BTECH 1 Report

Page 1

SCHOOL​ ​OF​ ​ARCHITECTURE,​ ​BUILDING​ ​AND​ ​DESIGN BACHELOR​ ​OF​ ​SCIENCE​ ​(HONS)​ ​IN​ ​ARCHITECTURE

BUILDING​ ​TECHNOLOGY​ ​I​ ​(BLD61403) PROJECT​ ​1 INDUSTRIALISED​ ​BUILDING​ ​SYSTEM

GROUP​ ​MEMBER​ ​: BENJAMIN​ ​TAN​ ​ZI​ ​HERN 0324857 CHEOK​ ​JIAN​ ​SHUANG​ ​0320089 CHONG​ ​ZHAO​ ​LUN​ ​0320408 CHONG​ ​XIN​ ​DEAN​ ​0325353 CHONG​ ​KIT​ ​YEE 0319748 TUTOR​ ​: MR.​ ​KHAIROOL​ ​AIZAT​ ​AHMAD​ ​JAMAL


CONTENT 1.​ ​0​ ​INTRODUCTION

1

2.0​ ​DRAWINGS 2.1​ ​ARCHITECTURAL​ ​PLAN 2.2​ ​ROOF​ ​PLAN 2.3​ ​ELEVATIONS 2.4​ ​SECTIONS 2.6​ ​AXONOMETRIC​ ​DRAWINGS 2.7​ ​SECTIONAL​ ​PERSPECTIVE 2.8​ ​COMPONENT​ ​SCHEDULE 2.8.1​ ​COLUMN 2.8.2​ ​BEAM 2.8.3​ ​SLAB 2.8.4​ ​WALL 2.8.5​ ​DOOR​ ​&​ ​WINDOW 2.8.6​ ​TRUSS 2.8.7​ ​STAIR

2

3.0​ ​IBS​ ​SYSTEMS 3.1​ ​FOUNDATION 3.2​ ​COLUMN 3.3​ ​BEAM 3.4​ ​SLAB 3.5​ ​WALL 3.5.1​ ​EXTERNAL​ ​WALL 3.5.2​ ​INTERNAL​ ​WALL 3.6​ ​ROOF 3.7​ ​STAIR 4.0​ ​SEQUENCE​ ​OF​ ​CONSTRUCTION

3-15

16 17-18 19-20 21-24 26-27 28-29 30-32 33-34 35-38

5.0​ ​IBS​ ​SCORE​ ​CALCULATION

29-41

6.0​ ​CONCLUSION

42

7.0​ ​REFERENCES

43-44

1


1.0​ ​INTRODUCTION Industrialised​ ​building​ ​system(IBS)​ ​is​ ​a​ ​technique​ ​of​ ​construction​ ​where​ ​by​ ​components​ ​are​ ​manufactured​ ​in​ ​controlled​ ​environment,​ ​either​ ​at​ ​site​ ​or​ ​off​ ​site,​ ​placed​ ​and​ ​assembled​ ​into​ ​construction works.​ ​IBS​ ​used​ ​to​ ​increase​ ​productivity​ ​and​ ​quality​ ​at​ ​construction​ ​sites.​ ​The​ ​content​ ​of​ ​IBS​ ​Score​ ​is​ ​determined​ ​based​ ​on​ ​MS1064.​ ​This​ ​purpose​ ​of​ ​this​ ​ ​assignment​ ​is​ ​to​ ​understand​ ​different types​ ​and​ ​methods​ ​of​ ​the​ ​IBS​ ​system​​ ​and​ ​the​ ​calculation​ ​of​ ​IBS​ ​scoring.​ ​We​ ​are​ ​required​ ​to​ ​design​ ​a​ ​3​ ​storey​ ​apartment​ ​block​ ​and​ ​apply​ ​appropriate​ ​IBS​ ​components​ ​and​ ​demonstrate​ ​a comprehensive​ ​understanding​ ​of​ ​IBS​ ​construction​ ​process​ ​through​ ​model​ ​making.

