NM405_03

Page 1

ZEM NDE DO AL DURUM τ

σ


SÜKUNETTE TOPRAK BASINCI KATSAYISI (K0) σx K0 = ( zeminde K 0 < 3) σz K0 =

ν 1 −ν

Etki Eden Faktörler: Dane da ılımı (Dmax, Cu, Cr) Kayma direnci açısı (φ φ) Kumda çimentolanma A ırı konsolidasyon (OCR) Kilin aktivitesi

( A = I %C ) c

P

Jeolojik ko ullar (birikme, olu ma, tektonizma) Drenaj ko ulları (k)


SÜKUNETTE TOPRAK BASINCI KATSAYISI (K0) Zemin Cinsi

K0

Temiz Kum (NL)

1-Sinφ

Kum (OC)

KoNL × OCRSinφ

NL Kil

0.19+0.23×log IP

OC Kil

0.7+0.1(OCR-1.2)

Kum Kil, yu rulmu eker

Referans (Jaky, 1945) (Mayne ve Kulhawy, 1982)

sıkı K0=0.37, gev ek K0=0.46 K0=0.69 2.00 K0=0.50


K0 için Tipik De erler K0 =

ν 1 −ν

ν !

"

ν için Tipik De erler

K0

Doygun

0.40-0.50

0.67-1.00

Doygun Olmayan

0.10-0.30

0.11-0.42

Kumlu Kil

0.20-0.30

0.25-0.42

Silt

0.30-0.35

0.42-0.54

0.20-0.40

0.25-0.67

ri (e=0.4-0.7)

0.15

0.18

nce (e=0.4-0.7)

0.25

0.33

0.10-0.40

0.11-0.67

Zemin Cinsi Kil

Sıkı Kum Kaya


ÖRNEK: ρd = 19 kN/m3 ve φ’ = 280 olan bir zeminin 5 m derinli inde OCR=1 ve OCR=5 durumları için dü ey ve yatay efektif gerilmeler ile maksimum kayma gerilmelerini bulunuz (Su seviyesi yüzeyden 1 m a a ıda ve zemin tüm kesitte doygundur).

σ v′ = 5 ⋅ 19 − 4 ⋅ 9.81 = 55.76 kPa K 0NC = 1 − Sinφ = 1 − Sin28 = 0.531

K 0OC = K 0NC ⋅ OCR Sinφ = 0.531 ⋅ 5Sin 28 = 1.13

σ h′ = σ z′ ⋅ K 0 = 55.76 ⋅ 0.531 = 29.61 kPa

σ h′ = σ z′ ⋅ K 0 = 55.76 ⋅ 1.13 = 63.01 kPa

τ= τ NC

55.76 − 29.61 = = 13.08 kPa 2

σ 1′ − σ 3′ 2

τ OC

55.76 − 63.01 = = −3.63 kPa 2


KUMDA ELAST K DENGE τ

kum

KUM

σh

σz

Temiz Kum (φ 300) K0 = ( 1 - Sin φ ) K0<1

σz sa tarafta

σ


K LDE ELAST K DENGE τ

KL

KL

σh

σz

σh #$-&

#$%&

#$ $ &' ($ ) *

+,

#$-&

#$ $ . ($ & " / 0 1& )

σ


ZEM NDE EK GER LME DURUMU 3 4

2


τ

φ Sükunette c σh=K0σz

σ

σz=ρ.z

τ

φ Aktif

45+φ/2

c σh=Kaσz

σ

σz=ρ.z

Pasif 45-φ/2

c

φ

45-φ/2

σz=ρ.z

σh=Kpσz

σ


PLAST K DENGE PROBLEMLER !

%

&

'(

"# ! $

)

*

)

!

