Biblia de la celula

Page 1

21-7-2015

BIOLOGÍA

BIBLIA DE LA CÉLULA

Célula eucariota y procariota | Bianca Romero


HISTORIA DE LA CÉLULA La historia de la biología celular (disciplina académica que se encarga del estudio de las células en cuanto a lo que respecta a las propiedades, estructura, funciones, orgánulos que contienen, su interacción con el ambiente y su ciclo vital.) ha estado ligada al desarrollo tecnológico que pudiera sustentar su estudio. De este modo, el primer acercamiento a su morfología se inicia con la popularización del microscopio rudimentario de lentes compuestas en el siglo XVII, se suplementa con diversas técnicas histológicas para microscopía óptica en los siglos XIX y XX y alcanza un mayor nivel resolutivo mediante los estudios de microscopía electrónica, de fluorescencia y con focal, entre otros, ya en el siglo XX. El desarrollo de herramientas moleculares, basadas en el manejo de ácidos nucleicos y enzimas permitió un análisis más exhaustivo a lo largo del siglo XX. La primera referencia al concepto de célula, cuando el inglés Robert Hooke utilizó este término, célula (por su parecido con las habitaciones de los sacerdotes llamadas celdas), para referirse a los pequeños huecos poliédricos que constituían la estructura de ciertos tejidos vegetales como el corcho. No obstante, hasta el siglo XIX no se desarrolla este concepto considerando su estructura interior. Es en este siglo cuando se desarrolla la teoría celular, que reconoce la célula como la unidad básica de estructura y función de todos los seres vivos, idea que constituye desde entonces uno de los pilares de la biología moderna. Fue esta teoría la que desplazó en buena medida las investigaciones biológicas al terreno microscópico, pues las células no son visibles a simple vista. La unidad de medida utilizada es el micrómetro o micra (μm), existiendo células de entre 2 y 20 μm. La investigación microscópica pronto daría lugar al descubrimiento de la estructura celular interna incluyendo el núcleo, los cromosomas, el aparato de Golgi, las mitocondrias y otros orgánulos celulares, así como la identificación de la relación existente entre la estructura y la función de los orgánulos celulares. Ya en siglo XX, la introducción del microscopio electrónico reveló detalles de la mega estructura celular, y apareció la histoquímica y la cito química. También se descubrió la base material de la herencia, con los cromosomas y el ADN, y nació la citogenética.


DESCUBRIMIENTO DE LA CÉLULA AÑO

PERSONAJE

ACONTECIMIENTO

1665

Robert Hooke

Publicó los resultados de sus observaciones sobre tejidos vegetales, como el corcho, realizadas con un microscopio de 50 aumentos construido por él mismo. Este investigador fue el primero que, al ver en esos tejidos unidades que se repetían a modo de celdillas de un panal, las bautizó como elementos de repetición, «células» (del latín cellulae, celdillas).

1676

Anton van

Observó diversas células eucariotas (como

Leeuwenhoek

protozoos y espermatozoides) y procariotas (bacterias).

1838

Theodor Schwann Estudió la célula animal; junto con Matthias Schleiden postularon que las células son las unidades elementales en la formación de las plantas y animales, y que son la base fundamental del proceso vital.

1831

Robert Brown

Describió unas 1.200 especies nuevas para la

ciencia

provenientes

de

Australia

occidental. Fue también el descubridor del núcleo celular en los organismos eucariotas

IMAGEN


1839

Purkinje

1855

Rudolf Virchow

Observó el citoplasma celular.

Postuló que todas las células provienen de otras células.

1860

Pasteur

Realizó multitud de estudios sobre el metabolismo de levaduras y sobre la asepsia.

1997

Ian Wilmut

Científico que clono la oveja Dolly

TEORÍA CELULAR La teoría celular fue debatida a lo largo del siglo XIX, pero fue Pasteur el que, con sus experimentos sobre la multiplicación de los microorganismos unicelulares, dio lugar a su aceptación rotunda y definitiva.


Santiago Ramón y Cajal logró unificar todos los tejidos del cuerpo en la teoría celular, al demostrar que el tejido nervioso está formado por células. Su teoría, denominada “neuronismo” o “doctrina de la neurona”, explicaba el sistema nervioso como un conglomerado de unidades independientes. El concepto de célula como unidad anatómica y funcional de los organismos surgió entre los años 1830 y 1880, aunque fue en el siglo XVII cuando Robert Hooke describió por vez primera la existencia de las mismas, al observar en una preparación vegetal la presencia de una estructura organizada que derivaba de la arquitectura de las paredes celulares vegetales. En 1830 se disponía ya de microscopios con una óptica más avanzada, lo que permitió a investigadores como Theodor Schwann y Matthias Schleiden definir los postulados de la teoría celular, la cual afirma, entre otras cosas: Que la célula es una unidad morfológica de todo ser vivo: es decir, que en los seres vivos todo está formado por células o por sus productos de secreción. Este primer postulado sería completado por Rudolf Virchow con la afirmación Omnis cellula ex cellula, la cual indica que toda célula deriva de una célula precedente (biogénesis). En otras palabras, este postulado constituye la refutación de la teoría de generación espontánea o ex novo, que hipotetizaba la posibilidad de que se generara vida a partir de elementos inanimados. Un tercer postulado de la teoría celular indica que las funciones vitales de los organismos ocurren dentro de las células, o en su entorno inmediato, y son controladas por sustancias que ellas secretan. Cada célula es un sistema abierto, que intercambia materia y energía con su medio. En una célula ocurren todas las funciones vitales, de manera que basta una sola de ellas para tener un ser vivo (que será un ser vivo unicelular). Así pues, la célula es la unidad fisiológica de la vida. Finalmente, el cuarto postulado de la teoría celular expresa que cada célula contiene toda la información hereditaria necesaria para el control de su propio ciclo y del desarrollo y el funcionamiento de un organismo de su especie, así como para la transmisión de esa información a la siguiente generación celular.


CARACTERÍSTICAS ESTRUCTURALES Y FUNCIONALES DE LA CÉLULA 

Individualidad: Todas las células están rodeadas de una envoltura (que puede ser una bicapa lipídica desnuda, en células animales; una pared de polisacárido, en hongos y vegetales; una membrana externa y otros elementos que definen una pared compleja, en bacterias Gram negativas; una pared de peptidoglicano, en bacterias Gram positivas; o una pared de variada composición, en arqueas) que las separa y comunica con el exterior, que controla los movimientos celulares y que mantiene el potencial de membrana.

Poseen material genético en forma de ADN, el material hereditario de los genes, que contiene las instrucciones para el funcionamiento celular, así como ARN, a fin de que el primero se exprese.

Las células vivas son un sistema bioquímico complejo. Las características que permiten diferenciar las células de los sistemas químicos no vivos son:

Nutrición: Las células toman sustancias del medio, las transforman de una forma a otra, liberan energía y eliminan productos de desecho, mediante el metabolismo.

Crecimiento y multiplicación: Las células son capaces de dirigir su propia síntesis. A consecuencia de los procesos nutricionales, una célula crece y se divide, formando dos células, en una célula idéntica a la célula original, mediante la división celular.

Diferenciación: Muchas células pueden sufrir cambios de forma o función en un proceso llamado diferenciación celular. Cuando una célula se diferencia, se forman algunas sustancias o estructuras que no estaban previamente formadas y otras que lo estaban dejan de formarse. La diferenciación es a menudo parte del ciclo celular en que las células forman estructuras especializadas relacionadas con la reproducción, la dispersión o la supervivencia.

Señalización: Las células responden a estímulos químicos y físicos tanto del medio externo como de su interior y, en el caso de células móviles, hacia determinados estímulos ambientales o en dirección opuesta mediante un proceso que se denomina quimiotaxis. Además, frecuentemente las células pueden


interaccionar o comunicar con otras células, generalmente por medio de señales o mensajeros químicos, como hormonas, neurotransmisores, factores de crecimiento... en seres pluricelulares en complicados procesos de comunicación celular y transducción de señales. 

Evolución: A diferencia de las estructuras inanimadas, los organismos unicelulares y pluricelulares evolucionan. Esto significa que hay cambios hereditarios (que ocurren a baja frecuencia en todas las células de modo regular) que pueden influir en la adaptación global de la célula o del organismo superior de modo positivo o negativo. El resultado de la evolución es la selección de aquellos organismos mejor adaptados a vivir en un medio particular.

