BOÄ MOÂN TOAÙN ÖÙNG DUÏNG ÑHBK
---------------------------------------------------------------------------------------------------
TOAÙN 1 GIAÛI TÍCH HAØM MOÄT BIEÁN • BAØI 7: KYÕ NAÊNG KHAI TRIEÅN TAYLOR •
TS . NGUYEÃN QUOÁC LAÂN (12/2007)
KHAI TRIEÅN CÔ BAÛN: MUÕ, LGIAÙC, HYPERBOLIC
-------------------------------------------------------------------------------------------------------------------------------x
Töø khai trieån haøm y = e ⇒ Khai trieån sinx, chaüncoshx cosx,Muõ sinhx, n x2 x4 ( − 1) x 2 n cos x = 1 − + − ... + + o( x 2 n +1 ), x → 0 2 2! 4! (2n)! x e x = 1 + x + + ... 2! x3 ( − 1) n x 2 n +1 ( 2 n + 2 ) sin x = x − + ... + +o x , x→0 3! (2n + 1)! Muõleû Töông töï nhö sin x, cos x nhöngkhoâng ñan daáu → shx, chx 2 2n x3 x 2 n +1 x x shx = x + + ... + + o( x 2 n + 2 ), chx = 1 + + ... + + o( x 2 n +1 ) 3! ( 2n + 1)! 2! (2n)!
( )
x3 tgx = x + + o x 4 , x → 0 3
Chuù yù phaàn dö cosx, sinx, chx, shx: o nhoû cuûa
KHAI TRIEÅN CÔ BAÛN: LUYÕ THÖØA, 1/(1 ± x), LN(1 + x) -------------------------------------------------------------------------------------------------------------------------------------
Haøm nghòch ñaûo – inverse function (Toång
caáp soá nhaân): 1 1 n n n n 2 ( ) = 1+ x ++ x + o x , = 1 − x + x + + ( − 1) x + o( x n ) 1− x 1+ x Toång quaùt: Haøm luyõ thöøa (1 + x)α → Nhò n thöùc Newton (1 + x) (1 + x ) α = 1 + αx + α ( α − 1) x 2 + + α ( α − n + 1) x n + o( x n ) 2! n!
3 VD: Khai trieån MacLaurint f ( x ) = 3 1 + x ñeáncaáp 2 3 1 x 1 1 x 1 1 1 x 3 haøm Gia (1 + x ) 3 = 1 + + − 1 + − 1 − 2 + o( x ), x → 0 3 3 3 2! 3 3 3 3! ûi: ln(1 + x): ∫1/ x 2 x3 (−1) n −1 n ln (1 + x ) = x − + + + x + o( x n ) 2 3 n (1+x) → xn/n,
BAÛNG KHAI TRIEÅN CAÙC HAØM CÔ BAÛN: 7 HAØM ---------------------------------------------------------------------------------------------------------------------------
Haøm ex cos x sin x 1 1+ x 1 1− x
(1 + x )
α
ln (1 + x )
Khai trieån x2 x3 xn 1+ x + + + + 2! 3! n! 2n x2 x4 x n 1 − + − + ( − 1) x 2n 2! 4! ( 2 n )! 2 n +1 x3 x5 x n x − + − + ( − 1) x 2 n +1 3! 5! ( 2n + 1)! 1 − x + x − x + + ( − 1) x n 2
3
n
Phaàn dö ec Lagrange x n +1 ( n + 1)! cos( sin ) c 2 n + 2 x ( 2 n + 2 )! cos( sin ) c 2 n +3 x ( 2n + 3)! ( − 1) n+1 1 n + 2 x n+1 (1 + c )
1 + x + x 2 + x3 + + x n
α ( α − 1) 2 α ( α − n + 1) n 1 + αx + x + + x 2! n! n x 2 x3 x 4 n +1 x x − + − + + ( − 1) 2 3 4 n
PPHAÙP KHTRIEÅN MACLAURINT: TOÅNG, HIEÄU, TÍCH
-------------------------------------------------------------------------------------------------------------------------------------