#

Aktif Sükunette

Pasif

Aktif c

Sükunette

Pasif

φ

45-φ/2

σh=Kaσz σh=K0σz

σz=ρ.z

σh=Kpσz

σ


( + $! *, ,

C. PLAST K DENGE PROBLEMLER

% ( &# % '$

$

! ).# $ $/ $


PLAST K DENGE AKT F F--PAS F TOPRAK BASINÇLARI


PLAST K DENGE

σ1 σ3

τ

σ3

σ1

τ

OB =Yenilme Yok

B=Yenilme

τ

σ

c

σ3

σ1

φ

σ


KIRILMA ((yenilme yenilme veya akma)’ NIN TEMS L • Malzemenin direnci uygulanan gerilmeden dü ükse yenilme meydana gelir ve PLAST K DENGE olarak isimlendirilir. • Bu durum gerilme dairelerinin kırılma zarfına te et olmaları ile temsil edilir. • Kırılma, gerilme dairelerinin kırılma zarfına te et olması ile gerçekle ti ine göre bu durumda gerilmeler arasında bir ba ıntı olmalı. τ

σ = τmax = f( σ )

τ σ

τ = c + σ ⋅ tan φ

φ

c

σ3

σ1

σ1 = σ3Nφ + 2c Nφ

σ


AKT F TOPRAK BASINCI

Pa = ρ .z.K a


AKT F TOPRAK BASINCININ OLU UMU 0.001h gev ek kum 0.04 h yumu ak kil

σ1

τ σ3

σ3

φ h

σ1

σ3=σa σ3=Kaρ’z

σ3=σo σ3=Koρ’z

σ

σ1 σ1=ρ’z

σ o= 4 σ a= = 4 =

, ,

5 5


PAS F TOPRAK BASINCI

Pp = ρ .z.K p


PAS F TOPRAK BASINCININ OLU UMU 0.01 h gev ek kum 0.05 h yumu ak kil

σ o= 4 σP= , K o= 4 K p= ,

h

, ,

5 5

σ1

τ

σ3

σ3

φ

σ1

σ3=σo

σ1

σ3=σp

σ3=Koρ’z

σ1=ρ’z

σ3=Kpρ’z

σ


TOPRAK BASINCININ OLU UMU için GEREKL HAREKET M KTARI

Kp ye gelebilmek için yakla ık Ka nın 4 katı bir hareket gerekiyor


τ

KUMDA PLAST K DENGE τ = σ tan φ

σ 1 = σ 3 ⋅ Nφ Nφ = 45 + φ / 2

45−φ /2

σ

AKT F

PAS F

σ x = σ z ⋅ Ka

σx =σz ⋅ Kp

1 = tan 2 Ka = Nφ

σx = ρ ⋅ z⋅

45 −

φ 2

1 Nφ

σ x = ρ ⋅ z ⋅ tan

1 + Sinφ φ = tan 2 45 + 1 − Sinφ 2

K p = Nφ = tan

2

45 +

φ 2

σ x = ρ ⋅ z ⋅ Nφ 2

45 −

φ 2

σ x = ρ ⋅ z ⋅ tan

2

45 +

φ 2


KUMDA AKT F DURUMDA BASINÇ DA ILIMI 45 +

φ 2

#+0 +67 8 #8 7 8 9 +

H #

ρ φ

H

Pa

c=0

H/3

K a .ρ .H

1 K a . ρ .H 2 Pa = K a .ρ .H .H . = 2 2


KUMDA PAS F DURUMDA BASINÇ DA ILIMI 45 −

φ 2

# # H #

ρ φ

H

P

c=0

p

H/3

K p .ρ .H 2 1 K p .ρ .H Pp = K p .ρ .H .H . = 2 2


KUMDA AKT F ve PAS F DURUMDA BASINÇ DA ILIMLARI

Herhangi bir derinlikte zeminde efektif yatay gerilme

AKT F

Pa =

H

0

PAS F

Pp =

H

0

ph = ρ ′ ⋅ z ⋅ K

1 1 2 ph ⋅ dz = ⋅ ρ ′ ⋅ H ⋅ 2 Nφ

1 2 ′ ph ⋅ dz = ⋅ ρ ⋅ H ⋅ Nφ 2


Batık durumda toplam yatay kuvvet

Pxx = Pa , p + Pw Aktif durum

1 1 1 2 2 2 ′ Pa = ⋅ H ⋅ ρ ⋅ K a + ⋅ H ⋅ ρ w = ⋅ H ⋅ ( ρ ′ ⋅ K a + ρ w ) 2 2 2 Pasif durum

1 1 1 2 2 Pp = ⋅ H ⋅ ρ ′ ⋅ K P + ⋅ H ⋅ ρ w = ⋅ H 2 ⋅ ( ρ ′ ⋅ K P + ρ w ) 2 2 2


YAYILI YÜKÜN YANAL BASINCA ETK S (q)

ρ

ρ . ( H + h ') .Ka ρ . ( H + h ') .Kp ρ . ( H + h ') .Ko

q.K

ρ .H .K


K LDE AKT F BASINÇ Zeminde c (kohezyon) varsa bundan dolayı teorik olarak bir çekme gerilmesi alabilir denilebilir. Yani belli bir yere kadar bu zemin kendini desteksiz tutabilir. Kil z0 derinli e kadar çekme gerilmesi alıyor dolayısı ile 2×z0 derinli e kadar teorik olarak kazılabilir.


K LDE AKT F BASINÇ

σ1 = 0

X

σ3

KL

2c Nφ

2c Nφ

(-)

ρn

z0

H (-)

(+) X’

(+)

ρ n zK

σ 1 = σ 3 ⋅ N φ + 2 ⋅ c ⋅ Nφ yüzeyde

σ 1 = ρ n .z = 0

0 = σ 3 ⋅ Nφ + 2 ⋅ c ⋅ Nφ

σ3 = −

2⋅c Nφ

Kritik kazı derinli i

çekme bö lg esi

σ3 = 0

ρ ⋅ z0 = 0 + 2 ⋅ c ⋅ Nφ z0 =

H c = 2 ⋅ z0 =

2⋅c

ρn

4⋅c

ρn

⋅ Nφ


K L N PAS F BASINCI 2 8 2 +6+ 2 : #

#" ; < 2 " =

>

8 ? +0 6+#

ρ (kN/m3 ) c

(kPa = kN/m 2 )

φ (o ) 45 −

φ 2

q.Nφ

ph = q⋅ Nφ + 2⋅ c ⋅ Nφ + ρ ⋅ H ⋅ Nφ

2c. Nφ

ρ .H .Nφ

( Nφ = Kp )

1 2 Pp = q ⋅ Nφ ⋅ H + 2 ⋅ c ⋅ Nφ ⋅ H + ⋅ ρ ⋅ H ⋅ Nφ 2


>

@

A

4 4 4 4

B ,

,

3

,

B

4 4

, B

4 1) Ka H=5 m

ρ d = 20 kN / m3 φ ′ = 30o c=0

1 − Sinφ 1 − Sin(30o ) 1 veya Ka = = = o 1 + Sinφ 1 + Sin(30 ) 3 30 1 φ K a = tan 2 (45 − ) = t an 2 (45 − ) = 2 2 3

2) Dü ey efektif gerilmeler (σ’z) ve su basınçları (Uw) Yüzeyde: σ z′ = 0

uw = 0

Tabanda: σ z′ = ρ ′.H o = (20 − 9.81) × 5 = 51 kPa uw = ρ w .H o = 9.81 × 5 = 49 kPa

3) Tabanda yanal efektif gerilme (σ’x)a

1 (σ x′ ) a = K a .σ z′ = × 51 = 17 kPa 3


0 2

,

5 2

C , D 5

9

D

5

H=5 m

17 kPa

1 2

BB

49 kPa

,

Pa = Psu basıncı + Ptoprak basıncı Pa =

1 1 1 1 ⋅ (σ x′ ) a ⋅ H o + ⋅ u ⋅ H o = ( × 17 × 5) + ( × 49 × 5) = 165 kN 2 2 2 2

2 2

BB

;

, BB

5

5 4

z = H o / 3 = 5 / 3 = 1.67 m

4 5

E

C

& F.