FORMAS DE LAS CÉLULAS Las células varían notablemente en cuanto a su forma, que de manera general, puede reducirse a la siguiente: variables y regular. o CELULAS

DE

FORMA

VARIBLE

O

IRREGULAR:

Son células que constantemente cambian de forma según como se cumplan sus diversos estados fisiológicos. Por ejemplo los leucocitos en la sangre, son esféricos y en los tejidos toman diversa formas; las amebas que constantemente cambian de forma en las aguas estancadas. Estos constantes cambios que se producen se deben a la emisión de seudópodos, que no son sino prolongaciones transitorias del citoplasma. o CELULAS

DE

FORMA

ESTABLE,

REGULAR

O

TIPICA:

La forma estable que toman las células en los organismos pluricelulares se debe a la forma como se han adaptado para cumplir ciertas funciones en determinados tejidos u órganos. Son de las siguientes clases: o ISODIAMÉTRICAS: Son las que tienen sus tres dimensiones iguales o casi iguales. Pueden ser: ESFÉRICAS:

como

los

óvulos

y

los

cocos

(bacterias).

OVOIDEOS: Como las levaduras. CÚBICAS: Folículo tiroideo. o APLANADAS: Si sus dimensiones son mayores que el grosor. Generalmente forman tejidos de revestimiento, como las células epiteliales.


o ALARGADAS: En la cual un eje es mayor que los otros dos. Estas células forman parte de ciertas mucosas que tapizan el tubo digestivo; otros ejemplos lo tenemos en las fibras musculares. o ESTRELLADAS: como las neuronas, dotadas de varios apéndices o prolongaciones que le dan un aspecto estrellado. TIPOS DE CELULAS Acariotes: Llamadas también Acelulares, son organismos muy rudimentarios, por consiguientes no son células sino agregados complejos de macromoléculas, así por ejemplo los virus. Células Procariotas: comprende numerosos organismos semejantes a células pero carecen de verdadero núcleo. Ejemplo: bacterias, algas azul verdosas. Células Eucarióticas: son las que poseen núcleo y son pluricelulares. Ejemplo: Protozoos, células de plantas y animales.

TAMAÑO DE LAS CÉLULAS Las células son, generalmente de tamaño variable; por tal motivo la podemos dividir en tres grupos: Macroscópicas, microscópicas, y ultramicroscópicas. 

Células macroscópicas: Son las células observadas a simple vista. Eso obedece a lo voluminoso de alimentos de reserva que lo contienen como por ejemplo: La yema de huevo de las aves y reptiles y las fibras musculares estriadas, que alcanzan varios centímetros de longitud.

Células microscópicas: Se observan únicamente con el microscopio por escapar del límite de visibilidad luminosa, y cuyo tamaño se expresa en micras (milésima parte del milímetro). Ejemplo: Los glóbulos rojos o hematíes, que no pasan de 7 micras, los cocos, las amebas, etc.

Células

ultramicroscópicas: Son sumamente pequeñas

y únicamente

observables con el microscopio electrónico. Su unidad de medida es el milimicrón que es la millonésima parte del milímetro o la milésima parte de una micra, y el angstrom que es la décima parte del milimicrón o la diez millonésima parte del milímetro. Ejemplo: los virus de la poliomielitis de la viruela, del sarampión, hepatitis, etc.


MEDIDAS El tamaño de las células varía ampliamente de unas a otras; en general es microscópico aunque hay excepciones, es decir hay células que se pueden ver a simple vista como por ejemplo algunas fibras vegetales, huevo de aves etc. DURACION DE LAS CÉLULAS Algunas células, como las de la piel, viven días, los glóbulos rojos viven meses, las células nerviosas (neuronas) viven toda la vida, no se reproducen; son las mismas desde el nacimiento hasta su muerte.


CÉLULAS EUCARIOTAS Son todas las células que tienen un núcleo celular delimitado dentro de una doble capa lipídica: la envoltura nuclear, la cual es porosa y contiene su material hereditario, fundamentalmente su información genética. Las células eucariotas son las que tienen núcleo definido (poseen núcleo verdadero) gracias a una membrana nuclear, al contrario de las procariotas que carecen de dicha membrana nuclear, por lo que el material genético se encuentra disperso en ellas (en su citoplasma), por lo cual es perceptible solo al microscopio electrónico. A los organismos formados por células eucariotas se les denomina eucariontes. El paso de procariotas a eucariotas significó el gran salto en complejidad de la vida y uno de los más importantes de su evolución. Sin este paso, sin la complejidad que adquirieron las células eucariotas no habrían sido posibles ulteriores pasos como la aparición de los seres pluricelulares. La vida, probablemente, se habría limitado a constituirse en un conglomerado de bacterias. De hecho, los cinco reinos restantes proceden de ese salto cualitativo. El éxito de estas células eucariotas posibilitó las posteriores radiaciones adaptativas de la vida que han desembocado en la gran variedad de especies que existe en la actualidad. Las células eucariotas presentan un citoplasma organizado en compartimentos, con orgánulos (semimembranosos) separados o interconectados, limitados por membranas biológicas que tienen la misma naturaleza que la membrana plasmática. El núcleo es el más notable y característico de los compartimentos en que se divide el protoplasma, es decir, la parte activa de la célula. En el núcleo se encuentra el material genético en forma de cromosomas. Desde este se da toda la información necesaria para que se lleve a cabo todos los procesos tanto intracelulares como fuera de la célula, es decir, en el organismo en sí. En el protoplasma distinguimos tres componentes principales, a saber la membrana plasmática, el núcleo y el citoplasma, constituido por todo lo demás. Las células eucariotas están dotadas en su citoplasma de un citoesqueleto complejo, muy


estructurado y dinámico, formado por microtúbulos y diversos filamentos proteicos. Además puede haber pared celular, que es lo típico de plantas, hongos y protistas pluricelulares, o algún otro tipo de recubrimiento externo al protoplasma. Las células eucariotas contienen en principio mitocondrias, orgánulos que habrían adquirido por endosimbiosis de ciertas bacterias primitivas, lo que les dota de la capacidad de desarrollar un metabolismo aerobio. Sin embargo, en algunas eucariotas del reino protistas las mitocondrias han desaparecido secundariamente en el curso de la evolución, en general derivando a otros orgánulos, como los hidrogeno somas. Algunos eucariontes realizan la fotosíntesis, gracias a la presencia en su citoplasma de orgánulos llamados plastos, los cuales derivan por endosimbiosis de bacterias del grupo denominado cianobacterias (algas azules). El origen de los eucariontes es un complejo proceso que tiene un origen procariota. Si bien hay varias teorías que explican este proceso, según la mayoría de estudios se produjo por endosimbiosis entre varios organismos procariotas, en donde el ancestro principal protoeucariota es de tipo arqueano y las mitocondrias y cloroplastos son de origen bacteriano. Es discutible la incorporación de otros organismos procariotas. La teoría más difundida al respecto es la Endosimbiosis seriada.

ANIMAL

VEGETAL


CÉLULA ANIMAL


En 1665, Robert Hooke, descubrió en un corte fino de corcho, una estructura muy parecida a la de un panal de abejas. La observó con un microscopio de 50 aumentos que él mismo inventó, y llamó células a las celdillas que se formaban (del latín cellulae=celdillas). La célula, sinónimo de vida, es la unidad anatómica fundamental de todos los seres vivos. Es decir, todos los organismos están formados por células. Algunos organismos, como las bacterias, constan solo de una sola célula, son organismos unicelulares. Otros, como los humanos, animales y plantas, están hechos de una cantidad incontable de células que trabajan juntas para gestionar al ser vivo. Estas estructuras a las que Hooke denominó células cooperan entre sí para constituir organismos muy complejos, como el ser humano, que está formado por miles de millones de células. Para poder comprender cómo funciona el cuerpo humano sano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen. Son las encargadas de formar los diferentes tipos de tejidos. Se diferencia de una célula vegetal porque: No tiene pared celular (membrana celulósica) Presentan diversas formas de acuerdo con su función. No tiene plastos Puede tener vacuolas pero no son muy grandes. Presenta centriolos que son agregados de microtúbulos cilíndricos que forman los cilios y los flagelos y facilitan la división celular.

ESTRUCTURA DE LA CÉLULA MEMBRANA CELULAR Es el límite externo de las células Eucarióticas. Es una estructura dinámica formada por 2 capas de fosfolípidos en las que se embeben moléculas de colesterol y proteínas. Los fosfolípidos tienen una cabeza hidrófila y dos colas hidrófobas. Las dos capas de fosfolípidos se sitúan con las cabezas hacia fuera y las colas, enfrentadas, hacia dentro. Es decir, los grupos hidrófilos se dirigen hacia la fase acuosa, los de la capa exterior de la membrana hacia el líquido extracelular y los de la capa interior hacia el citoplasma.


Su función es delimitar la célula y controlar lo que sale e ingresa de la célula. MITOCONDRIA Las mitocondrias son orgánulos celulares encargados de suministrar la mayor parte de la energía necesaria para la actividad celular (respiración celular). Actúan, por lo tanto, como centrales energéticas de la célula y sintetizan ATP a expensas de los carburantes metabólicos

(glucosa,

ácidos

grasos

y

aminoácidos). La mitocondria presenta una membrana exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros llamados porinas o VDAC (canal aniónico dependiente de voltaje), que permiten el paso de moléculas de hasta 10 kDa de masa y un diámetro aproximado de 2 nm.

