村ラーニングセンター パテイン、 ミャンマー

Manawhari Learning Center Pathein, Myanmar

用途 :

学習施設

竣工 :

2013年

業務範囲 :

設計・施工

協働者:

慶應義塾大学 SFC、地域住民

Use : Completion : Scope of Work : Collaborated:

Learning Center 2013 Design, Construction Keio University SFC, Local Residents and others

マノヘリ村ラーニングセンターは、 ミャンマーのエーヤワディ管区マノヘ リ村にて集落住民とともに建設されたラーニングセンターである。建設 と建設後の運営を通じて、民主化・グローバル化により都市との格差が広 がる地方集落の衛生環境や教育機会などのさまざまな生活環境の向上、 またコミュニティ強化に寄与することを目的としている。

The Manawhari Learning Center, located in the Ayeyarwady Region of Myanmar, was constructed with its local villagers of Manawhari. This provincial village suffers with poor sanitary conditions and educational opportunities, as disparity grows between cities as an artifact of democracy and globalization. Through the construction and management, the project aims to contribute to the improvement of such local living environment, and also to empower the local community and enhance their bonds.

本プロジェクトでは、部材数を極力減らし、 より容易に建設できるようデ ザイン及び建設工程の更なる簡便化を図った。電気の得られない現場で は、 とんかちとのこぎりのみの限られた道具で施工が行われた。 また、構 造にはベニヤ材を使用する一方、仕上げには竹などの現地の素材を使 用することで、地域に溶け込む建築を目指した。

24

In order to make the construction as easy as possible, building components are kept to a minimum which simplifies the procedure. The building was constructed using only hammers and saws, since electricity was not available at the site. Veneer boards were used for structure and local materials such as bamboo were used for finishing, respecting both the local craftsmanship and building culture. We hope that this learning center will blend in to the community.


25


26

配置図

Site Plan

平面図

Plan

模型

Model

scale = 1/1000

断面図

scale = 1/200

建設道具

Tools

Section

scale = 1/200


27


28


29


べニアハウスプロトタイプ 2x20x200x2000 プロジェクト Veneer House Prototype 2x20x200x2000 Project

用途 :

住宅

設計期間

2013年

業務範囲 :

プロトタイプ設計

Use : Project Year: Scope of Work :

Housing 2013 Prototype Design

合板の新しい構法による簡便な「家」のプロジェクトである。 この家のプロ トタイプは低所得者層の人たちの生活水準を向上させることを意図して いる。小さいけれども比較的安価で、家族の構成員が少なくともそれぞれ のプライバシーを守れるようにできればより良い生活が送れるであろう という考えから、2 x 20 x 200 x 2000プロジェクトを立ち上げた。 これは2 名により20㎡の面積の家を200分で2000ドルのコストで作り上げる、 とい う計画である。 これがベニアハウスの次なる挑戦となる。

30

A simple house using plywood construction system; the house prototype is intended to raise the living standard of a low-income group of people. If we can provide a small but relatively cheaper house where families can enjoy at least a minimum level of privacy, that will surely make some people’s lives better. For that purpose, we are currently proposing a formula of 2 x 20 x 200 x 2000; that is, a house that can be built by 2 people, 20 square meters in size, requiring 200 minutes and 2000 US dollars to construct. This is the ambition for the next phase of the Veneer House project.


31


32

平面図

Plan

scale = 1/50

断面図

Section

scale = 1/50


パネルタイプ

Panel Types

scale = 1/100

1

2

3

4

5

6

7

8

9

10

11

12 33


コゴン村保育園 ボホール島,フィリピン

Cogon Day School Barangay Cogon, Balilihan Bohol, Philippines

用途 :

保育園

竣工 :

2014年

業務範囲 :

設計・施工

協働:

今本啓一(強度試験)、鈴木啓(構造)、 JICA 青年海外協力隊、慶應義塾大学 SFC、 地域住民

協力:

Bohol Island State University

Use : Completion : Scope of Work : Collaborated:

Day School 2014 Design, Construction Imamoto Keiichi (Strength Test), Akira Suzuki (Structure), JICA Volunteers, Keio University SFC, Local Residents, and others Bohol Island State University

Support:

コゴン村は、度重なる震災や台風により大きな被害を受けた、ボホール 島に位置する、人口約700人の村です。一部JICAから資金提供を受け、倒 壊した保育園を復興する計画が立てられました。 建物の骨組み部分は、パソコンデータに従って自動的に機械カットされ たベニヤ合板のパーツを、同じくベニヤ板による楔のパーツでジョイント する、独自の構法で建てられています。現地での合理性を重視し、一切接 着剤・釘・電動工具を用いることのないシステムです。 慶應義塾大学の学生だけでなく、村人たちとの協働作業とするため、建 設は、地域の子供たちやその家族と、同じ構法でおもちゃをつくるワーク ショップを行うところから始まりました。 骨組みに対して取付ける、建物の外皮となる素材には、現地の竹を編ん だパネルを用い、気候や伝統建築に馴染むデザインとしました。 34

N

0 1

配置図

5

Site Plan

The rural town of Cogon sits on Bohol Island, a region hard hit by the 2013 Philippines Earthquake. With a population of around 700, Cogon’s resources are limited and day school was, until recently, held in the town’s small chapel. This project, funded in part by the Japan International Cooperation Agency, aimed to create a new day school and community space for the people of Cogon. All structural components for the building were precut using a CNC facility at Bohol Island State University’s Fab Lab. To further streamline the process, wood joinery techniques were applied including wooden wedges, which allowed the structural frame to be assembled without glue, nails, or power tools. After conducting a workshop with local children and families, construction commenced with citizens and students from Keio University taking equal part. Local materials including woven bamboo panels serve as the skin for the structural skeleton and tie the building to the architectural traditions of Bohol.

10M


35


36

Ω͙͑ͥͲ͚ͥ

Ω͙͑ͥʹ͚ͩ

Ω͙͑ͥͳ͚ͩ

Ω͙͑ͤ͵ͧͶ͚ͩ͢

Ω͙͑ͦ͢Ϳ͚ͤ͡

Ω͙͑ͦ΀͚͢͡

Ω͙͑ͣͧ͹͚

Ω͑ͥ

Ω͙͑͢Ͷ͚ͥ͡

Ω͙͑ͨͽ͚ͣͩ

Ω͙͑ͣ;͚ͩ

Ω͙͑ͣͺͥͼͩͻ͚ͥ

プレカット図

Drawing for Pre-Cut

楔によるジョイント

wood joint with wooden wedges

模型

Model

プレカットされた資材

Precut plywood members


37


38


39


チャリコットベニアハウス ネパール ドラカ州 チャリコット

Charikot Veneer House Dolakha, Nepal

用途:

住宅

竣工:

2015年

業務範囲:

設計、施工

協働者:

慶應義塾大学 SFC、地域住民

Use: Completion: Scope of Work: Collaborated:

Model House for Residence 2015 Design, Construction Keio University SFC, Local Residents and others

チャリコットベニヤハウスは、シングルファミリーに対応したの家のプ ロトタイプとして、2015年ネパールの震災地、 ドラカ州チャリコット で建てられた。伝統的なネパールの家は、 レンガや石を主な建材とし て建設されるため、壁は重く柔構造ではないことから、今回の地震によ る災害は避けられない現実となった。ベニアハウスでは合板を用い軽

This Charikot Veneer House is a single family home prototype built in Charikot, Dolakha, a part of Nepal severely damaged by earthquakes in 2015. Traditionally, Nepali construction replies on brick and masonry walls. These structures are heavy and inflexible which can lead to disastrous result, as seen in the recent earthquake. Conversely, the Veneer House employs a lightweight and flexible structural frame which is suitable for seismically active regions.

量で柔軟性の高い構造フレームを採用することによって、地震活動の 活発な地域に適している工法とした。 チャリコットベニヤハウスは、慶應大学小林研究会がチャリコットの合 板メーカーと協力しあって作成した。 コミュニティフォレスとから取れる 現地木材を使用し建設工事を行なった。 ネパールにおけるこのシステムでの初めての建設の可能性を検証し、 ネパールの震災からの復興と回復にむけた活動としたい。ベニアハウ スの建設を通して、地域住民の一体感が増すような建築の促進を期待 する。

40

To create the Charikot Veneer House, The Kobayashi Lab and Keio University partnered with Dolakha Plywood Inc., a plywood manufacturer based in Charikot. Sourcing materials locally allowed project stakeholders and the local community to participate during the development and the construction process. This home prototype is only the beginning of what could be a significant contribution to the reconstruction and recovery of Nepal in the wake of the recent disaster. Through Veneer House, an architecture that not only merges with the local environment, but more importantly, create a bond with the local people and people that living in this house.


41


フレーム 断面図 Frame Section

42

scale = 1/50

シンプルな差込み型 Simple Joint Type

完成ジョイント Finished Joint

構造フレーム Structural Frame

柱 Column

屋根 Roof

フローリング Flooring


43


44


45


七ヶ浜ベニア・ビーチハウス 宮城県、 日本

Shichigahama Beach Pavilion Miyagi, Japan

用途 :

多目的ステージ

竣工 :

2016年

業務範囲 :

設計、施工

協働:

鈴木啓 / ASA (構造)、 慶應義塾大学SFC、他

Use : Completion : Scope of Work : Collaborated:

Multi Purpose Stage 2016 Design, Construction Akira Suzuki / ASA (Structure), Keio University SFC, and Others

七ヶ浜ベニアハウスは仮設ステージおよび海の家として東日本大震災 後5年となる七ヶ浜の海開きを祝って計画された。そのシンプルなハ ーフシリンダーの形状によって合板ピースの種類を5まで低減するこ とができ、組み立てを容易にすることが可能となった。 1年のうちほぼ2、3週間しか開設されない建物では、コンサートは カフェなどの浜でのアクティビティが展開されるが、その基礎は簡易な LVL (ラミネーテッド・ベニア・ランバー)によって作られている。 この仮 設ベニアハウスは津波で大きな被害の出たこの地域の活動を後押し するとともに復興に寄与することを意図されて作られた。

The Shichigahama Veneer House is a temporary beach pavilion built to celebrate the reopening the Shichigahama Beach 5 years after its destruction in the Great East Japan Earthquake and Tsunami. Its simple half cylindrical shape is made up of only 5 different types of components, allowing for a fast and easy construction process. The pavilion is only used for a few weeks in the height of summer, so it will be erected and disassembled each year. The beach pavilion accommodates functions including a concert venue and a temporary café. The simple foundation and light weight frame reduces the storage, transport, and construction costs associated with previous pavilions made of LVL (Laminated Veneer Lumber). This temporary Veneer House fits the need of the summer festivities at Shichigahama, but it also helps the community to heal and recover part of what it lost in the devastation of the disaster.

46


47


アクソノメトリック

48

Axonometric


49


50


51


ヴィスベニア・茶屋 ヴィス島、 クロアチア

Vis Veneer Tea House Vis Island, Croatia

用途 :

茶屋

竣工 :

2016年

業務範囲 :

設計、施工

協働:

鈴木啓 / ASA (構造)、 慶應義塾大学SFC、 ミラノ工科大学

Use : Completion : Scope of Work : Collaborated:

Tea House 2016 Design, Construction Akira Suzuki / ASA (Structure), Keio University SFC, Polytechnic University of Milan

クロアチアのヴィス島に日本とクロアチアの文化交流および日本建築 文化を紹介する目的で茶室を建設した。元来日本の茶室は移動可能で

This tea house was built to introduce the architecture and culture of Japan to the Croatian island of Vis. The simple pavilion will be used for cultural exchange between the two countries.

あり仮設的であったが、自分で組み立てて作るこの合板の茶室も日本 建築のそのようなしなやかで一時的な性格を表現している。 イタリアから運ばれた合板パネルはスロベニアの高校にあるCNCルー

Originally, Japanese teahouses were built to be temporary and movable. This self-assembled plywood hut replicates these features in an attempt to highlight the agile and ephemeral nature of Japanese architecture.

ターで教育の一環としてカットされ、それがクロアチアのヴィス島に運 ばれ、茶室の構造として組み立てられた。 軽快な茶室は周囲の石やレンガの建築との好対照をなし、異文化を背 景とした持続可能な建築として認識される。

Plywood panels were prepared in Italy and were then taken to Slovenia for CNC machining. The prefabrication process involved workshops for local high school students. The precut pieces were then brought to Vis where they formed the structural frame of the pavilion. The light construction of the tea house contrasts strongly with the surrounding stone masonry buildings while acknowledging the site and views to the ocean beyond. It is recognized by the community in Vis as a new proposal for sustainable architecture with a different cultural background.