,


3

4

94 4

B

3

15 kPa

,

5

,

GWT

1) Ka, Kp

H=4 m

ρ d = 19 kN/m

φ 1 − sin φ 1 − sin 26 K a = tan 2 (45 − ) = = = 0.39 2 1 + sin φ 1 + sin 26 φ 1 + sin φ 1 + sin 26 = = 2.56 K p = tan 2 (45 + ) = 2 1 − sin φ 1 − sin 26

3

φ ′ = 26o c = 8 kPa

2) 43 (σ’z) Yüzeyde: σ z′ = 0 uw = 0 Tabanda: σ z′ = ρ ′.H o = (19 − 9.81) × 4 = 36.76 kPa uw = ρ w .H o = 9.81 × 4 = 39.24 kPa

(σ’x)a

3) C

(σ x′ ) a = K a .σ z′ = 0.39 × 36.76 = 14.34 kPa

4) Yüzeyde ve t

4 4

(σ’q)a

3

(σ q′ ) a = K a .q = 0.39 × 15 = 5.85 kPa

5) #

(σ’c)a

3 (σ c′ ) a = −

2c Nφ

=−

2×8 26 tan 2 (45 + ) 2

= 10 kPa


2 2

,

5

15 kPa

GWT

2 D

C , 5

2 24

(+)

(+)

9

D

5

#

H=4 m

14.34 kPa

5 C ,

5.85 kPa

(+) 39.24 kPa

BB

Pa = Pzemin + Pyayılı yük + Psu − Pkohezyon 1 1 ⋅ (σ x′ ) a ⋅ H o + (σ q′ ) a ⋅ H o + ⋅ u ⋅ H o − (σ c′ ) a ⋅ H o 2 2 1 1 Pa = ( × 14.34 × 4) + 5.85 × 4 + ( × 39.24 × 4) − 10 × 4 2 2 Pa = 28.68 + 23.4 + 78.48 − 40 = 90.56 kN Pa =

(-) -10 kPa


3 A

4 4 4

B

,

,

10 kPa SW H=3

ρ n = 17 kN/m3 GWT

SP H=3

′ = 32o φSW

ρ n = 19.31 kN/m3 ′ = 30o φSP

1) Kesitteki tüm zeminlerin Ka’ları

φ 1 − sin φ 1 − sin 32 ( K a ) SW = tan 2 (45 − ) = = = 0.307 2 1 + sin φ 1 + sin 32 φ 1 − sin φ 1 − sin 30 ( K a ) SP = tan 2 (45 − ) = = = 0.333 2 1 + sin φ 1 + sin 30


10 kPa

H=3

2 24

SW ρ n = 17 kN/m3 GWT

′ = 32 φSW SP ρ n = 19.31 kN/m3 o

H=3

′ = 30 φSP

% '$ -

2

o

2

C , D 5 9G

I

III

1

2

#

p1 = q × K aSW = 10 × 0.307 = 3.07 kPa p2 = q × K aSP = 10 × 0.333 = 3.33 kPa p3 = K aSW × ρ nSW × H SW = 0.307 × 17 × 3 = 15.66 kPa p4 = ρ nSW H SW × K aSP = 17 × 3 × 0.333 = 16.98 kPa ′ × H SP × K aSP = (19.31 − 9.81) × 3 × 0.333 = 9.50 kPa p5 = ρ SP p6 = ρW × HW = 9.81 × 3 = 29.43 kPa

9

D

5

3

IV

II

C , D 5 SP

4

V

VI 5

. "" (

6

#

PaI = 3.07 × 3 = 9.21 kN / m PaII = 3.33 × 3 = 9.99 kN / m 1 = 23.49 kN / m 2 = 16.98 × 3 = 50.94 kN / m

PaIII = 15.66 × 3 × PaIV

1 = 14.25 kN / m 2 1 = 29.43 × 3 × = 44.15 kN / m 2

PaV = 9.50 × 3 × PaVI

P = 152.05 kN / m


@ 9G

,

3

4 4

D &$

4 ,

5

#

6 *$

H

# , ,

( ρk = 19 kN / m3 , ρd = 22.5 kN / m3 ) X

L=30m

3 #

5

H=5m

> D

10 = B

σ

Kesme Kutusu Deney Sonuçları

τmax

m

5

@

113 229 tanφ = ≈ 150 300

Test No

1

2

σ

150

300

τ

113

229

φ = 37° s =τmax =σ ⋅ tanφ =σ ⋅ tan37

K 0 = 1 − Sinφ = 1 − sin 37 = 0.398 p0 = K 0 ⋅ z ⋅ ρ k = 0.398 ⋅ 5 ⋅ 19 = 37.81 kPa