CENTROSOMAS Un orgánulo exclusivo de la célula eucariota animal es el centrosoma, formado por dos centriolos. Participa en el proceso de división celular, permitiendo que se forme el huso acromático, gracias al cual se desplazan los cromosomas a los polos de la célula. También interviene en el movimiento celular. CENTRIOLO Cada una de las dos estructuras de forma cilíndrica que se encuentran en el centro de un orgánulo de las células eucarióticas denominado

centrosoma.

Al

par

de

centriolos se conoce con el nombre de diplosoma;

éstos

se

perpendicularmente entre sí.

disponen


RETICULO ENDOPLASMÁTICO LISO El RE liso desempeña varias funciones. Interviene en la síntesis de casi todos los lípidos que forman la membrana celular y las otras membranas que rodean las demás estructuras celulares, como las mitocondrias. Las

células

especializadas

en

el

metabolismo de lípidos, como las hepáticas, suelen tener más RE liso. El RE liso también interviene en la absorción y liberación de calcio para mediar en algunos tipos de actividad celular. En las células del músculo esquelético, por ejemplo, la liberación de calcio por parte del RE activa la contracción muscular.

RETÍCULO ENDOPLASMATICO RUGOSO

La superficie externa del RE rugoso está cubierta de diminutas estructuras llamadas ribosomas, donde se produce la síntesis de proteínas.

Transporta

las

proteínas

producidas en los ribosomas hacia las regiones celulares en que sean necesarias o hacia el aparato de Golgi, desde donde se pueden exportar al exterior.

LISOSOMA Los

lisosomas

(del

griego

lysis

=

destrucción) son orgánulos de membrana sencilla que albergan en su interior enzimas hidrolíticos. Se trata de vesículas esféricas rodeadas de membrana con un diámetro aproximado de 1 µm. Se originan a partir del aparato de Golgi:


algunas de las vesículas emitidas por la cara trans de este orgánulo, tras un proceso de maduración, se transforman en lisosomas. El contenido de los lisosomas es abundante en enzimas hidrolíticos. Estos enzimas catalizan reacciones de hidrólisis, es decir, reacciones en las que, mediante la intervención del agua, se rompen determinados enlaces covalentes, en particular, aquellos que mantienen unidos a los diferentes sillares estructurales que forman parte de las macromoléculas (enlaces éster, peptídicos, glucosídicos, etc.). NÚCLEO La célula eucariota se caracteriza por tener su material genético encerrado en una estructura de aspecto globular que recibe el nombre de núcleo. La presencia constante de esta estructura en las células de tejidos animales y vegetales fue establecida ya desde los primeros tiempos de la teoría celular. Cada célula tiene normalmente un sólo núcleo, pero algunas pueden tener dos o más. El núcleo suele ser un cuerpo esférico, sin embargo en ocasiones su forma guarda relación con la de la célula. Así, cuando la célula es alargada (como muchas células vegetales) el núcleo también se alarga orientándose según el eje mayor de la misma. También existen en algunas células núcleos de formas muy sofisticadas (lobulados, estrellados, etc.). NUCLÉOLO El nucléolo es un corpúsculo esférico, denso y de aspecto granular, con alto contenido en RNA y proteínas. En él se sintetiza el RNA ribosómico que se ensambla a continuación con las proteínas ribosómicas sintetizadas en el citoplasma para dar lugar a las subunidades mayor y


menor de los ribosomas. Estas subunidades son exportadas al citoplasma donde a su vez se ensamblan para constituir los ribosomas.

MEMBRANA CELULAR DEL NUCLEO

La envoltura nuclear, membrana nuclear o carioteca, es una capa porosa (con doble unidad de membrana lipídica) que delimita al núcleo, la estructura característica de las células eucariotas.

PORO NUCLEAR Los

"poros

nucleares"

son

grandes

complejos de proteínas que atraviesan la envoltura nuclear, la cual es una doble membrana que rodea al núcleo celular, presente en la mayoría de los eucariontes. Hay cerca de 2000 Complejos de Poro Nuclear (ingl: NPC) en la envoltura nuclear de la célula de un vertebrado, pero su número varía dependiendo del número de transcripciones de la célula. Las proteínas que forman los complejos de poro nucleares son conocidas como nucleoporinas. Cerca de la mitad de las nucleoporinas contienen comúnmente una estructura terciaria alfa solenoide o beta hélice, o en algunos casos ambas como dominios proteicos separados. ADN

Inicialmente el ADN se encuentra en el núcleo, siempre y cuando las células sean eucariontes.

CROMOSOMAS


Durante los períodos de división celular las fibras

de

cromatina

se

condensan,

empaquetándose más y más sobre sí mismas, para

dar

lugar

individualizadas

a

unas

estructuras

se

denominan

que

cromosomas.

Así

pues,

cromatina

cromosomas,

aun

presentando

y

aspectos

diferentes cuando se les observa al microscopio óptico, tienen idéntica composición, y sólo difieren en su mayor o menor grado de empaquetamiento. Conviene resaltar que los cromosomas existen como tales entidades individuales aun cuando se encuentran en forma de cromatina, pero en tal estado aparecen tan extendidas y enredadas que resultan indistinguibles. VACUOLA DIGESTIVA La vacuola digestiva es una bolsa que se encuentra presente en las células vegetales y en algunas células de bacterias procariontes. Su función no es solo almacenar agua sino que se encarga de regular el agua entre la célula y el medio asegurándose de que la célula tenga siempre los niveles de agua adecuados para su actividad.

El origen de la vacuola es por unión de vesículas. Células inmaduras poseen varias vesículas pequeñas, que luego se fusionan para formar vacuolas. CITOPLASMA El citoplasma es la parte del protoplasma que, en una célula eucariota, se encuentra entre el núcleo celular y la membrana plasmática. Consiste en una emulsión coloidal muy fina de aspecto granuloso, el citosol o hialoplasma, y en una diversidad de orgánulos celulares que desempeñan


diferentes funciones. Su función es albergar los orgánulos celulares y contribuir al movimiento de estos. El citosol es la sede de muchos de los procesos metabólicos que se dan en las células. El citoplasma se divide en ocasiones en una región externa gelatinosa, cercana a la membrana, e implicada en el movimiento celular, que se denomina ectoplasma; y una parte interna más fluida que recibe el nombre de endoplasma y donde se encuentran la mayoría de los orgánulos. El citoplasma se encuentra en las células procariotas así como en las eucariotas y en él se encuentran varios nutrientes que lograron atravesar la membrana plasmática, llegando de esta forma a los orgánulos de la célula. POLISOMAS Un polisoma

(o polirribosoma) es

un

conjunto de ribosomas asociados a una molécula

de

RNAm

para

realizar

la

traducción simultánea de una misma proteína.

RIBOSOMAS Los

ribosomas

son

estructuras

que

generalmente se encuentran asociadas al retículo endoplasmático rugoso, pero también se hallan libres en el citoplasma (ribosomas libres). Tanto en células eucariontes (vegetal y animal) como procariontes representan un sitio de síntesis de proteínas celulares. Los denominados ribosomas libres no están unidos a ninguna de las estructuras citoplasmáticas (organelas). La función principal de los ribosomas libres es la síntesis de las proteínas que se utilizan en el interior de la célula. Es importante diferenciar esto, que los ribosomas libres sintetizan proteínas para el uso interno de la célula mientras que los ribosomas unidos al retículo endoplasmático sintetizan proteínas para la exportación y/o anclaje en la membrana de la célula.


MICROVELLOSIDAD Son

prolongaciones

de

la

membrana

plasmática con forma de dedo, que sirven para aumentar el contacto de la membrana plasmática con una superficie interna. Si el epitelio

es

de

absorción,

las

microvellosidades tienen en el eje central filamentos de actina, si no fuera de absorción este eje no aparecería. Recubriendo la superficie hay una cubierta de glicocálix. Las microvellosidades son muy abundantes en epitelios de absorción, como el epitelio intestinal y el de la córnea. PEROXISOMAS Son orgánulos citoplasmáticos muy comunes en forma de vesículas que contienen oxidasas y catalasas. Estas enzimas cumplen funciones de detoxificación celular. Como la mayoría de los orgánulos, los peroxisomas solo se encuentran en células eucariotas. Fueron descubiertos en 1965

por

Christian

colaboradores.

de

Duve

Inicialmente

y

recibieron

sus el

nombre de microcuerpos y están presentes en todas las células eucariotas. COMPLEJO DE GOLGI El aparato de Golgi es un orgánulo presente en todas las células eucariotas. Pertenece al sistema de endomembranas. Está formado por unos 80 dictiosomas (dependiendo del tipo de célula), y estos dictiosomas están compuestos por 40 o 60 cisternas (sáculos) aplanadas rodeados de membrana que se encuentran apilados unos encima de otros, y cuya función es completar la fabricación de algunas proteínas. Funciona como una planta empaquetadora, modificando vesículas del retículo endoplasmático rugoso. El material nuevo de las membranas se forma en varias cisternas del aparato de Golgi. Dentro de las funciones que posee el aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación, glicosilación de lípidos, almacenamiento y


distribución de lisosomas, al igual que los peroxisomas, que son vesículas de secreción de sustancias. La síntesis de polisacáridos de la matriz extracelular.