52


53


アクソノメトリック

54

Axonometric


55


56


57


ベニアハウスパッケージ Veneer House Package

用途 :

住居

竣工 :

2016年進行中

業務範囲 :

設計・施工

協働:

鈴木啓/ASA(構造) 、 慶應義塾大学 SFC

Use : Completion : Scope of Work : Collaborated:

Residence 2016 on going Design, construction Kei Suzuki / ASA (Structure), Keio University SFC and others

ベニアハウスパッケージプロジェクトは、2011年以来開発してきたベニア ハウスを一つの住宅のパッケージとしてプロダクト化するものです。ジョ イント部には釘やネジを使わず、 また外壁部には凹凸の無い壁面を構成 することができるようになりました。 これにより外装材を直接構造部に容 易に取り付けることができるようになり建設時間を縮減できました。 プレ カットされた合板や外装材は平らに積み上げられることから、パッケージ にした際のボリュームがコンパクトに納まり、輸送が容易にできます。 開口部の窓・ドア、庇、家具についても合板を主体的に用いて構成できる ようにしました。 この家が臨時の仮設住宅として、そしてそれ以外にも広 く恒久的に活用されることを目論みます。

58

The goal of the Veneer House Package Project is to make affordable housing into an easy-to-ship product. Using technology developed since 2011, we have created a set of compact building components which can be assembled easily. Without using nails or screws, we are able to make a flush external wall surface. By doing this, exterior finish materials can be applied to the wall directly which significantly reduces construction time. As the pre-cut panels and other materials can be packed flat, the total volume of the materials becomes compact, reducing transport costs. Windows, doors and other elements such as eaves are also prepared in plywood. The simple and compact Veneer House product aims to be used not only as transitional housing but also applied widely as a framework for permanent homes.


59


プレカット図 Drawing for Pre-Cut

楔によるジョイント Wood Joint with Wooden Wedges

60


分解アクソン図 Exploded Axon

アクソン図 Axonometric

61


木塔プロトタイプ Wood Tower Prototype

用途 :

集合住宅

設計期間

2012年

業務範囲 :

プロトタイプ設計

Use : Project Year: Scope of Work :

Housing 2012 Prototype Design

近年、地球規模の環境問題を考えるに当たり、CO2削減のための森林の 質とその向上が問われている。我が国は国土の7割弱を森林で覆われて いるものの、それらが有効に活用されていないのが現状である。林業の 衰退、木造家屋に伴う木の文化の衰退が著しい。 このような中で、木材の 燃焼を大幅に防ぐ液対処理の技術が開発された。本プロジェクトは、 この 木の不燃技術が、国交省の定める二時間耐火の大臣特認を得られること を想定し、建築基準法に準じた木造建築物の可能性を検討する。 無垢のLVLパネルを構造壁とした壁構造の場合、最大14階までの木造建 築物が建設可能となる。パネル同士のジョイントに木組みの工法を用い ることで、金属に依存した既往のパネル工法を越える新しい手法の開発 を目指す。また、日本の伝統建築である五重塔が示すように、木造の高 層建築物は、その柔軟さや軽量性によって地震力を軽減することができ る。 さらに、木材パネルをインテリアに使用することで、木が呼吸すること による空気調整機能を活用することができる。LVLを用いた建築は、構造 材・仕上げ材・断熱材を兼ねているため、通常多くの工種を必要とする鉄

Considering the environmental problems that have grown into a global scale, the quality of forests and their growth has recently been called into question. However, despite our nation having almost 70% of its land covered with forests, they are not being utilized efficiently. The decline of forestry and wood culture based on wooden houses are significant. Under such conditions, a new liquid treatment which drastically reduces the rate of combustion of wood is being developed. Assuming that this non-combustible technology will acquire the special approval of 2 hour fire resistance by the Ministry of Land, Infrastructure, Transport and Tourism, this project explores the possibilities of wooden architecture that follows the Building Standard Law. Shear-wall structure made completely out of LVL panels allows a maximum14-story high wooden building. By adopting traditional Japanese timber construction for panel joints, we aspire to transcend existing panel construction techniques that rely on metal joints. As Japanese traditional five-story pagoda demonstrates, such high-rise wooden buildings have the ability to reduce seismic forces through its flexibility and lightness. Furthermore, using wooden panels to the interior will enable us to utilize its humidity absorption properties. LVL panel’s feature of providing structure, insulation, and finish leads to the reduction of time and cost of construction.

骨造の建築に比べ、時間とコストの短縮につながるというメリットを持 つ。 このように、伝統的な木造建築の知恵と新たな建築技術を用いた、新し い木造建築物の創造を目指す。

62

Thus, here we aspire to create new wooden architecture by combining traditional wooden architectural wisdom and new technology.