2


2.0​ ​DRAWINGS

3


2.8.1​ ​COLUMN​ ​SCHEDULE

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​COLUMN​ ​WITH​ ​4​ ​CORBEL

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​COLUMN​ ​WITH​ ​3​ ​CORBEL

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​COLUMN​ ​WITH​ ​2​ ​CORBEL

POLE​ ​DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​150​ ​*​ ​300​ ​*​ ​3500

POLE​ ​DIMENSION​ ​ ​ ​ ​ ​ ​:​ ​150​ ​*​ ​300​ ​*​ ​3500

POLE​ ​DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​150​ ​*​ ​300​ ​*​ ​3500

CORBEL​ ​DIMENSION​ ​ ​:​ ​150​ ​*​ ​300​ ​*​ ​400​ ​and​ ​300​ ​*​ ​300*450

CORBEL​ ​DIMENSION​ ​:​ ​150​ ​*​ ​300​ ​*​ ​400​ ​and​ ​300​ ​*​ ​300*450

CORBEL​ ​DIMENSION​ ​ ​:​ ​150​ ​*​ ​300​ ​*​ ​400​ ​and​ ​300​ ​*​ ​300*450

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​30

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​30

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​18

4


2.8.2​ ​BEAM​ ​SCHEDULE

DESCRIPTION​ ​ ​ ​:​ ​I​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​I​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​I​ ​BEAM

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​3800*150*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4400*150*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​5000*150*450

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​16

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​16

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​16

DESCRIPTION​ ​ ​ ​:​ ​I​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​I​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​I​ ​BEAM

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1900*150*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2500*150*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2700*150*450

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​24

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​8

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​16

5


DESCRIPTION​ ​ ​ ​:​ ​I​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​L​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​L​ ​BEAM

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​6550*150*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2700*300*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4500*300*450

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​8

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​16

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​16

DESCRIPTION​ ​ ​ ​:​ ​L​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​T​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​T​ ​BEAM

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1800*300*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​3600*300*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2700*300*450

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​4

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​8

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​16

6


DESCRIPTION​ ​ ​ ​:​ ​T​ ​BEAM

DESCRIPTION​ ​ ​ ​:​ ​T​ ​BEAM

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4500*300*450

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1800*300*450

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​24

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​2

7


2.8.3​ ​SLAB​ ​SCHEDULE

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​:​ ​HOLLOW​ ​CORE​ ​CONCRETE​ ​SLAB

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​:​ ​HOLLOW​ ​CORE​ ​CONCRETE​ ​SLAB

SLAB​ ​DIMENSION​ ​:​ ​900​ ​*​ ​150​ ​*​ ​1825

SLAB​ ​DIMENSION​ ​:​ ​900​ ​*​ ​150​ ​*​ ​2700

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​30

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​54

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​:​ ​HOLLOW​ ​CORE​ ​CONCRETE​ ​SLAB

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​:​ ​HOLLOW​ ​CORE​ ​CONCRETE​ ​SLAB

SLAB​ ​DIMENSION​ ​:​ ​900​ ​*​ ​4000​ ​*150

SLAB​ ​DIMENSION​ ​:​ ​900​ ​*​ ​2900​ ​*150

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​54

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​54

8


DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​:​ ​HOLLOW​ ​CORE​ ​CONCRETE​ ​SLAB

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​:​ ​HOLLOW​ ​CORE​ ​CONCRETE​ ​SLAB

SLAB​ ​DIMENSION​ ​:​ ​ ​1200​ ​*​ ​4600​ ​*150

SLAB​ ​DIMENSION​ ​:​ ​ ​1200​ ​*​ ​5100​ ​*150

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​18

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​18

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​:​ ​HOLLOW​ ​CORE​ ​CONCRETE​ ​SLAB SLAB​ ​DIMENSION​ ​:​ ​ ​1800​ ​*​ ​4990​ ​*150 QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​3

9


2.8.4​ ​WALL​ ​SCHEDULE

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4900*200*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4500*200*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​3700*200*300

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​3600*200*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1825*200*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2700*200*300

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​18

10


DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4400*200*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1855*200*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​6550*200*300

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

DESCRIPTION​ ​ ​ ​:​ ​EXTERNAL​ ​WALL

DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1800*200*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​3650*130*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1680*130*300

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​12

11


DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​3150*130*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4775*130*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2830*130*300

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​12

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS)

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​4050*130*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​3100*130*300

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2800*130*300

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

12


DESCRIPTION​ ​ ​ ​:​ ​INTERNAL​ ​WALL​ ​(NON​ ​IBS) DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​2930*130*300 QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

13


2.8.5​ ​DOORS​ ​&​ ​WINDOWS​ ​SCHEDULE

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​DOOR​ ​(Non​ ​IBS)

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​DOOR

DOOR​ ​LEAF​ ​DIMENSION​ ​:​ ​650*​ ​35​ ​*​ ​2000

DOOR​ ​LEAF​ ​DIMENSION​ ​:​ ​800​ ​*​ ​35​ ​*​ ​2100

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​12

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​18

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​DOOR

DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​DOOR​ ​(Non​ ​IBS)