VESICULA DE GOLGI SECRETORA La vesícula en biología celular es también llamada vesícula pinocítica, es un orgánulo que forma un compartimento pequeño y cerrado, separado del citoplasma por una bicapa lipídica igual que la membrana celular. Muchas vesículas se crean en el aparato de Golgi, pero también en el retículo endoplasmático rugoso (RER), o se forman a partir de partes de la membrana plasmática. Las vesículas de SECRECIÓN se denominan GERL, que significa una porción del retículo endoplásmico cerca del aparato de Golgi y carente de ribosomas, estas vesículas se originan por secreción celular de las cisternas membranosas del complejo de Golgi, presentes únicamente en las células eucariotas y que se diferencian en LISOSOMAS (animales) y VACUOLAS funcionales (en vegetales).

CITOESQUELETO El citoesqueleto es un orgánulo y también es un entramado tridimensional de proteínas que provee soporte interno en las células, organiza las estructuras internas e interviene en los fenómenos de transporte, tráfico y división celular. En las células eucariotas, consta de filamentos de actina, filamentos intermedios, microtúbulos y septinas, mientras que en las procariotas está constituido principalmente por las proteínas estructurales FtsZ y MreB. El citoesqueleto es una estructura dinámica que mantiene la forma de la célula, facilita la movilidad celular (usando estructuras como los cilios y los flagelos), y desempeña un importante papel tanto en el tráfico


intracelular (por ejemplo, los movimientos de vesículas y orgánulos) y en la división celular MICROFILAMENTOS Los microfilamentos son finas fibras de proteínas globulares de 3 a 7 nm de diámetro que le dan soporte a la celula. Los microfilamentos forman parte del citoesqueleto

y

están

compuestos

predominantemente de una proteína contráctil llamada actina. Estos se sitúan en la periferia de la célula y se sintetizan desde puntos específicos de la membrana celular. Su función principal es la de darle estabilidad a la célula y en conjunción con los microtúbulos le dan la estructura y el movimiento. Solo están presentes en células bacteriófagos de organismos supra celulares. FILAMENTOS INTERMEDIOS Los

filamentos

intermedios

son

componentes del citoesqueleto, formados por agrupaciones de proteínas fibrosas. Su nombre deriva de su diámetro, de 10 nm, menor que el de los microtúbulos, de 24 nm,

pero

mayor

que

el

de

los

microfilamentos, de 7 nm. Son ubicuos en las células animales.

MICROTÚBULOS Los microtúbulos son estructuras tubulares de las células, de 25 nm de diámetro exterior y unos 12 nm de diámetro interior, con longitudes que varían entre unos pocos nanómetros a micrómetros, que se originan en

los

centros

organizadores

de

microtúbulos y que se extienden a lo largo de todo el citoplasma. Se hallan en las


células eucariotas y están formadas por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina. Los microtúbulos intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis) y que, junto con los microfilamentos y los filamentos intermedios, forman el citoesqueleto. CITOSOL El

Citosol,

citoplásmica

hialoplasma es

la

parte

o

matriz

líquida

del

citoplasma de la célula, está delimitado por la membrana celular y la membrana nuclear. Dentro de él se encuentran inmersos la mayoría de los organelos celulares.

CUERPO BASAL Un cuerpo basal o cinetosoma es una estructura que se presenta en la base de los undilopodios eucariotas (cilios o flagelos) y que sirve como punto de nucleación para el crecimiento

de

los

microtúbulos

del

axonema. Los cuerpos basales se derivan de los centriolos a través de un proceso en gran parte desconocido. Son estructuralmente iguales, cada uno de ellos contiene una configuración helicoidal en 9+0 tripletes de microtúbulos (9 exteriores y 0 interiores) formando un cilindro hueco.

CRESTA MITOCONDRIAL

Las crestas mitocondriales son puentes o tabiques incompletos provenientes de la invaginación de la membrana interna de las


mitocondrias, la función de la cadena oxidativa es transportas protones y electrones por una serie de coenzimas.

FIBRAS INTERMEDIAS Las fibras intermedias tienen un tamaño que está entre el de los microtúbulos y el de los microfilamentos. Poseen un diámetro de 7 nm a 10 nm. Están formadas por proteínas fibrosas de estructura muy estable, la cuál es muy parecida a la del colágeno, y son muy abundantes en las células sometidas a esfuerzos mecánicos, como parte de las que forman el tejido conjuntivo.

NUCLEOPLASMA El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material

llamado

nucleoplasma.

La

membrana nuclear está perforada por poros que permiten el intercambio de material celular entre nucleoplasma y citoplasma.

RETICULO ENDOPLASMÁTICO La expresión más patente del sistema membranoso interno que caracteriza a la célula

eucariota

es

el

retículo

endoplasmático. Se trata de una red tridimensional de cavidades limitadas por membranas que se extiende por todo el citoplasma. Estas cavidades presentan


formas muy variadas (cisternas aplanadas, vesículas globulares y túbulos sinuosos) y están todas ellas interconectadas dando lugar a un compartimento subcelular único, la luz del retículo endoplasmático, separado del hialoplasma por la membrana del retículo endoplasmático. Una porción especializada de este sistema membranoso constituye la envoltura nuclear, que limita al núcleo y lo separa del citoplasma; la cavidad interna de dicha envoltura se continúa con la luz del retículo endoplasmático. Se distinguen dos tipos, o mejor dos zonas del retículo endoplasmático: el retículo endoplasmático rugoso, que posee ribosomas adheridos a la cara externa de sus membranas, y el retículo endoplasmático liso, que carece de ellos. El retículo endoplasmático desempeña una gran variedad de funciones celulares. Las proteínas sintetizadas en los ribosomas del retículo endoplasmático rugoso pasan a continuación a la cavidad interior del mismo, o bien quedan ancladas en sus membranas, para ser distribuidas seguidamente a distintos lugares de la célula o al medio extracelular dentro de pequeñas vesículas membranosas. GOTITA LIPÍDICA Una bicapa lipídica es una membrana delgada formada por dos capas de moléculas de lípidos. Estas membranas son láminas planas que forman una barrera continua y delimitan las células. La membrana celular de todos los organismos vivos y muchos virus está compuesta de una bicapa lipídica, y también las membranas que rodean el núcleo de la célula y otras estructuras subcelulares. La bicapa lipídica es la barrera que mantiene a iones, proteínas y otras moléculas compartimentadas e impide su libre difusión. Las bicapas lipídicas son ideales para este papel porque, aunque tienen sólo unos pocos nm de espesor, son impermeables a la mayoría de las moléculas solubles en agua (moléculas hidrófilas). Las bicapas son especialmente impermeables a los iones, lo que permite a las células regular las concentraciones de electrolitos y pH mediante el bombeo de iones a través de sus membranas mediante el uso de proteínas llamadas canales iónicos.


CELULA VEGETA


Una célula vegetal es un tipo de célula eucariota de la que se componen muchos tejidos en las animales. A menudo, es descrita con los rasgos de una célula del parénquima asimilador de una planta vascular. Pero sus características no pueden generalizarse al resto de las células de una planta, meristemáticas o adultas, y menos aún a las de los muy diversos organismos imprecisamente llamados vegetales. Las células adultas de las plantas terrestres presentan rasgos comunes, convergentes con las de otros organismos sésiles, fijos al sustrato, o pasivos, propios del plancton, de alimentación osmótrofa, por absorción, como es el caso de los hongos, pseudohongos y de muchas algas. Esos rasgos comunes se han desarrollado independientemente a partir de protistas unicelulares fagótrofos desnudos (sin pared celular). Todos los eucariontes osmótrofos tienden a basar su solidez, sobre todo cuando alcanzan la pluricelularidad, en la turgencia, que logran gracias al desarrollo de paredes celulares resistentes a la tensión, en combinación con la presión osmótica del protoplasma, la célula viva. Así, las paredes celulares son comunes a los hongos y protistas de modo de vida equivalente, que se alimentan por absorción osmótica de sustancias orgánicas, y a las plantas y algas, que toman disueltas de las medias sales minerales y realizan la fotosíntesis. Y también cabe agregar que no tienen centriolos en su interior, ya que estos solo se presentan en las células animales.