( tabanda )

1 1 2 ⋅ ρ k ⋅ H ⋅ K 0 ⋅ B = ⋅ 19 ⋅ 52 ⋅ 0.398 ⋅ 10 = 945.3 kN P0 = 2 2


1 − Sinφ 1 45 − = = = tan 2 26.5 = 0.249 2 1 + Sinφ Nφ

pa = K a ⋅ z ⋅ ρ k = 0.249 ⋅ 5 ⋅ 19 = 23.66 kPa Pa =

( tabanda )

1 1 ⋅ ρ k ⋅ H 2 ⋅ K a ⋅ B = ⋅ 19 ⋅ 52 ⋅ 0.249 ⋅ 10 = 591.4 kN 2 2

c) K p = tan 2 45 +

φ 2

=

sw

67 )8 8 8 8 8

5m

b ) K a = tan

2

φ

63.5

23.66 kPa

1 + Sinφ = Nφ = tan 2 63.5 = 4.023 1 − Sinφ

p p = K p ⋅ z ⋅ ρ ′ + z ⋅ ρ w = 4.023 ⋅ 5 ⋅ 12.69 + 5 ⋅ 9.81 = 255.26 + 49.05 = 304.31 kPa ( taban ) Pp =

1 1 ⋅ ρ′⋅ H 2 ⋅ Kp ⋅ B + ⋅ ρw ⋅ H 2 ⋅ B 2 2

sw 5m

1 1 Pp = ⋅ 12.69 ⋅ 52 ⋅ 4.023 ⋅ 10 + ⋅ 9.81 ⋅ 52 ⋅ 10 2 2 Pp = 6381.5 + 1226.3 = 7607.8 kN

26.5

& 7 )8 8 % 6 8

255.26 kPa 49.05 kPa


3

4

A

B

I

BB

,

K a SP = tan 2 45 −

K a SW = tan 2 45 −

%

30 1 = 2 3

35 = 0.271 2

8:: 6

9

1 ⋅ 2 ⋅ 12 = 12 kN / m 2 1 Pa 2 = ⋅ (12 + 15.4 ) ⋅ 1 = 13.7 kN / m 2 Pa 3 = 12.5 ⋅ 3 = 37.5 kN / m Pa1 =

1 p1 = 18 ⋅ 2 ⋅ = 12 kPa 3 1 = 15.4 kPa 3 p3 = p4 = (18 ⋅ 2 + 10.19 ⋅ 1) ⋅ 0.271 = 12.5 kPa p2 = 18 ⋅ 2 + ( 20 − 9.81) ⋅ 1 ⋅

1 ⋅ 3 ⋅ 9.91 = 14.9 kN / m 2 1 Pa 5 = ⋅ 39.2 ⋅ 4 = 78.4 kN / m 2 P = 156.5 kN / m

Pa 4 =

p5 = 0

p6 = ( 22 − 9.81) ⋅ 3 ⋅ 0.271 = 9.91 kPa p7 = 0 p8 = 9.81 ⋅ 4 = 39.24 kPa

!

6

: *

6 ⋅ F = 12 × 3 + 1 +

8:: 6

) ;

M0 = 0

2 3 1 + 13.7 × 3.4 + 37.5 × 1.5 + 14.9 × + 78.4 × 4 × 3 3 3 F = 46 kN / m


3 JJ

4 4

, ,

! 3

ρ =22 2 d 0 φ=45

Batık GW

YASS

1

VI 4

2

IV

III

GW

3

Basınçlar

(-)

