7 minute read

References

EXPLORING THE POTENTIAL FOR CALORIES

AND BIOENERGY IN FRANCE

Advertisement

[1] Jayet, P.-A., Petsakos, A., Chakir, R., Lungarska, A., De

Cara, S., Petel, E., Humblot, P., Godard, C., Leclère, D.,

Cantelaube, P., Bourgeois, C., Clodic, M., Bamière, L., Ben

Fradj, N., Aghajanzadeh-Darzi, P., Dumollard, G., Isbasoiu,

A., Adrian, J., Pilchak, G., Bounaffaa, M., Barberis, D.,

Assaiante, C., Ollier, M., Henry, L., Florio, A., Chiadmi, I. &

Gossiaux, E. (2020). The European agro-economic AROPAj model. https://www6.versailles-grignon.inrae.fr/economie_ publique/content/download/3644/38741/version/1/file/

ArticlAROPAj.pdf: INRA, UMR Economie Publique. [2] FAO (2003a). Food energy - methods of analysis and conversion factors. Technical report, Food and Agriculture

Organization of the United Nations. [3] FAO (2003b). Les bilans alimentaires. Organisation des

Nations Unies pour l’alimentation et l’agriculture. [4] Scarlat, N., Fahl, F., Lugato, E., Monforti-Ferrario, F., &

Dallemand, J. (2019). Integrated and spatially explicit assessment of sustainable crop residues potential in europe.

Biomass and Bioenergy, 122, 257 – 269. [5] Scarlat, N., Martinov, M., & Dallemand, J.-F. (2010).

Assessment of the availability of agricultural crop residues in the european union: Potential and limitations for bioenergy use. Waste Management, 30 (10), 1889 – 1897. [6] Monforti, F., Lugato, E., Motola, V., Bodis, K., Scarlat, N., &

Dallemand, J.-F. (2015). Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in europe. Renewable and Sustainable Energy Reviews, 44, 519 – 529. [7] Bourgeois, C., Fradj, N. B., & Jayet, P.-A. (2014). How costeffective is a mixed policy targeting the management of three agricultural n-pollutants? Environmental Modeling &

Assessment, 19 (5), 389–405. [8] Ben Fradj, N., Jayet, P.-A., & Aghajanzadeh-Darzi, P. (2016).

Competition between food, feed, and (bio)fuel: A supplyside model-based assessment at the European scale. Land

Use Policy, 52, 195–205. [9] Besnard, A., Ferchaud, F., Levrault, F., Nguyen, E., Marsac,

S., & Savouré, M.L. (2014). Le LIGNOGUIDE: une aide aux choix des cultures biomasse. Innovations Agronomiques, 34, 35-50. [10] RMT Biomasse Energie (2018). LIGNOGUIDE - Guide d’aide au choix des cultures lignocellulosiques. Technical report, RMT Biomasse Energie. [11] EU Commission (2016). EU28: Reference scenario (REF2016) - energy, transport and GHG emissions trend to 2050. Technical report, European Commission.

HYDROGEN FROM BIOMASS: CHALLENGES

AND PERSPECTIVES

[1] European Commission (EC). Communication COM/ 2020/301: A hydrogen strategy for a climate-neutral Europe.

EUR-Lex - 52020DC0301. Brussels, BE: n.d. [2] European Commission (EC). Communication

COM/2019/640: The European Green Deal. EUR-Lex - 52019DC0640. Brussels, BE: n.d. [3] European Commission (EC). Communication COM/2020/456: Europe’s moment: Repair and Prepare for the Next Generation EUR-Lex - 52020DC0456. Brussels,

BE: n.d. [4] Buffi M, Prussi M, Scarlat N. Hydrogen from Biomass

Sources: Technological Review and Energy and Greenhouse

Gases Emissions Assessment (IN PRESS). 29th Eur.

Biomass Conf. Proc., Ispra, Italy: 2021. [5] International Organization for Standardization. ISO 14040:2006 Environmental Management - Life Cycle

Assessment - Principles and Framework. Geneva,

Switzerland: 2006. [6] European Commission, Joint Research Centre, Institute for

Environment and Sustainability. International Reference

Life Cycle Data System (ILCD) Handbook - General guide for Life Cycle Assessment - Detailed guidance.

Luxembourg: 2010. https://doi.org/doi:10.2788/38479.