Ñöa haøm caàn khai trieån veà daïng toång, hieäu, tích (ñhaøm, tphaân) caùc haøm cô baûn. Aùp duïng kh/tr MacLaurint cô baûn 2 x − 5 ln(1 + x ) VD: Khai trieån ML ñeán f ( x ) = e + 1− x 2 caáp 3: x2 x 2 3 ( ) Gia f ( x ) = 1 + x + + ... + 2 1 + x + x + ... − 5 x − + ... + o( x ) 2 2 ûi: VD: Khai trieån MacLaurint f ( x ) = cos x ⋅ cosh x x2 ñeán caáp 3: x 2 3 3 3 Gia f ( x ) = 1 − + o( x ) 1 + + o( x ) = 1 + o( x ), x → 0 2! 2! ûi: Chuù yù: Coù theå söû duïng caû ñaïo haøm, tích
(
)
phaân (coi chöøng C!) VD: Khai trieån ML ñeán f ( x ) = ln x + 1 + x 2 + 1
KHTRIEÅN MACLAURINT HAØM THÖÔNG: DUØNG 1/(1 ± x) -----------------------------------------------------------------------------------------------------------------------------------------
1 Vôùi thöông (tyû soá, phaân soá) 2 1± x haøm soá: Duøng Chuù yù: ÔÛ maãu soá baét buoäc
phaûi xuaát hieän soá 1! ex 1 , caáp 2 b/ , caáp 3 VD: Khai trieån a / 2+ x cos x 2 2 MacLaurint 1 1 1 x x x x 2 2 = 1 + x + + o( x ) 1 − + + o( x ) Gia a / e ⋅ ⋅ 2 1+ x 2 2 2! 2 4 2 ûi: 2 2 x 1 1 3 x 3 b/ = = 1 + + o( x ) + + o( x ) + ... 2 3 cos x 1 − ( x 2! + o( x ) ) 2 2 1 VD: Khai trieån MacLaurint f ( x ) = 2 x − 4x + 3 ñeán caáp 2 1 1 1 1 1 1 1 1 = − = ⋅ − Gia f ( x ) = ( x − 1)( x − 3) 2 x − 1 x − 3 2 3 1 − x 3 1 − x
KHAI TRIEÅN MACLAURINT VÔÙI HAØM HÔÏP
-------------------------------------------------------------------------------------------------------------------------------------
Haøm hôïp f(u(x)): Khai trieån laàn löôït töøng böôùc. Ñaàu tieân khai trieån MacLaurint u(x), sau ñoù khai trieån f(u) & caét ñeán luyõ thöøa ñöôïc yeâu caàu Luoân (Coù theå ñoåitra thöù Chuù yù quan troïng: kieåm töï). ñieàu kieän u(0) = 0! 2 4 VD: Khai trieån a / sin ( x ) b / cos x ñeáncaáp 3 u MacLaurint a / u = x 2 & u ( 0 ) = 0 ⇒ sin u = u − + ... = x 2 + o( x 4 ) Gia 3! 12 ûi: 2 4 x2 x4 x x 1 4 4 b / 1 − − + o( x ) = 1 + − + + o( x ) = 1 + u + ... 2 2 24 2 24 u VD (caûnh giaùc!): Khtrieån MacLaurint y = ln(2 +
KHAI TRIEÅN TAYLOR QUANH x – x0: ÑÖA VEÀ KTR ML
---------------------------------------------------------------------------------------------------------------------------------------
Khai trieån Taylor f(x) quanh x = x0: Ñoåi bieán t = x – x0 vaø söû duïng khai trieån Mac Laurint Caùch 2: Bieán ñoåi ñeå (x – x0) xuaát hieän tröïc cho haøm f(t) tieáp trong haøm soá! 1 3 VD: Khai trieån Taylor f ( x ) = quanh x0 = 2 ñeáncaáp x 1 1 1 1 1 t haøm f ( x ) = = = ⋅ = 1 + + Giaûi: Caùch 1: t = x x t + 2 2 1+ t 2 2 2 –2⇒ 1 1 1 = ⋅ Caùch 2: Taïo (x – 2) f ( x ) = ( x − 2) + 2 2 1 + ( x − 2) 2 trong haøm 2 VD: Khai trieån Taylor f ( x ) = 3 x quanh x0 = −8 ñeáncaáp 13 haøm3 ( x + 2 ) 1 − ( x + 2) ( x + 2) − 8 = −21 − = −21 + ⋅ Gia + ... 8 8 3 ûi:
ÖÙNG DUÏNG KT TAYLOR. TÌM GIÔÙI HAÏN
-------------------------------------------------------------------------------------------------------------------------------
Tìm lim: Khai trieån ML vôùi phaàn dö Peano + Ngaét boû VCB VD: Tính VD: Tìm VD: Tìm
3 x3 4 x 4 x − x − + o( x ) ( ) + o x 6 x − sin x = lim 6 lim = lim 3 3 3 x →0 x →0 x →0 x x x
sin 3 x + 4 sin 3 x − 3 ln (1 + x ) sin 3 x − 3 ln(1 + x ) lim = lim x →0 x →0 x2 e x − 1 sin x
(
)
ln (1 + x ) 1 lim − 2 x →0 x( 1 + x ) x
1 2 (SGK/8 lim x − x ln1 + x →∞ x 0)
x − (1 + x ) ln(1 + x ) x →0 x 2 (1 + x ) x − ln (1 + x ) x ln (1 + x ) = lim 2 − 2 x →0 x (1 + x ) x (1 + x )
= lim
ÖÙNG DUÏNG KT TAYLOR. TÍNH GAÀN ÑUÙNG --------------------------------------------------------------------------------------------------------------------------------
Tính gaàn ñuùng & öôùc löôïng sai soá: phaàn dö Lagrange ( n +1) (k) n f ( c) f ( x0 ) n +1 k f ( x) ≈ ∑ ( x − x0 ) , ∆ = Rn = x − x0 , c ∈ ( x0 , x ) k! (n + 1)! k =0 VD: Tính gaàn ñuùng giaù trò soá e vôùi ñoä chính c -4 1 1 1 e 3 xaùc 10 (SGK/79) , c ∈ ( 0,1) ⇒ e ≈ S , ∆ ≤ Gia e = 1 + + + + + ( n + 1)! 1! 2! n! ( n + 1)! ûi: S Töông töï: Caàn choïn bao nhieâu soá haïng trong khai trieån haøm y = ex ñeå coù theå -4 xaáp xæ e vôùi ñoä chính xaùc 10 VD: Goùc x naøo cho pheùp xaáp xæ sinx ≈ x
vôùi ñoä chính xaùc 10-4
VI PHAÂN
-------------------------------------------------------------------------------------------------------------------------------
Haøm khaû vi taïi x0 ⇔ ∆y = A∆x + o(∆x), ∆x → 0 : Soá gia haøm soá bieåu dieãn tuyeán tính theo ∆x y ( C ) : y = f ( x) vaø voâ cuøng beù baäc cao cuûa ∆x Vi phaân: dy = A∆x = f ( x0 + ∆x ) f’(x)dx Nhaän xeùt: Haøm coù ∆y ñaïo haøm ⇔ Coù vi f ( x0 ) ∆x f ' ( x ) ∆x phaân: Haøm khaû vi 1/ C: haèng soá ⇒ 0 dC = 0 & d(Cy) = Cdy Vi 2/
phaân
toång,
hieäu,
tích, thöông:
O
d ( u ± v ) = du ± dv d ( uv ) = vdu + udv
x0
x0 + ∆x
u vdu − udv d = v2 v
x
VI PHAÂN HAØM HÔÏP
--------------------------------------------------------------------------------------------------------------------------------
y = f ( x ) , x : bieánñoäclaäp Vi phaân ⇒ dy = y ' dx y = f ( x ) , x = x( t ) : haømhôïp caáp 1: ⇒ Vi phaân caáp 1: baát bieán! VD: Tính dy cuûa a/ y = sinx
b/ y =
sinx, b /=dycost = cos xdx = − cos x sin tdt hoaëcy = sin ( cos t ) ⇒ dy = Gia x ûi: Vi
2 2 3 phaân x : Bieánñoäclaäp⇒ d y = f ' ' dx , d y =
caáp y = f ( cao: x ) , x = x( t ) ⇒ d 2 y = f ' ' dx 2 + f ' d 2 x
(d
2
x = x' ' dt 2 )
VD: Tính d2y: a/ y = arctgx b/ y = arctgx, 2x sin t 2 2 2 2 2 x = sint dx b / d y = y ' ' dx − dt ÑS: a / d y = − 2 2 2 1+ x (1 + x )