63


Core Panels

パネル工法

平面図 64

Plan

Inner Wall Panels

Slab Panels

Facade Panels

Panel Construction

scale = 1/200

平面図

Plan

scale = 1/200


ファサード

内観

Facade

Interior Perspective

65


他プログラムへの転用

オフィス Office

66

アトリウム Atrium

Application to Other Building Types


R&R建築再生展2012<東京ビッグサイト>に出展

都市防災不燃化協会の展示ブースをデザイン

Exhibited at Tokyo Big Site

Designed the booth for Fireproofing Association of Urban Disaster Prevention

67


AWARDS 2012 Inspirations Award ‧Practice-Based Category Award ‧NPO Gyoryu-no-yu (Minamisanriku Veneer House) ‧contract Magazine

第18回 木材活用コンクール ‧木材活用特別賞 ‧前網浜コミュニティストレージ ‧日本木材青壮年団体連合会

2015 Invitational Tournament International Ecology Design Award ‧BEST DESIGN FOR ECOLOGICAL ARCHITECTURE 最佳生态建筑设计奖 ‧Manawhari Veneer House ‧MILANO EXPO 2015 中国館

2015 Invitational Tournament International Ecology Design Award ‧BEST DESIGN FOR ECOLOGICAL ARCHITECTURE 最佳生态建筑设计奖 ‧Cogon Day School ‧MILANO EXPO 2015 中国館

The Wood Design Awards 2015 ‧Citation Award ‧Veneer House - Cogon Day School ‧Canadian Wood Council

ウッドデザイン賞 2015 ‧ライフスタイルデザイン部門 建築・空間分野 ‧ベニアハウスプロジェクト ‧ウッドデザイン賞 運営事務局

ウッドデザイン賞 2015 ‧ライフスタイルデザイン部門 技術・研究分野 ‧ベニアハウスプロジェクト ‧ウッドデザイン賞 運営事務局

68


șȋǢȏǦǹƱƸ ベニアハウスは、合板から切出したパーツにより、建物の構造フレームをつくる構法です。 特殊な技術、工具が不要なセルフビルドを可能とするシステムで、欲しい人が欲しい場で生産ができる、つまり拠点型の生産/供給ではなく、分散型に展開 できる建築です。

データさえ送れば、 どこでも生産可能 拠点生産ではなく、必要とする個人が生産できる

合板は寸法が精確で加工もしやいだけでなく、間伐材 を材料とする環境に優しい、廉価で、世界中で手に入り やすい素材

ベニアハウスの構造体は合板のパーツのみ 板のため、 コンパクトに保管・運送が可能

それぞれのパーツは人が運べるサイズ 重機が不要、人が協力しあう単純作業

金槌など、 シンプルな道具のみで、知識・技術がなくとも 参加できるプラモデルのような組立て方

部分的な交換、増改築・解体もしやすく、建築を一度つく ると動かせない固定的なものから、柔軟で可変性の高 いものに

前網浜ベニヤハウス 皆で、早く、安く、簡単に。 ―ベニヤによる構法― 2011年に東日本を襲った津波によって被害を受けた漁村のコミュニティのための、漁業用倉庫兼集会所。漁 村の住民によって建設された。 漁村の住民=建設の素人による施工のため、簡単に建設できるシステムを考案する必要があった―ベニヤの 三六板(910x1820mmボード)を無駄のないよう455mmのモジュールのパーツに分割し、 それらに切込み(ノ ッチ)をCNCルーターにより施す。 そのノッチを相互に差挟むことで柱・梁を構成する。1つのパーツの大きさ は、大人ひとりで楽に持ち運べる大きさとした。 どこにでもある安価な素材で、誰にで も簡単に、素早く建設ができる。

fishing port

自ら協力しあって建設することで、愛着を持って建築が受け入れられる。

断面図

平面図

ベニヤで組み立てられた漁村の小さな倉庫が、新たな建築の可能性を示唆する。

株式会社小林・槇デザインワークショップ 〒150-0033 東京都渋谷区猿楽町30-3 ツインビル代官山A-402 tel: 03 6415-7980 mail: kmdw@kmdw.com

1:200

1:200

配置図 1:2000

910

②パネル組立

②パネル組立

②パネル組立

1.基礎梁の組み立て

Ძ଺᧓

ⅰ.Y1の基礎梁

3.補強材の固定

Ჰ଺᧓

ⅱ.梁の補強

合板 18mm厚 90x460 (mm) 288枚

2枚

4枚

4枚

4枚

合板 18mm厚 225x460 (mm) 72本

6.柱の組立てと補強材固定

Წ଺᧓

ⅲ.柱の組立て (Y3/Y4)

