29
$"-03 : 5&.1&3"563"
Ejemplo 1.15 Densidad relativa, volumen, porcentaje en masa El ácido de los acumuladores de automóvil se compone de 40.0% de ácido sulfúrico, H2SO4, y 60.0% de agua, en masa. Su densidad relativa es de 1.31. Calcule la masa de H2SO4 puro que hay en 100.0 mL de esta solución ácida. Estrategia Los porcentajes están dados en masa, así que primero convertimos 100.0 mL de solución (soln) de ácido en masa. Para hacerlo necesitamos el dato de densidad. Ya demostramos que el valor de la densidad y de la densidad relativa es igual a 20 °C porque la densidad del agua es de 1.00 g/mL. Usamos la densidad como factor unitario para convertir el volumen de solución dado en masa de solución. Por último, utilizamos el porcentaje en masa para convertir la masa de solución en masa de ácido. Respuesta A partir del valor de densidad relativa, podemos escribir
Densidad 5 1.31 g/mL La solución tiene 40.0% de H2SO4 y 60.0% de H2O, en masa. Con esta información podemos establecer el factor unitario deseado: debido a que 100 g de solución 40.0 g de H 2SO4 h contienen 40 g de H2SO4 100 g de soln Ahora podemos resolver el problema ? H2SO4 5 100.0 mL de soln 3
1.31 g de soln 1 mL de soln
Para ver la figura a color, acceda al código QR.
A 3
40.0 g de H2SO4 100 g de soln
5 52.4 g de H 2SO 4
Ahora debe resolver el ejercicio 26.
NALICE
El uso cuidadoso de los factores unitarios ayuda a sentar las bases para resolver el ejemplo 1.15.
1.12 Calor y temperatura En la sección 1.1 aprendió que el calor es una forma de energía; también que las muchas formas de energía pueden interconvertirse y que en procesos químicos la energía química se convierte en calor, y viceversa. La cantidad de calor que se consume (endotérmico) o que se desprende (exotérmico) en un proceso nos da mucha información acerca de este. Por esta razón, es importante que seamos capaces de medir la intensidad del calor. La temperatura mide la intensidad del calor: “lo caliente” o “lo frío” de un cuerpo. Un trozo de metal a 100 °C se siente caliente cuando lo tocamos, en tanto que un cubo de hielo a 0 °C se siente frío. ¿Por qué? Porque la temperatura del metal es más alta, y la del cubo de hielo, más baja que la de nuestro cuerpo. El calor es una forma de energía que siempre fluye de manera espontánea de un cuerpo más caliente a un cuerpo más frío; nunca fluye en dirección inversa. La temperatura puede medirse con termómetros de mercurio. Un termómetro de mercurio se compone de un reservorio de mercurio unido a la base abierta de un tubo capilar de vidrio que se prolonga hacia arriba. El mercurio se expande mucho más que otros líquidos conforme aumenta su temperatura. A medida que se expande, podemos observar su ascenso por la columna evacuada. Anders Celsius (1701-1744), un astrónomo sueco, inventó la escala de temperatura Celsius, a la que primero se le dio el nombre de centígrada. Cuando introducimos un termómetro Celsius a un vaso de precipitados que tiene hielo picado y agua, el nivel del mercurio queda fijo exactamente en 0 °C: el punto de referencia inferior. Dentro de un vaso de precipitados con agua hirviente a una atmósfera de presión, el nivel del mercurio queda fijo exactamente en 100 °C: el punto de referencia superior. Hay cien partes iguales entre esos dos niveles de mercurio. Estos corresponden a un intervalo de 100 grados entre el punto de fusión del hielo y el punto de ebullición del agua a una atmósfera. En la figura 1.19 se muestra cómo se establecieron las marcas de temperatura entre los puntos de referencia. En Estados Unidos, la temperatura suele medirse en la escala de temperatura que inventó Gabriel Fahrenheit (1686-1736), un fabricante de instrumentos alemán.
8&
G
G
8&
Figura 1.19 A una lectura de 45 °C en un termómetro de mercurio, d es igual a 0.45d0, donde d0 es la distancia del nivel de mercurio a 0 °C al nivel a 100 °C.