V

VIII

7 VII

5

Pa III = 2 ⋅ 9.75 = 19.5 kN / m

p5 = (18 − 9.81) ⋅ 3 ⋅ 0.171 = 4.20 kPa Nφ

=−

2 ⋅ 10 = −16.78 kPa 1.192

p7 = ( 22 − 9.81) ⋅ 2 ⋅ 0.171 = 4.17 kPa p8 = 9.81 ⋅ 5 = 49.05 kPa

K aCH = tan 2 45 −

10 = 0.704 2

Nφ CH = tan

45 +

10 = 1.192 2

Kuvvetler

p3 = 19 ⋅ 3 ⋅ 0.171 = 9.75 kPa

p4 = (18 − 9.81) ⋅ 3 ⋅ 0.704 = 17.30 kPa

45 = 0.171 2

8

p1 = 19 ⋅ 3 ⋅

1 = 18.98 kPa 3 p2 = 19 ⋅ 3 ⋅ 0.704 = 40.13 kPa

30 1 = 2 3

K aGW = tan 2 45 −

6

1 PaI = ⋅ 3 ⋅ 18.98 = 28.47 kN / m 2 PaII = 3 ⋅ 40.13 = 120.39 kN / m

2⋅c

BB

Su

kohezyon CH

I II

X

p6 = −

, K a SP = tan 2 45 −

ρd=18 kN/m3 3 φ=100 CH c=10 kPa kN/m3

,

Batık CH

Kuru kum

X

ρk=19 kN/m3 SP φ=300

5

1 ⋅ 3 ⋅ 17.30 = 25.95 kN / m 2 PaV = 2 ⋅ 4.20 = 8.40 kN / m PaIV =

PaVI = 3 ⋅ −16.78 = −50.34 kN / m 1 ⋅ 2 ⋅ 4.17 = 4.17 kN / m 2 1 = ⋅ 5 ⋅ 49.05 = 122.63 kN / m 2

PaVII = PaVIII

P = 279.17 kN / m


TEK L YÜK ETK S N N UZUNLAMASINA DE

M

σ b = σ h ⋅ cos 2 (1.1 ⋅ χ )

)." # * # !

# '$ ) ) / $ $! $

, (


TEK L ve Ç ZG YÜKLERDEN YANAL BASINÇ q: Çizgi Yük

x = m⋅H

q: çizgi yük Q: nokta yük

x a

z

z = n⋅H q m2 ⋅ n σ h = ph = 1.27 ⋅ ⋅ H ( m 2 + n 2 )2

σ h = ph = 0.203 ⋅

H

σh

q n ⋅ H ( 0.16 + n 2 )2

m > 0.4

m ≤ 0.4

Q: Nokta Yük

Q m2 ⋅ n2 σ h = ph = 1.77 ⋅ 2 ⋅ H ( m 2 + n 2 )3 Q n2 σ h = ph = 0.28 ⋅ 2 ⋅ H ( 0.16 + n 2 )3

m > 0.4 m ≤ 0.4


PROBLEM:

Yüzeydeki 1000 kN’luk Q (tekil) yükünden dolayı AA, BB (y=2m) ve CC (y=5m) dü ey eksenlerinde olu an yatay gerilme artı ını derinli e ba lı olarak hesaplayınız.

x H z n= H

x = m⋅H

m=

z = n⋅H

σ h = ph = 1.77 ⋅

Q m2 ⋅ n 2 ⋅ H 2 ( m 2 + n 2 )3

σ h = ph = 0.28 ⋅

Q n2 ⋅ H 2 ( 0.16 + n 2 )3

m ≤ 0.4

σh (kPa)

a) AA ekseni boyunca gerilme da ılı ı x 2 m= = = 0.286 ≤ 0.4 H 7

m > 0.4

0

( ikinci formül kullanılacak ) zemin özellikleri ve yer altı su seviyesi hesaplarda etkili de il!!! n2/(0.16+n2)3

0.28Q/H2

σh (kPa)

z (m)

n

0

0

0

0.160

0.0041

0

5.714

0

1

0.143

0.020

0.180

0.0058

3.448

5.714

19.7

2

0.286

0.082

0.242

0.0142

5.775

5.714

33.0

3

0.429

0.184

0.344

0.0407

4.521

5.714

25.8

4

0.571

0.327

0.487

0.1155

2.831

5.714

16.2

5

0.714

0.510

0.670

0.3008

1.696

5.714

9.7

6

0.857

0.735

0.895

0.7169

1.025

5.714

5.9

7

1

1

1.160

1.5609

0.641

5.714

3.7

2

Derinlik (m)

