References EXPLORING THE POTENTIAL FOR CALORIES AND BIOENERGY IN FRANCE [1] Jayet, P.-A., Petsakos, A., Chakir, R., Lungarska, A., De Cara, S., Petel, E., Humblot, P., Godard, C., Leclère, D., Cantelaube, P., Bourgeois, C., Clodic, M., Bamière, L., Ben Fradj, N., Aghajanzadeh-Darzi, P., Dumollard, G., Isbasoiu, A., Adrian, J., Pilchak, G., Bounaffaa, M., Barberis, D., Assaiante, C., Ollier, M., Henry, L., Florio, A., Chiadmi, I. & Gossiaux, E. (2020). The European agro-economic AROPAj model. https://www6.versailles-grignon.inrae.fr/economie_ publique/content/download/3644/38741/version/1/file/ ArticlAROPAj.pdf: INRA, UMR Economie Publique. [2] FAO (2003a). Food energy - methods of analysis and conversion factors. Technical report, Food and Agriculture Organization of the United Nations. [3] FAO (2003b). Les bilans alimentaires. Organisation des Nations Unies pour l’alimentation et l’agriculture. [4] Scarlat, N., Fahl, F., Lugato, E., Monforti-Ferrario, F., & Dallemand, J. (2019). Integrated and spatially explicit assessment of sustainable crop residues potential in europe. Biomass and Bioenergy, 122, 257 – 269. [5] Scarlat, N., Martinov, M., & Dallemand, J.-F. (2010). Assessment of the availability of agricultural crop residues in the european union: Potential and limitations for bioenergy use. Waste Management, 30 (10), 1889 – 1897. [6] Monforti, F., Lugato, E., Motola, V., Bodis, K., Scarlat, N., & Dallemand, J.-F. (2015). Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in europe. Renewable and Sustainable Energy Reviews, 44, 519 – 529. [7] Bourgeois, C., Fradj, N. B., & Jayet, P.-A. (2014). How costeffective is a mixed policy targeting the management of three agricultural n-pollutants? Environmental Modeling & Assessment, 19 (5), 389–405. [8] Ben Fradj, N., Jayet, P.-A., & Aghajanzadeh-Darzi, P. (2016). Competition between food, feed, and (bio)fuel: A supplyside model-based assessment at the European scale. Land Use Policy, 52, 195–205. [9] Besnard, A., Ferchaud, F., Levrault, F., Nguyen, E., Marsac, S., & Savouré, M.L. (2014). Le LIGNOGUIDE: une aide aux choix des cultures biomasse. Innovations Agronomiques, 34, 35-50. [10] RMT Biomasse Energie (2018). LIGNOGUIDE - Guide d’aide au choix des cultures lignocellulosiques. Technical report, RMT Biomasse Energie. [11] EU Commission (2016). EU28: Reference scenario (REF2016) - energy, transport and GHG emissions trend to 2050. Technical report, European Commission. HYDROGEN FROM BIOMASS: CHALLENGES AND PERSPECTIVES [1] European Commission (EC). Communication COM/ 2020/301: A hydrogen strategy for a climate-neutral Europe. EUR-Lex - 52020DC0301. Brussels, BE: n.d.
COM/2020/456: Europe’s moment: Repair and Prepare for the Next Generation EUR-Lex - 52020DC0456. Brussels, BE: n.d. [4] Buffi M, Prussi M, Scarlat N. Hydrogen from Biomass Sources: Technological Review and Energy and Greenhouse Gases Emissions Assessment (IN PRESS). 29th Eur. Biomass Conf. Proc., Ispra, Italy: 2021. [5] International Organization for Standardization. ISO 14040:2006 Environmental Management - Life Cycle Assessment - Principles and Framework. Geneva, Switzerland: 2006. [6] European Commission, Joint Research Centre, Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance. Luxembourg: 2010. https://doi.org/doi:10.2788/38479. ALGAE TO KEROSENE: THE GREEN WAKE [1] I. E. A. IEA, «Energy technology perspectives 2016 model,» 2016. [En ligne]. Available: http://www.iea.org/etp/etp2016/ secure. [2] ICAO, «Trends in emissions,» 12 2020. [En ligne]. Available: https://www.icao.int/environmental-protection/ Pages/ClimateChange_Trends.aspx. [3] ICAO, Climate Change Technology Standards., https:// www.icao.int/environmental-protection/Pages/ ClimateChange_TechnologyStandards.aspx, 2020. [4] ICAO, Introduction to the ICAO Basket of Measures to Mitigate Climate Change, https://www. icao.int/environmental-protection/Documents/ EnvironmentalReports/2019/ENVReport2019_pg111-115. pdf, 2019. [5] ICAO, «Feasibility of a long term aspirational goal for international aviation,» 2021. [En ligne]. Available: https:// www.icao.int/environmental-protection/Pages/LTAG.aspx. [Accès le 03 2021]. [6] G. T. N. S. M. P. D. Chiaramonti, «The challenge of forecasting the role of biofuel in EU transport,» Renewable and Sustainable Energy Reviews, 2021. [7] E. Commission, «Sustainable aviation fuels – ReFuelEU Aviation,» [En ligne]. Available: https://ec.europa.eu/info/ law/better-regulation/have-your-say/initiatives/12303ReFuelEU-Aviation-Sustainable-Aviation-Fuels. [Accès le 03 2021]. [8] M. Prussi, L. Lonza et A. O'Connell, «Analysis of current aviation biofuel technical production potential in EU28,» Biomass and bioenergy, p. https://www.sciencedirect.com/ science/article/pii/S0961953419303204?via%3Dihub, 2019. [9] IHI, «Bio-jet Fuel Manufactured from Microalgae Receives ASTM International Standard Certification -Contributing to the reduction of CO2 emissions from aircraft,» June 2020. [En ligne]. Available: https://www.ihi.co.jp/en/all_ news/2020/other/1196667_2042.html.
[2] European Commission (EC). Communication COM/2019/640: The European Green Deal. EUR-Lex 52019DC0640. Brussels, BE: n.d.
[10] F. G. S. X. X. W. Xiaoyi Yang, «Carbon distribution of algae-based alternative aviation fuel obtained by different pathways,» Renewable and Sustainable Energy Reviews, p. 1129–1147, 2016.
[3] European Commission (EC). Communication
[11] K. S. Lackner, «The thermodynamics of direct air capture of
51 Be