ESTRUCTURA DE LA CÉLULA MEMBRANA PLASMÁTICA La membrana plasmática, membrana celular, membrana citoplasmática o plasmalema, es una bicapa lipídica que delimita todas las células. Es una estructura laminada formada por fosfolípidos, glicolípidos y proteínas que rodea, limita, da forma y contribuye a mantener el equilibrio entre el interior (medio intracelular) y el exterior (medio extracelular) de las células. Regula la entrada y salida de muchas sustancias entre el citoplasma y el medio extracelular. Está compuesta por dos láminas que sirven de "contenedor" para el citosol y los distintos compartimentos internos de la célula, así como también otorga protección mecánica. Está formada principalmente por fosfolípidos (fosfatidiletanolamina y fosfatidilcolina), colesterol, glúcidos y proteínas (integrales y periféricas). La principal característica de esta barrera es su permeabilidad selectiva, lo que le permite seleccionar las moléculas que deben entrar y salir de la


célula. Cuando una molécula de gran tamaño atraviesa o es expulsada de la célula y se invagina parte de la membrana plasmática para recubrirlas cuando están en el interior ocurren respectivamente los procesos de endocitosis y exocitosis. La célula vegetal posee una membrana celular interna y externa.

COMPLEJO DE GOLGI El aparato de Golgi, es también llamado complejo o cuerpo de Golgi, se encarga de la distribución y el envío de los productos químicos de la célula. Modifica proteínas y lípidos (grasas) que han sido construidos en el retículo endoplasmático y los prepara para expulsarlos fuera de la célula. VESICULA DE GOLGI Con frecuencia se observan estas vesículas revestidas surgiendo por gemación de las cisternas golgianas. Muchas especializadas que elaboran grandes cantidades de algún producto de secreción tienen, además de las pequeñas vesículas de Golgi, un número elevado de grandes

vesículas

secretoras,

denominadas


también gránulos o vacuolas secretas. Estas vesículas mucho mayores están localizadas en el lado del aparato de Golgi más cercano a la membrana plasmática, y contienen, concentrado, el producto que segrega la célula. CLOROPLASTO Los

cloroplastos

celulares

que

son en

los los

orgánulos organismos

eucariontes foto sintetizadores se ocupan de la fotosíntesis. Están limitados por una envoltura formada por dos membranas concéntricas y contienen vesículas, los tilacoides,

donde

se

encuentran

organizados los pigmentos y demás moléculas que convierten la energía lumínica en energía química, como la clorofila. El término cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosíntesis, o específicamente a los plastos verdes propios de las algas verdes y las plantas. RIBOSOMAS Los

ribosomas

son

complejos

macromoleculares de proteínas y ácido ribonucleico (ARN) que se encuentran en el citoplasma, en las mitocondrias, en el retículo

endoplasmático

y

en

los

cloroplastos. Son un complejo molecular encargado de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides).


MITOCONDRIA Las mitocondrias son organelos celulares en

los

cuales

indispensable eucariontes: Durante

ocurre para

la

este

un las

células

respiración proceso

proceso

celular.

ocurre

la

combustión de los carbohidratos, que permite liberar la energía contenida en su estructura. Los carbohidratos que se utilizan en las mitocondrias provienen principalmente de la fotosíntesis (en las plantas y algunos otros organismos que fotosintetizan) o de la ingestión (en las formas de vida heterótrofas). MEMBRANA TILACOIDES Los tilacoides son sacos aplanados que forman parte de la estructura de la membrana interna del cloroplasto, sitio de las reacciones captadoras de luz de la fotosíntesis y de la fotofosforilación; las pilas de tilacoides forman colectivamente las granas. El medio que rodea a los tilacoides se denomina estroma del cloroplasto. Los tilacoides son rodeados por una membrana que delimita el espacio intratilacoidal, o lumen. En los tilacoides se produce la fase luminosa, fotoquímica, o dependiente de la luz del Sol; su función es absorber los fotones de la luz solar. Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantófilas) y distintos lípidos ; proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP-sintetasa. GRÁNULOS DE ALMIDÓN


Los granos de almidón (insolubles en agua). La planta es capaz de cambiar almidón en ciertos azúcares solubles en el hialoplasma. La forma de los granos de almidón almacenados, es diferente para las especies vegetales, lo cual es un elemento para determinar la especie de las plantas. RIBOSOMAS La función de los ribosomas es la síntesis de proteínas. Este es el proceso mediante el cual el mensaje contenido en el ADN nuclear, que ha sido previamente transcrito en un ARN mensajero, es traducido en el citoplasma, juntamente con los ribosomas y los ARN de transferencia que transportan a los aminoácidos, para formar las proteínas celulares y de secreción. PARED CELULAR La pared celular se construye a partir de diversos materiales, dependiendo de la clase de organismo. En las plantas, la pared celular se compone, sobre todo, de un

polímero

de

carbohidrato

denominado celulosa, un polisacárido, y puede actuar también como almacén de carbohidratos para la célula. En las bacterias, la pared celular se compone de peptidoglicano. Entre las archaea se presentan paredes celulares con distintas composiciones químicas, incluyendo capas S de glicoproteínas, pseudopeptidoglicano o polisacáridos. Los hongos presentan paredes celulares de quitina, y las algas tienen típicamente paredes construidas a partir de glicoproteínas y polisacáridos. No obstante, algunas especies de algas pueden presentar


una pared celular compuesta por dióxido de silicio. A menudo, se presentan otras moléculas accesorias integradas en la pared celular. VACUOLA Una vacuola es una cavidad rodeada por una membrana que se encuentra en el

citoplasma

principalmente

de de

las las

células, vegetales.

Una vacuola es una cavidad rodeada y constituida por una membrana que se encuentra en el citoplasma de las células, vegetales

y

algunos

organismos

unicelulares,

principalmente tales

como

de

las

las

amebas.

Se forman por fusión de las vesículas procedentes del retículo endoplasmático y del aparato de Golgi. CITOSOL

El Citosol, hialoplasma o matriz citoplásmica es la parte líquida del citoplasma de la célula, está delimitado por la membrana celular y la membrana

nuclear.

Dentro

de

él

se

encuentran inmersos la mayoría de los organelos celulares.

PLASMODESMO Se llama plasmodesmo a cada una de las unidades continuas de citoplasma que pueden atravesar las paredes celulares, manteniendo interconectadas las células continuas en organismos pluricelulares en


los que existe pared celular, como las plantas o los hongos. Permiten la circulación directa de las sustancias del citoplasma entre célula y célula comunicándolas, atravesando las dos paredes adyacentes a través de perforaciones acopladas, que se denominan punteaduras cuando sólo hay pared primaria. Cada plasmodesmo es recorrido a lo largo de su eje por un desmotúbulo, una estructura cilíndrica especializada del retículo endoplasmático. Al hallarse unidos entre sí los protoplastos de las células vivas por medio de plasmodesmos, constituyen un simplasto único. El movimiento de sustancias a través de los plasmodesmos se denomina transporte simplástico. CAPA INTERCELULAR O LAMINILLA MEDIA La laminilla media está formada por sustancias pépticas y es difícil de observar con microscopio óptico. La pared primaria se encuentra en células jóvenes y áreas en activo crecimiento, por ser relativamente fina y flexible, en parte por presencia de sustancias pépticas y por la disposición desordenada de las microfibrillas de celulosa. Las células que poseen este tipo de pared tienen la capacidad de volver a dividirse por mitosis: desdiferenciación. Ciertas zonas de la pared son más delgadas formando campos primarios de puntuaciones donde plasmodesmos comunican dos células contiguas. La pared secundaria aparece sobre las paredes primarias, hacia el interior de la célula, se forma cuando la célula ha detenido su crecimiento y elongación. Se la encuentra en células asociadas al sostén y conducción, donde el protoplasma muere a la madurez. PERIXISOMA Los peroxisomas tienen un papel esencial en el metabolismo lipídico, en especial en el acortamiento de los ácidos grasos de cadena muy larga, para su completa oxidación en las mitocondrias, y en la oxidación de la cadena lateral del colesterol, necesaria para la síntesis de ácidos biliares; también


interviene en la síntesis de ésteres lipídicos del glicerol (fosfolípidos y triglicéridos) e isoprenoides; también contienen enzimas que oxidan aminoácidos, ácido úrico y otros sustratos utilizando oxígeno molecular con formación de agua oxigenada. CITOESQUELETO El citoesqueleto es un orgánulo y también es

un

entramado

tridimensional

de

proteínas que provee soporte interno en las células, organiza las estructuras internas e interviene en los fenómenos de transporte, tráfico y división celular. En las células eucariotas, consta de filamentos de actina, filamentos intermedios, microtúbulos y septinas, mientras que en las procariotas está constituido principalmente por las proteínas estructurales FtsZ y MreB. Las septinas se consideran el cuarto componente del citoesqueleto. El citoesqueleto es una estructura dinámica que mantiene la forma de la célula, facilita la movilidad celular (usando estructuras como los cilios y los flagelos), y desempeña un importante papel tanto en el tráfico intracelular (por ejemplo, los movimientos de vesículas y orgánulos) y en la división celular. MICROFILAMENTOS Los microfilamentos son parte del citoesqueleto. Su función es la de dar estabilidad a la estructura y la forma de la celula. No son contráctiles, pero pueden