(0.16+n2)3

20

30

0

1

0.16+n2

n2

10

3

4

5

6

7

A

40


b) y=2 m (BB), y=5 m (CC) yatay uzaklıkta yatay gerilme artı ları σK

σ Q = σ h ⋅ Cos 2 (1.1 ⋅ψ )

y=5 m y=2 m

5 = 2.5 ψ 2 = 68.199° Cos 2 (1.1 ⋅ 68.199 ) = 0.067 2 0 2 2 0 tanψ 1 = = 1 ψ 1 = 45° Cos (1.1 ⋅ 45 ) = 0.422 2

tanψ 2 =

sh (kPa) 5

B

1

σh

B

σh

C

z (m)

0

1

2

3

4

5

6

7

(y=2 m) (kPa)

0

8.3

13.9

10.9

6.8

4.1

2.5

1.6

(y=5 m) (kPa)

0

1.3

2.2

1.7

1.1

0.7

0.4

0.3

Derinlik (m)

2

3

4

5

6

7

10

C

15


KISA SINAV SINAV--1

• A a ıdaki kesitte sürtünmesiz duvara etkiyen toplam aktif kuvveti hesaplayıp, bu kuvvetin etkime noktasını bulunuz. Nφ =

1 + Sinφ φ = tan2 45 + 1 − Sinφ 2

Ka =

1 Nφ

K p = Nφ

20 kPa SP ρn=16 kN/m3 φ= 300

2m YASS

CI ρd=17.81 kN/m3 φ=100 c=12 kPa

4m

Sonuçları Ka virgülden sonra 3 hane, yükler ve basınçlar için ise 2 hane olacak ekilde yuvarlayınız.


KISA SINAV SINAV--1 (Çözüm) 20 kPa SP YASS

CI

ρn=16 kN/m3 φ= 300

2m

ρd=17.81 4m kN/m3 0 φ=10 c=12 kPa

YÜK

SP

I 1

II (+)

2

III

CI

3

IV (+)

CIKOHEZYON

SU

4

V

VI 5

(+)

6

(-)

1 + Sinφ 1+ Nφ = 1 − Sinφ

1 1 − Sinφ 1 KaSP = = = Nφ 1 + Sinφ 3 1 1 − Sinφ KaCI = = = 0.704 Nφ 1 + Sinφ

VII (+)

7


KISA SINAV SINAV--1 (Çözüm) 20 kPa SP YASS

ΣP x=?

CI

ρn=16 kN/m3 φ= 300

YÜK

2m

I 1

ρd=17.81 4m kN/m3 0 φ=10 c=12 kPa

SP

2

II (+)

III

CI

3

p3 = ρ SP H SP KaSP

IV (+)

p4 = ρCI H SP KaSP p5 = ρCI′ H CI KaCI = (17.81 − 9.81) ⋅ 4 ⋅ 0.704 = 22.53kPa p6 = −

2c Nφ

=−

2 × 12 1.42

= −20.17 kPa

p7 = ρ w H w = 9.81 ⋅ 4 = 39.24kPa

SU

4

1 p1 = q ⋅ KaSP = 20 = 6.67 kPa 3 p2 = q ⋅ KaCI = 20 ⋅ 0.704 = 14.08kPa 1 = 16 ⋅ 2 ⋅ = 10.67kPa 3 = 16 ⋅ 2 ⋅ 0.704 = 22.53kPa

CIKOHEZYON

V (+)

VI 5

6

(-)

VII

7

(+)

PI = 6.67 ⋅ 2 = 13.34 kN / m PII = 14.08 ⋅ 4 = 56.32 kN / m 10.67 ⋅ 2 = 10.67 kN / m 2 PIV = 22.53 ⋅ 4 = 90.12 kN / m PIII =

22.53 ⋅ 4 = 45.06 kN / m 2 PVI = −20.17 ⋅ 4 = −80.68 kN / m PV =

39.24 ⋅ 4 = 78.48 kN / m 2 ΣP = 213.43 kN / m PVII =

203.87 kN / m ⋅ X = 5 ⋅13.34 + 2 ⋅ 56.32 + 4.67 ⋅10.67 + 2 ⋅ 90.12 + 1.33 ⋅ 45.06 − 2 ⋅ 80.68 + 1.33 ⋅ 78.48 X = 1.93 m


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.