2枚

2枚

2枚

2枚

2枚

12枚

12枚

4枚 コーススレッド 51mm

1440本

コーススレッド 32mm

720本

SC5

SC5

[完成図 Y1]

1820

2枚

[完成図] ー全部で12か所(両側含め)

※片側の柱はまだ組み立てないこと 基礎に緊結してから組み立てる

SC2

SC5

ーY2/Y3/Y4/Y5共通 ーY1/Y6の外側の下の補強材 のみLVL角材40x90

SC3

90 225

合板補強材(下側に合わせる)

90

合板補強材

LB1

上と下の補強材は裏と表の両側 の2枚で補強して下さい

C14

C11

合板補強材(上側に合わせる) 460

LVLには51㎜を、合板には32㎜のビスを10本ずつ打ってください

SC3

SC5

SC5

SC5

C13

C10

SC3

SC3

C14

SC3

SC5

SF2

SF1

SC3

C12

SC3

SF1

F1

小屋組みの完成

C13

SC5

C9

LB1 F1 SC2

組み立てる

SC5

SC3 C10 SC5

ᑠᒇ⤌ パ―ツを切り出す CNCルーターを使用

SC3

SC5 C11 SC3

SC5

C12

C9

SC3

SC3

建設マニュアル・・ ・ 建設の全ての工程と手順を図示することで、 始めて建設に参加する人でも簡単に建設の過程を理解できる。

șȋǢȏǦǹȗȭǸǧǯȈ Veneer House Project

竣工した5軒

上:前網浜コミュニティストレージ(宮城県石巻市) 下:ドラカベニアハウス(ネパール)

上:マノヘリ村ラーニングセンター(パテイン、 ミャンマー) 中:コゴン村保育園(ボホール島、 フィリピン) 下:南三陸ベニアハウス(宮城県吉郡南南三陸町)

2011年の東日本大震災後、職人や資材、重機が不足するなかで、早く安く簡単にセルフビルドで建設できる新しい構法としてベニアハウスを考えました。 こ れは、世界中どこでも手に入るベニア合板から切り出した、人が手で運べるサイズのパーツを、特殊な技術や工具なく組み立てることで建設するシステムで す。 これまで、東日本大震災の被災地に2軒、 ミャンマーに1軒、 フィリピンに1軒の4軒が竣工しました。2015年度には、地震で被災したネパールへの復興支援と して、現地で量産できる生産体制を構築することを目標に活動しています。

69


Kobayashi Maki Design Workshop

日本オフィス 株式会社小林・槇デザインワークショップ KMDW 〒150-0033 東京都渋谷区猿楽町30-3 ツインビル代官山 A402 tel : 03 6415-7980 fax : 03 6415-7981 e-mail : kmdw@kmdw.com url : www.kmdw.com SOM TOKYO 〒150-0033 東京都渋谷区猿楽町30-3 ツインビル代官山 A402 tel : 03 6415-7982 fax : 03 6415-7981 url : www.som.com

USオフィス KMDW, Inc. 1701 Martin Luther King Jr.Way, Berkeley. CA 94709 tel : +1 510 704 3092 url : www.kmdw.com

70


小林

博人 (こばやし ひろと)

株式会社小林・槇デザインワークショップ 代表 慶應義塾大学大学院政策・メディア研究科 教授 Skidmore Owings and Merrill LLP 日本代表 e-mail: hiroto@kmdw.com 職歴 1988年 92年 93年 96年 97年 2000年 01年 03年 03年 04年 05年 10年 12年 12年

4月 - 96年 7月 - 12月 1月 - 11月 6月 - 99年 4月 - 8月 2月 - 6月 9月 - 02年 3月 - 05年 4月 1月 4月 - 12年 2月 - 11年 4月 9月 - 13年

学歴 1986年 88年 91年 99年 2000年

3月 3月 9月 - 92年 6月 7月 - 00年 6月 9月 - 03年 3月

資格 一級建築士免許取得

6月

3月

1月

3月 5月 6月

1990年

株式会社日建設計 設計部 Steven Jacobsen Architects, New York, USA 建築設計 Sir Norman Foster and Partners, Frankfurt, Germany 建築設計 京都大学大学院工学研究科建築学専攻助手・同キャンパス計画助手 成安造形短期大学講師(非常勤) Harvard University Graduate School of Design, Teaching Fellow 同大学院 Teaching Fellow 同大学院 Visiting Associate 株式会社小林・槇デザインワークショップ代表 Skidmore Owings and Merrill LLP(SOM) 日本代表 慶應義塾大学大学院政策・メディア研究科 准教授 Massachusetts Institute of Technology, Visiting Associate Professor 慶應義塾大学大学院政策・メディア研究科 教授 University of California, Berkeley Center for Japanese Studies, Visiting Researcher

京都大学工学部建築学科卒業 同大学院工学研究科建築学専攻 修士課程修了 Harvard University Graduate School of Design 修士課程修了 Master in Design Studies 学位取得 フルブライト研究員プログラム奨学金を得て同大学院 Visiting Scholar 同大学院 Doctor of Design Program 修了 Doctor of Design 学位取得

4月

著作、記事、翻訳、展示会、 その他 CASE: Sendai Mediatheque (共著) ʻProcessing Incompletionʼ Prestell/Harvard Design School 2002 Works of Yound Architects from the Harvard University Graduate School of Design/Japan 1999(編著)1999 「フォスター設計のらせん形超高層」報告 日経アーキテクチャ 1994年4月11日号 ʻHarvard Design School, Interview with Dean Peter G. Roweʼ a+u 2003年4月号 CASE: Sendai Mediatheque展示会 2002年4月 Harvard Design School Boston Urban Revitalization: The Big Dig展示会 2003年1月 慶応義塾大学 所属学会 日本建築学会、都市計画学会

直美 (まき なおみ)

株式会社小林・槇デザインワークショップ 代表取締役 Skidmore Owings and Merrill LLP 日本代表 e-mail: naomi@kmdw.com 職歴 1992年 93年 99年 2000年 03年 12年 学歴 1989年 1992年

8月 - 93年 7月 8月 - 98年 3月 12月 - 00年 7月 10月 - 03年 3月 4月 9月 -

3月 6月

資格 一級建築士免許取得 受賞 1989年 1991年

株式会社槇総合計画事務所 株式会社スタジオ建築計画 HNTB/Rafael Vinoly Architects 株式会社槇総合計画事務所 株式会社小林・槇デザインワークショップ University of California, Berkeley Center for Japanese Studies, Visiting Researcher

日本女子大学家政学部住居学科卒業 UNIVERSITY OF CALIFORNIA, BERKELEY COLLEGE OF ENVIRONMENTAL DESIGN DEPARTMENT OF ARCHITECTURE

1994年

修士課程修了

1月

全国学生「住宅」設計教室設計競技 3等 The Leading Edge Student Competition 2等 (共同設計) 71


Kobayashi Maki Design Workshop

Japan Office KMDW A-402, 30-3, Sarugaku-cho, Shibuya Tokyo, Japan 150-0033 tel : +81 3 6415-7980 fax : +81 3 6415-7981 e-mail : kmdw@kmdw.com url : www.kmdw.com SOM TOKYO A-402, 30-3, Sarugaku-cho, Shibuya Tokyo, Japan 150-0033 tel : +81 3 6415-7982 fax : +81 3 6415-7981 url : www.som.com

US Office KMDW, Inc. 1701 Martin Luther King Jr.Way, Berkeley. CA 94709 tel : +1 510 704 3092 url : www.kmdw.com

72


HIROTO KOBAYASHI Principal, Kobayashi Maki Design Workshop (kmdw) Japan Representative/Liaison, Skidmore Owings and Merrill LLP (SOM) Professor, Keio University Shonan Fujisawa Campus e-mail: hiroto@kmdw.com Employment 2012- 2013 2012- present 2010- 2011 2005- 2012 2004- present 2003- present 2003- 2005 2003- 2005 2001 (fall) 2000 (spring) 1993 1988-1996 Education 2003 1999 -2000 1992 1988

University of California, Berkeley Center of Japanese Studies, Visiting Researcher Berkeley, CA, USA Keio University, Professor Fujisawa, Kanagawa, Japan Massachusetts Institute of Technology, Visiting Associate Professor Cambridge, MA, USA Keio University, Associate Professor Fujisawa, Kanagawa, Japan Skidmore Owings and Merrill LLP, Japan Representative/Liaison Tokyo, Japan Kobayashi Maki Design Workshop, Principal in partnership with Naomi Maki Tokyo, Japan Harvard University Graduate School of Design, Visiting Associate Cambridge, MA, USA Keio University Shonan Fujisawa Campus, Lecturer Fujisawa, Kanagawa, Japan Harvard University Graduate School of Design, Teaching Fellow for Dean Peter G. Rowe’s Studio Cambridge, MA, USA Harvard University Graduate School of Design, Teaching Fellow for Kazuyo Sejima Cambridge, MA, USA Sir Norman Foster and Partners Frankfurt, Germany Nikken Sekkei Ltd. Tokyo, Japan