generar

movimiento

ensamblándose y desensamblándose rápidamente

como

en

los

pseudópodos de algunas amebas, y neutrofilos. Constan de una doble hélice de cadenas proteicas de actina con giro dextrógiro, y con diámetro aproximado de 7 nanómetros. En la citocinesis de casi todas las células que entran en división, forman un anillo contráctil en asociación con otra proteína llamada miosina para separar por completo la membrana de la celula madre, y


formar dos células hijas. Debajo de la membrana celular forman una estructura llamada corteza celular que es poco más viscosa que el interior del citoplasma, y donde están muchas proteínas periféricas. FILAMETOS INTERMEDIARIOS Los

filamentos

intermedios

son

componentes del citoesqueleto, formados por agrupaciones de proteínas fibrosas. Su nombre deriva de su diámetro, de 10 nm, menor que el de los microtúbulos, de 24 nm, pero mayor que el de los microfilamentos, de 7 nm. Son ubicuos en las células animales. Su función principal es darle rigidez a la célula. La función depende de la composición y la localización de los filamentos. Las láminas nucleares además de darle rigidez al núcleo participan en la regulación de transcripción. Otros miembros, las queratinas, participan en algunas uniones celulares (desmosomas y hemidesmosomas). MICROTUBULOS Los microtúbulos son estructuras tubulares de las células, de 25 nm de diámetro exterior y unos 12 nm de diámetro interior, con longitudes que varían entre unos pocos nanómetros a micrómetros, que se originan en

los

centros

organizadores

de

microtúbulos y que se extienden a lo largo de todo el citoplasma. Se hallan en las células eucariotas y están formadas por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina. Los microtúbulos intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis) y que,


junto con los microfilamentos y los filamentos intermedios, forman el citoesqueleto. Además, constituyen la estructura interna de los cilios y los flagelos. NÚCLEO El

núcleo

celular

es

un

orgánulo

membranoso que se encuentra en el centro de las células eucariotas. Contiene la mayor parte del material genético celular, organizado en múltiples moléculas lineales de ADN de gran longitud formando complejos con una gran variedad de proteínas como las histonas para formar los cromosomas. El conjunto de genes de esos cromosomas se denomina genoma nuclear. La función del núcleo es mantener la integridad de esos genes y controlar las actividades celulares regulando la expresión génica. Por ello se dice que el núcleo es el centro de control de la célula. La principal estructura que constituye el núcleo es la envoltura nuclear, una doble membrana que rodea completamente al orgánulo y separa ese contenido del citoplasma, además de contar con poros nucleares que permiten el paso a través de la membrana para la expresión genética y el mantenimiento cromosómico. Aunque el interior del núcleo no contiene ningún subcompartimento membranoso, su contenido no es uniforme, existiendo una cierta cantidad de cuerpos subnucleares compuestos por tipos exclusivos de proteínas, moléculas de ARN y segmentos particulares de los cromosomas. NUCLEOLO El nucléolo es una región del núcleo que se considera una estructura supramacromolecular,

que

no

posee

membrana que lo limite. La función principal del nucléolo es la transcripción del ARN ribosomal por la polimerasa I,


y el posterior procesamiento y ensamblaje de los pre-componentes que formarán los ribosomas. Además, el nucléolo tiene roles en otras funciones celulares tales como la regulación del ciclo celular, las respuestas de estrés celular, la actividad de la telomerasa y el envejecimiento. Estos hechos muestran la naturaleza multifuncional del nucléolo, que se refleja en la complejidad de su composición de proteína y de ARN, y se refleja también en los cambios dinámicos que su composición molecular presenta en respuesta a las condiciones celulares variables. CROMATINA La cromatina es el conjunto de ADN, histonas y proteínas no histónicas que se encuentran en el núcleo de las células eucariotas y que constituye el genoma de dichas células. Las unidades básicas de la cromatina son

los

encuentran

nucleosomas. formados

Estos

se por

aproximadamente 146 pares de bases de longitud (el número depende del organismo), asociados a un complejo específico de 8 histonas nucleosómicas (octámero de histonas). Cada partícula tiene una forma de disco, con un diámetro de 11 nm y contiene dos copias de cada una de las 4 histonas H3, H4, H2A y H2B. Este octámero forma un núcleo proteico, alrededor del cual se enrolla la hélice de ADN (de aproximadamente 1,8 vueltas). Entre cada una de las asociaciones de ADN e histonas existe un ADN libre llamado ADN espaciador, de longitud variable entre 0 y 80 pares de nucleótidos que garantiza flexibilidad a la fibra de cromatina. ADN


En la célula hay mecanismos que coordinan realizan

las en

actividades su

interior

que

se

mediante

instrucciones que se encuentran en los fragmentos de ADN, la molécula de la herencia

contenida

en

el

núcleo.

El ADN de la célula vegetal se encuentra

en

el

núcleo.

El ADN constituye el material hereditario de un individuo. En él están escritas las instrucciones que deben seguir las células para construir un organismo y mantenerlo vivo. Todas las células que forman un individuo contienen una copia idéntica de ADN. Cada una de ellas, sin embargo, lee una parte de estas instrucciones y por eso hay células con diferentes formas y funciones. ENVOLTURA NUCLEAR Principalmente

delimita

dos

compartimentos funcionales dentro de la célula misma, el de transcripción ADN en ARN (dentro del núcleo) y el de traducción ARN en Proteína (en el citoplasma).

La

envoltura

nuclear

aparece atravesada de manera regular por perforaciones, los poros nucleares. Estos poros no son simples orificios, sino estructuras complejas acompañadas de una armazón de proteínas (por ejemplo: nucleoporinas), que facilitan a la vez que regulan los intercambios entre el núcleo y el citoplasma. Se llama complejo del poro nuclear (NPC) a cada una de esas puertas de comunicación. Por estos salen las moléculas de ARN producidas por la transcripción, que deben ser leídas en los ribosomas del citoplasma. CROMOSOMAS Se denomina cromosoma a cada uno de los pequeños cuerpos en forma de bastoncillos en que se organiza la cromatina del núcleo celular durante las divisiones celulares (mitosis y meiosis). En las células eucariotas y en las arqueas (a diferencia que en las


bacterias), el ADN siempre se encontrará en forma de cromatina, es decir asociado fuertemente a unas proteínas denominadas histonas. Este material se encuentra en el núcleo de las células eucariotas y se visualiza como una maraña de hilos delgados. Cuando el núcleo celular comienza el proceso de división (cariocinesis), esa maraña de hilos inicia un fenómeno de condensación progresivo que finaliza en la formación de entidades discretas e independientes: los cromosomas. Por lo tanto, cromatina y cromosoma son dos aspectos morfológicamente distintos de una mism a entidad celular. PORO DEL NÚCLEO Los

"poros

nucleares"

son

grandes

complejos de proteínas que atraviesan la envoltura nuclear, la cual es una doble membrana que rodea al núcleo celular, presente en la mayoría de los eucariontes. Hay cerca de 2000 Complejos de Poro Nuclear en la envoltura nuclear de la célula de un vertebrado, pero su número varía dependiendo del número de transcripciones de la célula. Las proteínas que forman los complejos de poro nucleares son conocidas como nucleoporinas. Cerca de la mitad de las nucleoporinas contienen comúnmente una estructura terciaria alfa solenoide o beta hélice, o en algunos casos ambas como dominios proteicos separados. RETÍCULO ENDOPLASMÁTICO LISO El retículo endoplasmático liso (REL) es un orgánulo celular que consiste en un entramado

de

túbulos

membranosos

interconectados entre sí y que se continúan con

las

cisternas

del

retículo

endoplasmático rugoso. A diferencia de


éste, no tiene ribosomas asociados a sus membranas (de ahí el nombre de liso) y, en consecuencia, la mayoría de las proteínas que contiene son sintetizadas en el retículo endoplasmático rugoso. Es abundante en aquellas células implicadas en el metabolismo de lípidos, la detoxificación, y el almacenamiento de calcio. RETÍCULO ENDOPLASMÁTICO RUGOSO El retículo endoplasmático rugoso tiene esa apariencia debido a los numerosos ribosomas adheridos a su membrana mediante unas proteínas denominadas "riboforinas". Tiene unos sáculos más redondeados cuyo interior se conoce como "luz del retículo" o "lumen" donde caen las proteínas sintetizadas en él. Está muy desarrollado en las células que por su función deben realizar una activa labor de síntesis, como las células hepáticas o las células del páncreas. También se le conoce como R.E.R. DICTIOSOMA El aparato de Golgi es un orgánulo presente en las células eucariotas y pertenece al sistema de endomembranas del citoplasma celular. Está formado por unos 4-8 dictiosomas, que son sáculos aplanados rodeados de membrana y apilados unos encima de otros. Funciona como

una

planta

empaquetadora,

modificando vesículas del retículo endoplasmático rugoso. El material nuevo de las membranas se forma en varias cisternas del Golgi. Dentro de las funciones que posee el aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación, glicosilación de lípidos y la síntesis de polisacáridos de la matriz extracelular. Debe su nombre a Camillo Golgi, Premio Nobel de Medicina en 1906 junto a Santiago Ramón y Cajal.


TONOPLASTO El tonoplasto es la membrana que delimita la vacuola central en las células vegetales. Es selectivamente permeable y permite incorporar ciertos iones al interior de la vacuola. Es responsable de la turgencia celular y permite a las células de las plantas incorporar y almacenar agua con muy poco gasto de energía. CITOPLASMA El citoplasma es la parte del protoplasma que, en una célula eucariota, se encuentra entre el núcleo celular y la membrana plasmática.

Contiene

pared

celular.

Consiste en una emulsión coloidal muy fina de aspecto granuloso, el citosol o hialoplasma, y en una diversidad de orgánulos

celulares

que

desempeñan

diferentes funciones. El citoplasma se divide en ocasiones en una región externa gelatinosa, cercana a la membrana, e implicada en el movimiento celular, que se denomina ectoplasma; y una parte interna más fluida que recibe el nombre de endoplasma y donde se encuentran la mayoría de los orgánulos. El citoplasma se encuentra en las células procariotas así como en las eucariotas y en él se encuentran varios nutrientes que lograron atravesar la membrana plasmática, llegando de esta forma a los orgánulos de la célula. LISOSOMA Los lisosomas son orgánulos relativamente grandes, formados por el retículo endoplasmático rugoso y luego empaquetadas por el complejo de Golgi, que contienen enzimas hidrolíticos y proteolíticas que sirven para digerir los materiales de origen externo (heterofagia) o interno (autofagia) que llegan a ellos. Es decir, se encargan de la


digestión celular. Son estructuras esféricas rodeadas de membrana simple. Son bolsas de enzimas que si se liberasen, destruirían toda la célula.

Esto

implica

que

la

membrana

lisosómicas debe estar protegida de estas enzimas. El tamaño de un lisosoma varía entre 0.1–1.2 μm. VESICULA MEMBRANOSA Las vesículas almacenan, transportan o digieren productos y residuos celulares. Son una herramienta fundamental de la célula para la organización del metabolismo. Muchas vesículas se crean en el aparato de Golgi,

pero

también

en

el

retículo

endoplasmático rugoso (RER), o se forman a partir de partes de la membrana plasmática. Las vesículas de SECRECIÓN se denominan GERL, que significa una porción del retículo endoplásmico cerca del aparato de Golgi y carente de ribosomas, estas vesículas se originan por secreción celular de las cisternas membranosas del complejo de Golgi, presentes únicamente en las células eucariotas y que se diferencian en LISOSOMAS (animales) y VACUOLAS funcionales (en vegetales).


CÉLULA PROCARIOTA Se llama procariota a las células sin núcleo celular definido, es decir, cuyo material genético se encuentra disperso en el citoplasma, reunido en una zona denominada nucleoide.1 Por el contrario, las células que sí tienen un núcleo diferenciado del citoplasma, se llaman eucariotas, es decir aquellas cuyo ADN se encuentra dentro de un compartimiento separado del resto de la célula. Los procariontes u organismos procariotas son aquellos microorganismos que están constituidos por células procariotas, es decir, células que presentan un ADN libre en el citoplasma, ya que no hay núcleo celular. Han recibido diversas denominaciones tales como bacterias, móneras y esquizofitas, dependiendo de los autores y los sistemas de clasificación. Otros términos usados fueron Mychota, Protophyta y Procaryotae. Actualmente la mayoría considera que en realidad se trata de 2 dominios diferentes: Bacteria y Archaea, y minoritariamente se considera que forma un imperio denominado Prokaryota. Los procariontes se diferencian de los eucariontes, además de la ausencia de organelos, en que los ribosomas procariotas son más pequeños. Pero la diferencia más importante radica en el origen mismo de los eucariontes, el cual estaría demostrado que fue el resultado de una asociación simbiótica entre diferentes organismos procariotas. Las células procariotas estructuralmente son las más simples y pequeñas. Como toda célula, están delimitadas por una membrana plasmática que contiene pliegues hacia el interior (invaginaciones) algunos de los cuales son denominados laminillas y otro es denominado mesosoma y está relacionado con la división de la célula. La célula procariota por fuera de la membrana está rodeada por una pared celular que le brinda protección. El interior de la célula se denomina citoplasma. En el centro es posible hallar una región más densa, llamada nucleoide, donde se encuentra el material genético o ADN. Pueden estar libres o formando conjuntos denominados poli ribosomas. Las células procariotas pueden tener distintas estructuras que le permiten la locomoción, como por ejemplo las cilias (que parecen pelitos) o flagelos (filamentos más largos que las cilias).


ESTRUCTURA DE LA CÉLULA CILIOS Los cilios son unos orgánulos exclusivos de

las

células

caracterizan

por

eucariotas, presentarse

que

se

como

apéndices con aspecto de pelo que contienen una estructura central altamente ordenada, constituida generalmente por más de 600 tipos de proteínas, envuelta por el citosol y la membrana plasmática. Aunque ya era ampliamente empleado en la literatura científica rusa de principios de siglo, Lynn Margulis propuso en 1985 el término undilopodios para referirse conjuntamente a los orgánulos que poseen estas características, los cilios y flagelos. La distinción entre éstos últimos se basa principalmente en su tamaño (unos 10-15 μm), número por célula (suelen ser muchos, con excepción de los cilios primarios y nodales, mientras que los flagelos uno o dos) y en su caso, por el patrón de movimiento (los cilios baten como un remo, son inmóviles o crean un vórtice, mientras que los flagelos ondulan). DICTIOSOMA El aparato de Golgi es un orgánulo presente en todas las células eucariotas. Pertenece al sistema de endomembranas. Está formado por unos 80 dictiosomas (dependiendo del tipo de célula), y estos dictiosomas están compuestos por 40 o 60 cisternas (sáculos) aplanadas rodeados de membrana que se encuentran apilados unos encima de otros, y cuya función es completar la fabricación de algunas proteínas. Funciona como una planta empaquetadora, modificando vesículas del retículo endoplasmático rugoso.


LIPOPROTEINA Las

lipoproteínas

macromoleculares

son

complejos

compuestos

por

proteínas y lípidos que transportan masivamente las grasas por todo el organismo.

Son

esféricas,

hidrosolubles, formadas por un núcleo de

lípidos

apolares

(colesterol

esterificado y triglicéridos) cubiertos con una capa externa polar de 2 nm formada a su vez por apoproteínas, fosfolípidos y colesterol libre. Muchas enzimas, antígenos y toxinas son lipoproteínas. PROTEINA DE SUPERFICIE Proteínas que se encuentran en las membranas celulares e intracelulares. Están formadas por dos tipos, las proteínas periféricas y las integrales. Incluyen la mayoría de las enzimas asociadas con la membrana, proteínas antigénicas, proteínas transportadoras, y receptores de drogas, hormonas y lectinas. FLAGELO El flagelo bacteriano es una estructura filamentosa que sirve para impulsar la célula bacteriana. Tiene una estructura única, completamente diferente de los demás

sistemas

presentes

en

otros

organismos, como los cilios y flagelos eucariotas, y los flagelos de las arqueas. Presenta una similitud notable con los sistemas mecánicos artificiales, pues es una compleja estructura compuesta de varios elementos (piezas) y que rota como una hélice.


CITOPLASMA Está

limitado

por

la

membrana

citoplasmática, y en él se encuentran las inclusiones celulares. En un principio considerado una "solución" homogénea de

proteínas,

los

métodos

de

fraccionamiento acoplados a los estudios bioquímicos y de microscopía electrónica mostraron la complejidad del sistema. En realidad está atravesado por numerosas membranas que lo compartimentalizan, si bien esta compartimentalización no es tan desarrollada como en eucariotas. Si se homogeneízan células bacterianas y luego se las centrifuga a 100.000 g se separa en el fondo del tubo de centrifuga una fracción "particulada" que contiene los ribosomas y las membranas con los ácidos nucleicos, y una fracción "soluble" que contiene proteínas, y los ácidos ribonucleicos solubles ( ARNt y ARNm). CROMOSOMA Los cromosomas son por lo general unas mil veces más largos que las células en las cuales residen por lo que los procesos de replicación, segregación, transcripción y traducción de esta enorme masa de DNA plantea un reto en la organización espacial, este cromosoma circular existe dentro de la célula como una estructura compacta y altamente organizada en dominios súper helicoidales separados. Al menos un locus e incluso varios de ellos están específicamente posicionados dentro de la célula y el resto del cromosoma se mantiene linealmente organizado con respecto a estos marcadores. La compactación del DNA se mantiene gracias al balance de fuerzas, incluyendo el súper enrollamiento, compactación por proteínas, transcripción, transerción (transcripción y traducción acopladas con la inserción del polipéptidos naciente a la membrana) y las interacciones RNA-DNA.