ALGAE TO KEROSENE: THE GREEN WAKE

[1] I. E. A. IEA, «Energy technology perspectives 2016 model,» 2016. [En ligne]. Available: http://www.iea.org/etp/etp2016/ secure. [2] ICAO, «Trends in emissions,» 12 2020. [En ligne].

Available: https://www.icao.int/environmental-protection/

Pages/ClimateChange_Trends.aspx. [3] ICAO, Climate Change Technology Standards., https:// www.icao.int/environmental-protection/Pages/

ClimateChange_TechnologyStandards.aspx, 2020. [4] ICAO, Introduction to the ICAO Basket of

Measures to Mitigate Climate Change, https://www. icao.int/environmental-protection/Documents/

EnvironmentalReports/2019/ENVReport2019_pg111-115. pdf, 2019. [5] ICAO, «Feasibility of a long term aspirational goal for international aviation,» 2021. [En ligne]. Available: https:// www.icao.int/environmental-protection/Pages/LTAG.aspx. [Accès le 03 2021]. [6] G. T. N. S. M. P. D. Chiaramonti, «The challenge of forecasting the role of biofuel in EU transport,» Renewable and Sustainable Energy Reviews, 2021. [7] E. Commission, «Sustainable aviation fuels – ReFuelEU

Aviation,» [En ligne]. Available: https://ec.europa.eu/info/ law/better-regulation/have-your-say/initiatives/12303-

ReFuelEU-Aviation-Sustainable-Aviation-Fuels. [Accès le 03 2021]. [8] M. Prussi, L. Lonza et A. O'Connell, «Analysis of current aviation biofuel technical production potential in EU28,»

Biomass and bioenergy, p. https://www.sciencedirect.com/ science/article/pii/S0961953419303204?via%3Dihub, 2019. [9] IHI, «Bio-jet Fuel Manufactured from Microalgae Receives

ASTM International Standard Certification -Contributing to the reduction of CO2 emissions from aircraft,» June 2020. [En ligne]. Available: https://www.ihi.co.jp/en/all_ news/2020/other/1196667_2042.html. [10] F. G. S. X. X. W. Xiaoyi Yang, «Carbon distribution of algae-based alternative aviation fuel obtained by different pathways,» Renewable and Sustainable Energy Reviews, p. 1129–1147, 2016. [11] K. S. Lackner, «The thermodynamics of direct air capture of

carbon dioxide.,» Energy, pp. 50, 38-46., 2013. [12] I. Corporation, «Development of sustainable bio jet fuel,» chez NEDO-ADEMEWorkshop12., Tokyo Big Sight, 2019. [13] G. R. R. S. A. Ranga Rao, «Cultivation of green alga

Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production,» Bioresource Technology, p. 528.533, 2012. [14] U. DoE, «Sustainable Aviation Fuel. Review of Technical

Pathways,» https://www.energy.gov/eere/bioenergy/ downloads/sustainable-aviation-fuel-review-technicalpathways-report, 2020. [15] E. Frank, J. Han et M. Wang, «Life-Cycle Analysis of Algal

Lipid Fuels with the GREET Model,» Energy Systems

Division, Argonne National Laboratory: Argonne, IL, USA, 2011., Argonne, IL, USA., 2011. [16] ISO, I. 14040: Environmental management–life cycle assessment–principles and framework., London: British

Standards Institution, 2006. [17] M. Y. M. D. P. L. P. M. E. R. L. L. Prussi, «JEC Well-to-Tank report v5,» ISBN 978-92-76-19926-7, doi:10.2760/959137,

Publications Office of the European Union, Luxembourg,, 2020. [18] I. C. FTG, «CORSIA default life cycle emissions values for eligible fuels,» ICAO, Montreal, 2019. [19] ICAO, CORSIA. CORSIA Eligible Fuels., https://www.icao. int/environmental-protection/CORSIA/Pages/CORSIA-

Eligible-Fuels.aspx., 2019. [20] R. M. P. S. J. H. S. B. MD. Staples, «Aviation CO 2 emissions reductions from the use of alternative jet fuels,» Energy

Policy, 2018. [21] H. P. S. Nair, «Emergence of green business models: The case of algae biofuel,» Energy policy, p. 175–184, 2014. [22] A. A.,. C. T. JK. Bwapwa, «Possibilities for conversion of microalgae oil into aviation fuel: A review,» Renewable and

Sustainable Energy Reviews, p. 1345–1354, 2017. [23] A. R.-I. C. G.-A. F. G.-C. S. H. A. Gómez-De la Cruz,

«Modelling of the hydrotreating process to produce renewable aviation fuel from micro-algae oil,» chez