1982-1986

Harvard University Graduate School of Design, Doctor of Design Harvard University Graduate School of Design, Visiting Scholar Harvard University Graduate School of Design, Master in Design Studies Kyoto University Graduate School of Engineering, Department of Architecture, Master of Engineering in Architecture Kyoto University Department of Architecture, Bachelor of Engineering in Architecture

Awards 2001-2002 2000-2003 1999-2000 1999-2001

Obayashi Foundation Grant for Research on Urban Transformation Using GIS Harvard University Graduate School of Design, GSD Grant Fulbright Grant for Research Program Asahi Glass Grant for a Research on a Japanese Suburban Town

Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA Kyoto, Japan Kyoto, Japan

Professional Affiliations Registered Architect (first grade) in Japan, 1990 Member of Architectural Institute of Japan Member of City Planning Institute of Japan Harvard Design School Alumni/ae Council Member Publication, Exhibition 2002 Co-author, Assistant Editor of Case: Toyo Ito, Sendai Mediatheque by Prestel/Harvard, 2002

NAOMI MAKI Principal, Kobayashi Maki Design Workshop (kmdw) Japan Representative/Liaison, Skidmore Owings and Merrill LLP (SOM) e-mail: naomi@kmdw.com Employment 2012- present 2004- present 2003- present 2000-2003 1999-2000 1993-1998 1992-1993 Education 1989-1992

1985-1989

Awards 1991 1989

University of California, Berkeley Center of Japanese Studies, Visiting Researcher Skidmore Owings and Merrill LLP, Japan Representative Kobayashi Maki Design Workshop, Principal in partnership with Hiroto Kobayashi Maki and Associates HNTB/Rafael Vinoly Architects Kenchiku, Design Studio Maki and Associates

Berkeley, CA, USA Tokyo, Japan Tokyo, Japan Boston, MA, USA Boston, MA, USA Tokyo, Japan Tokyo, Japan

University of California, Berkeley College of Environmental Design Department of Architecture Master of Architecture, 1992 Japan Women’s University School of Home Economics Department of Housing Bachelor of Home Economics, 1989

Berkeley, CA, USA

Tokyo, Japan

The Leading Edge Student Competition, Second Place (with other three team members) Asahi Kasei Student Competition of ‘Dwelling’ design, Third Prize

Professional Affiliations Registered Architect (first grade) in Japan, 1994 73


社名

株式会社小林・槇デザインワークショップ KMDW

本店

東京都渋谷区猿楽町30-3 ツインビル代官山A 402

代表者

小林直美

登録

一級建築士事務所

設立

2003年4月24日

資本金

事業内容

代官山オフィス

従業員数

74

代表取締役

小林博人

東京都知事登録

第487744号

1000万円

一般建築の企画・設計・監理 大規模建築の企画・設計・監理 都市計画・地域計画のための企画・設計 建築計画・都市計画の調査・研究 インテリアにおける企画・設計・監理、家具デザイン

〒150-0033 東京都渋谷区猿楽町30-3 ツインビル代官山 A402 tel : 03 6415-7980 fax : 03 6415-7981 e-mail : kmdw@kmdw.com URL : www.kmdw.com

10名(2014年4月現在)


Office Name

Registered Address

Principals

Registeration

Establishment

Capital

Scope of Services

Daikanyama Office

Number of Personnel

Kobayashi Maki Design Workshop KMDW

30-3, A-402, Sarugaku-cho Shibuya, Tokyo Japan

President: Naomi Kobayashi, Hiroto Kobayashi

1st-class architect office

Governor of Tokyo Metropolitan Registration No. 487744

April 24, 2003

10,000,000 yen

Planning, design, and supervision for general architecture projects Planning, design, and supervision for large scale architecure projects Planning and design for urban and regional planning Surveys and research for architecture and urban planning Planning, design, and supervision for interior, and furniture design

30-3, A-402, Sarugaku-cho Shibuya, Tokyo 150-0033 Japan tel : +81 3 6415-7980 fax : +81 3 6415-7981 e-mail : kmdw@kmdw.com URL : www.kmdw.com

10 (As of April, 2014)

75


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.