El cromosoma bacteriano. Este cromosoma se localiza en un espacio denominado nucleoide, el cual está separado del citoplasma (no rodeado por una membrana), estudios recientes muestran que el nucleoide está orientado y altamente organizado dentro de la célula, dicha organización es transmitida de una generación a la siguiente por segregación progresiva de los nuevos cromosomas. El modelo más común de segregación cromosómica es mediante la maquinaría encargada de la división celular, sin embargo, el modo de segregación varía de una especie a otra VACUOLA DE GAS Una vacuola es un orgánulo unido a la membrana que está presente en todas las

células

de

algunos

protistas,

animales y bacterianas de plantas y células de hongos y. Las vacuolas son esencialmente

compartimentos

cerrados que están llenos de agua que contiene

inorgánicas

y

moléculas

orgánicas incluyendo las enzimas en solución, aunque en ciertos casos, pueden contener sólidos que han sido envueltos. Las vacuolas se forman por la fusión de múltiples vesículas de la membrana y son efectivamente sólo formas más grandes de éstos. El orgánulo no tiene ninguna forma o tamaño básico; su estructura varía en función de las necesidades de la célula. La función y la importancia de vacuolas varía en gran medida de acuerdo con el tipo de célula en la que están presentes, que tiene mucha más importancia en las células de plantas, hongos y ciertos protistas que los de los animales y bacterias LAMINILLAS Se trata de pliegues membranosos que se extienden desde la membrana plástica hacia el

interior

(abiertos:

no

forma

compartimentos). Su función puede ser muy diversa dependiendo del organismo que se


trate, como por ejemplo: presentar pigmentos relacionados con la fotosíntesis (bacteriorodopsina o bacterioclorofíla) o partículas captadores de nitrógeno molecular, etc.). MOTOR O ROTOR El motor está impulsado por la fuerza motriz de una bomba de protones, es decir, por el flujo de protones (iones de hidrógeno) a través de la membrana plasmática bacteriana. Este bombeo se

produce

debido

al

gradiente

de

concentración creado por el metabolismo de la célula. (En Vibrio hay dos tipos de flagelos, laterales y polares, y algunos son impulsados por una bomba de iones de sodio en lugar de la bomba de protones). El rotor puede girar a 6.000-17.000 rpm, pero el filamento por lo general sólo alcanza 200-1000 rpm. CÁPSULA La cápsula bacteriana es la capa con borde definido formada por una serie de polímeros orgánicos que en las bacterias se deposita en el exterior de su pared celular. Generalmente contiene glicoproteínas y un gran número de polisacáridos

diferentes,

incluyendo

polialcoholes y aminoazúcares. La cápsula es una capa rígida organizada en matriz impermeable que excluye colorantes como la tinta china. En cambio, la capa de material extracelular que se deforma con facilidad, es incapaz de excluir partículas y no tiene un límite definido, se denomina capa mucosa o glucocalix. Ambas se pueden detectar con métodos como la tinción negativa o la tinción de Burri. La cápsula le sirve a las bacterias de cubierta protectora resistiendo la fagocitosis. También se utiliza como depósito de alimentos y como lugar de eliminación de sustancias de desecho.


ESPACIO INTERMENBRANAL Está compuesto por un líquido similar al del

hialoplasma,

tiene

una

alta

concentración de protones como resultado del bombeo de los mismos por los complejos

enzimáticos

de

la

cadena

respiratoria. En él se localizan diversas enzimas que intervienen en la transferencia del enlace de alta energía del ATP. RETICULO ENDOPLASMATICO LISO El retículo endoplasmático es un complejo

sistema

de

membranas

dispuestas en forma de sacos aplanados y túbulos que están interconectados entre sí compartiendo el mismo espacio interno. Sus membranas se continúan con las de la envuelta nuclear y se pueden extender hasta las proximidades de la membrana plasmática, llegando a representar más de la mitad de las membranas de una célula. Debido a que los ácidos grasos que las componen suelen ser más cortos, son más delgadas que las demás. PARED CELULAR La pared celular es una capa rígida que se localiza en el exterior de la membrana plasmática en las células de plantas, hongos, algas, bacterias y arqueas. La pared celular protege el contenido de la célula, y da rigidez a ésta, funciona como mediadora en todas las relaciones de la célula con el entorno y actúa como


compartimiento celular. Además, en el caso de hongos y plantas, define la estructura y otorga soporte a los tejidos y muchas más partes de la célula. La pared celular se construye a partir de diversos materiales, dependiendo de la clase de organismo. En las plantas, la pared celular se compone, sobre todo, de un polímero de carbohidrato denominado celulosa, un polisacárido, y puede actuar también como almacén de carbohidratos para la célula. En las bacterias, la pared celular se compone de peptidoglicano. Entre las archaea se presentan paredes celulares con distintas composiciones químicas, incluyendo capas S de glicoproteínas, pseudopeptidoglicano o polisacáridos. COMPLEJO DE GOLGI El complejo de Golgi es un orgánulo presente en todas las células eucariotas. Pertenece al sistema de endomembranas. Está formado por unos 80 dictiosomas (dependiendo del tipo de célula), y estos dictiosomas están compuestos por 40 o 60 cisternas (sáculos) aplanadas rodeados de membrana que se encuentran apilados unos encima de otros, y cuya función es completar la fabricación de algunas proteínas. ARN El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una cadena de ribonucleótidos. Está presente tanto en las células procariotas como en las eucariotas, y es el único material genético de ciertos virus (virus ARN). El ARN celular es lineal y de hebra sencilla, pero en el genoma de algunos virus es de doble hebra. ADN


El ácido desoxirribonucleico, abreviado como ADN, es un ácido nucleico que contiene instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. El papel principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. AREA NUCLEAR (NUCLEOIDE) Es la región que contiene el ADN en el citoplasma de los procariontes. Esta región es de forma irregular. En las células procariotas, el ADN es una molécula única, generalmente circular y de doble filamento, que se encuentra ubicada en un sector de la célula que se conoce con el nombre de nucleoide, que no implica la presencia de membrana nuclear. Dentro del nucleoide pueden existir varias copias de la molécula de ADN. MESOSOMA Un mesosoma es un invaginación que se produce en la membrana plasmática de las células procariotas como consecuencia de las técnicas de fijación utilizadas en la preparación de

muestras

en

microscopía

electrónica.

Aunque en el decenio de 1960 se propusieron


varias funciones para estas estructuras, a finales del decenio de 1970 los mesosoma fueron reconocidos como malformaciones y actualmente no son considerados como parte de la estructura normal de las células bacterianas. RIBOSOMA Los

ribosomas

macromoleculares

son de

proteínas

complejos y

ácido

ribonucleico (ARN) que se encuentran en el citoplasma, en las mitocondrias, en el retículo endoplasmático y en los cloroplastos. Son un complejo molecular encargado de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en células procariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en los espermatozoides). CUERPO BASAL Un cuerpo basal o cinetosoma es una estructura que se presenta en la base de los undilopodios eucariotas (cilios o flagelos) y que sirve como punto de nucleación para el crecimiento

de

los

microtúbulos

del

axonema. Los cuerpos basales se derivan de los centriolos a través de un proceso en gran parte desconocido. Son estructuralmente iguales, cada uno de ellos contiene una configuración helicoidal en 9+0 tripletes de microtúbulos (9 exteriores y 0 interiores) formando un cilindro hueco. PLÁSMIDO


Los plásmidos son moléculas de ADN extracromosómico circular o lineal que se replican y transcriben independientes del ADN

cromosómico.

Están

presentes

normalmente en bacterias, y en algunas ocasiones en organismos eucariotas como las levaduras. Su tamaño varía desde 1 a 250 Kb. El número de plásmidos puede variar, dependiendo de su tipo, desde una sola copia hasta algunos cientos por célula. Las moléculas de ADN plasmídico, adoptan una conformación tipo doble hélice al igual que el ADN de los cromosomas, aunque, por definición, se encuentran fuera de los mismos. Se han encontrado plásmidos en casi todas las bacterias. A diferencia del ADN cromosomal, los plásmidos no tienen proteínas asociadas. PERIPLASMA El espacio periplasmático es el compartimento que rodea al citoplasma en algunas células procariotas, como por ejemplo en las bacterias Gram negativa. Aparece comprendido entre la membrana plasmática, por dentro, y la membrana externa de las gram negativas, por fuera. Tiene una

gran

importancia

en

el

metabolismo

energético, que se basa en la alimentación por procesos activos de diferencias de composición química, concentración osmótica y carga eléctrica entre este compartimento y el citoplasma. El espacio intermembrana de las mitocondrias y el espacio periplastidial de los plastos, orgánulos que habrían evolucionado a partir de la endosimbiosis, son homólogos del espacio periplasmático.


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.