Proceedings of the 27 th European Symposium on

Computer Aided Process Engineering – ESCAPE 27,

Barcelona, Spain, 2017. [24] BIOFAT, «FP7. project.,» 2015. [En ligne]. Available: https:// www.biofat-project.eu/project. [25] CO2AlgaeFix, «LIFE porject.,» 2016. [En ligne]. Available: https://www.co2algaefix.es/?language=en. [26] National Research Council of the National Academies,

«Sustainable Development of Algal Biofuels in the United

States,» The National Academies Press, Washington, DC,

USA, 2012. [27] M. G. J. T. M. R. B. &. M. S. Hannon, « Biofuels from algae: challenges and potential.,» Biofuels, pp. 1 (5), 763-784., 2010. [28] D. Nugent et B. K. Sovacool, «Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy:

A critical meta-survey,» Energy Policy, vol. 65, p. 229–244, 2014. [29] V. Muteri, M. Cellura, D. Curto, V. Franzitta, S. Longo, M.

Mistretta et M. L. Parisi, «Review on Life Cycle Assessment of Solar Photovoltaic Panels,» Energies, pp. 13, 252; doi:10.3390/en13010252, 2020. [30] ICAO, CORSIA Eligible Fuels – Life Cycle Assessment

Methodology., https://www.icao.int/environmentalprotection/CORSIA/Documents/CORSIA%20

Supporting%20Document_CORSIA%20Eligible%20Fuels_

LCA%20Methodology.pdf, 2020. [31] E. Commission, The European green deal., https:// ec.europa.eu/info/sites/info/files/, 2019. [32] E. Parliament, Directive (EU) 2018/2001 of the European

Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources.,

Off. J. Eur Union Belgium, 20, 2., 2018. [33] M. Y. M. D. P. L. P. M. E. R. L. L. Prussi, KEC WTT report v5, https://ec.europa.eu/jrc/en/jec doi:10.2760/959137, 2020.

[34] IPCC, IPCC Fifth Assessment Report., 2013. [35] M. Q. Wang, GREET 1.5 - transportation fuel-cycle model: methodology, development, use, and results., https://www. osti.gov/biblio/14775 (1999) doi:10.2172/14775, 1999. [36] E. S. E. C. M.C. Vásquez, «Hydrotreatment of vegetable oils: a review of the technologies and its developments for jet biofuel production,» Biomass Bioenergy, 105, pp. 197-206, 2017.

[37] J. R. C. JRC, «PVIG,» November 2020. [En ligne]. Available: www.re.jrc.ec.europa.eu/pvgis/cmaps/afr.html. [38] D. Behrendt et C. M. Kuchendorf, «AUFWIND project report.,» https://www.researchgate.net/ publication/324758850_AUFWIND_Schlussbericht, 2018. [39] M. C. D. T. M. R. L. B. N. C. D. T. P. P. Prussi, «Energetic

Assessment of 1 Ha Microalgae Production Plant.,» chez 23rd European Biomass Conference and Exhibition.

ICV.4.71., 2015. [40] X. S. C. W. R. A. J. M. B. S. A. Xu, «Separation of CO2 from Power Plant Flue Gas Using a Novel CO2 "Molecular

Basket" Adsorbent,» CS Division of Fuel Chemistry,, pp. 162-163., 2003. [41] RICARDO, «Determining the environmental impacts of conventional and alternatively fuelled vehicles through

LCA,» European Commission, Brussels, 2020. [42] D. Chiaramonti, M. Prussi, D. Casini, M.R.Tredici, L.

Rodolfi, N. Bassi, G. C. Zittelli et P. Bondioli, «Review of energy balance in raceway ponds for microalgae cultivation:

Re-thinking a traditional system is possible,» Applied

Energy, pp. Volume 102, Pages 101-111, 2013. [43] W. C. Change, «Water Climate Change,» 2018. [En ligne]. Available: http://www.waterandclimatechange.eu/ evaporation/average-monthly-1985-1999. [44] M. R. B. N. P. M. B. N. R. L. Z. G. C. &. S. G. Tredici,

«Energy balance of algal biomass production in a 1-ha

“Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio.,»

Applied Energy, pp. 154, 1103-1111, 2015. [45] B. B., M. Shinde, R. Ghadge et B. N. Thorat, «Drying of algae by various drying methods,» chez IDS’2018 – 21st

International Drying Symposium, Valencia (Spain), 2018.

This article is from: