5
26¶.*$" 6/" 7*4*»/ .0-&$6-"3 %& -" ."5&3*"
alguno. Por ejemplo, la energía calorífica puede convertirse en energía eléctrica o mecánica sin que ocurra ningún cambio químico en forma simultánea. En muchos experimentos se ha demostrado que toda la energía que interviene en cualquier cambio químico o físico aparece en alguna forma luego del cambio. Estas observaciones se resumen en la ley de la conservación de la energía: En una reacción química o en un cambio físico, la energía no se crea ni se destruye: sólo puede convertirse de una forma a otra.
▶ La electricidad se genera en plantas hidroeléctricas mediante la conversión de energía mecánica (de agua que fluye) a energía eléctrica.
Ley de la conservación de la materia y de la energía Con el surgimiento de la era nuclear en la década de 1940 los científicos y, por lo tanto, el mundo, se dieron cuenta de que la materia podía convertirse en energía. En las reacciones nucleares la materia se transforma en energía. La relación entre materia y energía está dada por la ahora famosa ecuación de Albert Einstein E 5 mc2 Esta ecuación nos indica que la cantidad de energía que se desprende cuando la materia se transforma en energía es igual a la masa de materia transformada multiplicada por la velocidad de la luz al cuadrado. Incluso una bomba de hidrógeno convierte sólo una pequeña cantidad de materia en energía. Hasta ahora no hemos observado (a sabiendas) la transformación a gran escala de energía en materia. Sin embargo, ocurre a muy pequeña escala en los aceleradores de partículas (“rompedores de átomos”) que se emplean para inducir reacciones nucleares. Ahora que se conoce la equivalencia entre materia y energía, la ley de la conservación de la materia y de la energía puede enunciarse en una oración sencilla:
▶ Einstein formuló esta ecuación en 1905 como parte de su teoría de la relatividad. Su validez se demostró en 1939 con la primera reacción nuclear controlada.
La cantidad combinada de materia y energía del universo es constante.
1.2 2VÓNJDB VOB WJTJØO NPMFDVMBS EF MB NBUFSJB La inmensa variedad de materia presente en nuestro mundo está formada por las combinaciones de sólo alrededor de 100 sustancias muy básicas llamadas elementos. Podemos mencionar que nuestras experiencias cotidianas con la materia tienen lugar a macroescala, es decir, tratamos con muestras de materia de un tamaño que podemos ver, tocar y manejar. No obstante, las entidades fundamentales que componen la materia son los átomos y las moléculas, los cuales integran elementos y compuestos. En nuestras interacciones con la materia no tocamos ni observamos estas partículas individuales, en extremo diminutas. Los átomos y las moléculas existen en la nanoescala. (El significado general del prefijo “nano” es excesivamente pequeño; como veremos después en este capítulo, su significado numérico definido es el de 1 milmillonésimo de.) La visión química de la naturaleza es que todo en el mundo que nos rodea se compone de átomos combinados en formas muy definidas. La mayoría de las sustancias se compone de pequeñas unidades llamadas moléculas. Todas las propiedades y comportamientos de la materia provienen de las propiedades de sus átomos y moléculas y de la manera en que interactúan entre sí. En nuestro estudio de la química siempre trataremos de relacionar nuestras observaciones macroscópicas de la materia con las propiedades y comportamiento a nanoescala de los átomos y moléculas que la componen. Comprender estas relaciones es la verdadera esencia de la química; nos proporciona un medio eficaz para describir el mundo que nos rodea, y la esperanza de ejercer cierto control responsable sobre ella a medida que buscamos respuestas a preguntas como las del inicio de este capítulo. En todo el libro estudiaremos los átomos y moléculas con más detalle. Por ahora, veamos algunas de las maneras básicas en que los químicos las representan y cómo piensan en torno a estas partículas importantes. El filósofo griego Demócrito (470-400 a.C.) sugirió que toda la materia se componía de partículas indivisibles, discretas y muy pequeñas a las que llamó átomos. Sus ideas, basadas por completo en especulaciones filosóficas más que en pruebas experimentales, fueron rechazadas por más de 2 000 años. A finales del siglo xviii, los científicos comenzaron a darse cuenta de que
A
NALICE
Un nanómetro, nm, es equivalente a 10 angstroms, Å, unidad usada de manera común para expresar distancias atómicas. Todos los átomos y muchas moléculas pequeñas tienen un tamaño menor que 1 nm y, por lo tanto, se les considera subnano.
▶ El término “átomo” proviene del griego y significa “indivisible”. Sabemos ahora que los átomos pueden dividirse y que están compuestos de partículas subatómicas más pequeñas.