BOÄ MOÂN TOAÙN ÖÙNG DUÏNG ÑHBK
---------------------------------------------------------------------------------------------------
TOAÙN 1 GIAÛI TÍCH HAØM MOÄT BIEÁN • BAØI 6: KHAI TRIEÅN TAYLOR •
TS . NGUYEÃN QUOÁC LAÂN (1 2 /2 0 0 7 )
CAÙC ÑÒNH LYÙ TRUNG BÌNH
------------------------------------------------------------------------------------------------------------------------------------
Cöïc trò taïi x0: ∃ ε > 0 : ∀ x ∈ (x0 – ε, x0 + ε) ⇒ f(x) ≤ f(x0) Fermat: f ñaït cöïc trò taïi x0 ∈ (a,b) & khaû vi taïi x0 ⇒ f’(x0) = 0 Minh hoaï hình hoïc:
ÑÒNH LYÙ ROLL
---------------------------------------------------------------------------------------------------------------------------------
Haøm f(x) lieân tuïc treân [a,b], khaû vi trong (a,
b),
f(a)
⇒ ∃ x0∈(a, b): f’(x0) = 0 Minh hoaï hình hoïc: VD: Chöùng minh phöông
trình
4ax3 + 3bx2 + 2cx – (a + b + c) = 0 coù ít nghieäm trong Giaûi:
nhaát
1
thöïc khoaûng Xeùt
=
f(b)
ÑÒNH LYÙ (SOÁ GIA) LAGRANGE
------------------------------------------------------------------------------------------------------------------------------------
Haøm f(x) lieân tuïc treân [a,b], khaû vi trong (a,b) ⇒ ∃ c ∈ (a, b): f(b) – f(a) = f’(c)(b – a) Aùp duïng: Khaûo saùt tính ñôn ñieäu cuûa haøm
y
=
f(x)
baèng ñaïo CMinh haøm VD: BÑThöùc arctgx − arctgy ≤ x − y
KHAI TRIEÅN TAYLOR
-------------------------------------------------------------------------------------------------------------------------------
Haøm y = f(x) coù ñaïo haøm taïi x0 ⇒ f(x) ≈ f(x0) + f’(x0)(xthöùc – x0) Taylor: f coù ñaïo haøm caáp n+1 Coâng treân (a,b); x0 , x∈(a, b) ( n) f ' ' ( x0 ) f ( x0 ) 2 f = f ( x0 ) + f ' ( x0 )( x − x0 ) + ( x − x0 ) + ... + ( x − x0 ) n + ? 2! n! n
⇒ f ( x) = ∑ k =0
( n +1) f ( k ) ( x0 ) f ( c) k ( x − x0 ) + ( x − x0 ) n+1 , c ∈ ( x0 , x ) k! (n + 1)! Rn ( x ) : Phaàn dö
Lagrange CT Taylor (phaàn dö Peano): f coù ñhaøm ñeán caáp n treân (k) ( x ) n f(a,b) 0 ( x − x )k + o ( x − x )n , x → x f ( x) = ∑ 0 0 0 k ! k =0
(
)
KHAI TRIEÅN MAC – LAURINT
--------------------------------------------------------------------------------------------------------------------------
x0 = 0: Khai trieån Mac – Laurint (phoå bieán) n f ( n ) ( 0) n f ( k ) ( 0) k f ( x) = f ( 0) + f ' ( 0) x + + x + Rn ( x ) = ∑ x + Rn ( x) n! k! k =0 Phaàn
f ( n+1) ( c ) n+1 x , c = c( x ) ∈ ( 0, x ) dö Rn ( x) = (n + 1)!
(
)
Lagrange: n +1 , x→0 Phaàn dö Rn ( x) = o x
Peano: VD: Khai trieån Mac – Laurint cuûa haøm ex
a/
x2 xn b/ cosxx e = 1 + x + + + + o( x n +1 ) , x → 0 2! n! Keát 2n x2 x4 x n cos x = 1 − + − + ( − 1) + o( x 2 n +1 ) , x → 0 quaû: 2! 4! ( 2 n )!
MINH HOAÏ KHAI TRIEÅN MAC – LAURINT
-----------------------------------------------------------------------------------------------------------------------------------
Minh hoaï hình hoïc khai trieån Mac - Laurint haøm p1 ( x) =f(x) x = sinx x3 p2 ( x ) = x − 6
x3 x5 p3 ( x) = x − + 6 120 Chuù yù: Ñoà thò
ña
thöùc
xaáp xæ tieán daàn veà ñoà thò
haøm
KHAI TRIEÅN MAC – LAURINT HAØM CÔ BAÛN
---------------------------------------------------------------------------------------------------------------------------
Haøm löôïng giaùc: sinx, cosx. Haøm tgx (chæ ñeán caáp ba) 3 5 x x ( − 1) n−1 x 2n−1 sin x = x − + + + + o x 2n , x → 0 3! 5! (2n − 1)!
( )
x2 x4 ( − 1) n x 2n cos x = 1 − + + + + o x 2 n+1 , x → 0 2! 4! (2n)!
(
)
( )
x3 tgx = x + + o x 4 , x → 0 3 Khai trieån ex: taùch muõ chaün, leû & ñan daáu. cos chaün → muõ chaün; sin leû → muõ leû; tg leû → muõ leû. K0 ñan daáu → shx, chx