DOOR​ ​LEAF​ ​DIMENSION​ ​:​ ​900​ ​*​ ​35​ ​*​ ​2100

DOOR​ ​LEAF​ ​DIMENSION​ ​:​ ​1100​ ​*​ ​35​ ​*​ ​2500

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​18

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

14


DESCRIPTION​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​SLIDING​ ​DOOR​ ​(Non​ ​IBS)

DESCRIPTION​ ​ ​ ​:​ ​WINDOW

DOOR​ ​DIMENSION​ ​:​ ​ ​2400​ ​*​ ​50​ ​*​ ​2100

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​600​ ​*​ ​600*​ ​150

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​6

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:18

DESCRIPTION​ ​ ​ ​:​ ​WINDOW DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1200​ ​*​ ​150​ ​*​ ​600 QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​27

15


2.8.6​ ​ROOF​ ​TRUSSES​ ​SCHEDULE

DESCRIPTION​ ​ ​ ​:​ ​STEEL​ ​ROOF​ ​TRUSS

DESCRIPTION​ ​ ​ ​:​ ​STEEL​ ​ROOF​ ​TRUSS

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​9950​ ​*​ ​75​ ​*​ ​1175

DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​13850​ ​*​ ​75​ ​*​ ​1525

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​20

QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​4

2.8.7​ ​STAIRS​ ​SCHEDULE

DESCRIPTION​ ​ ​ ​:​ ​PRECAST​ ​CONCRETE​ ​STEPS DIMENSION​ ​ ​ ​ ​ ​ ​ ​:​ ​1800​ ​*​ ​3375​ ​*​ ​3500 QUANTITY​ ​ ​ ​ ​ ​ ​ ​ ​ ​:​ ​3

16


3.0​ ​IBS​ ​SYSTEMS 3.1​ ​FOUNDATION​ ​:​ ​PRECAST​ ​SYSTEM

Precast​ ​concrete​ ​piles​ ​are​ ​displacement​ ​and​ ​pile​ ​driven.​ ​They​ ​are​ ​used​ ​in​ ​foundation​ ​to​ ​increase​ ​the​ ​bearing​ ​capacity​ ​and​ ​to​ ​reduce​ ​settlements​ ​at​ ​sites​ ​with​ ​weak​ ​compressible​ ​soil.​ ​The reinforcement​ ​in​ ​a​ ​precast​ ​concrete​ ​piles​ ​are​ ​to​ ​resist​ ​the​ ​stresses​ ​produced​ ​on​ ​account​ ​of​ ​its​ ​handling,​ ​driving​ ​and​ ​the​ ​loading​ ​which​ ​the​ ​pile​ ​is​ ​finally​ ​expected​ ​to​ ​receive.

Advantages 1.​ ​Durability Reinforcement​ ​use​ ​in​ ​pile​ ​is​ ​not​ ​liable​ ​to​ ​change​ ​its​ ​place​ ​or​ ​get​ ​disturbed Resistant​ ​to​ ​biological​ ​and​ ​chemical​ ​actions​ ​of​ ​subsoil. 2.​ ​Save​ ​cost​ ​&​ ​time Large​ ​number​ ​of​ ​piles​ ​are​ ​manufactured​ ​at​ ​a​ ​time. 3.​ ​Better​ ​quality​ ​control 4.​ ​Flexibility​ ​in​ ​design

Disadvantages 1.​ ​Special​ ​handling​ ​needed Piles​ ​are​ ​heavy​ ​and​ ​fragile.​ ​Special​ ​equipments​ ​are​ ​required​ ​for​ ​handling​ ​and​ ​transportation. 2.​ ​Restricted​ ​in​ ​length Depends​ ​on​ ​transport​ ​facility​ ​and​ ​unable​ ​to​ ​increase​ ​the​ ​length​ ​of​ ​pile.

Installation​ ​Process

1.​ ​Position​ ​of​ ​the​ ​piles​ ​are​ ​prepared​ ​based​ ​on​ ​a​ ​spile. 2.​ ​Pile​ ​are​ ​adjust​ ​to​ ​locate​ ​under​ ​the​ ​hammer​ ​is​ ​driven​ ​in​ ​vertical​ ​or​ ​brace​ ​position. 3.​ ​When​ ​piles​ ​are​ ​driving,​ ​soil​ ​condition​ ​is​ ​determined​ ​to​ ​know​ ​whether​ ​further​ ​driving​ ​is​ ​needed. 4.​ ​Precast​ ​pile​ ​cap​ ​is​ ​then​ ​placed​ ​on​ ​top​ ​of​ ​pile.

17


3.2​ ​COLUMN​ ​:​ ​PRECAST​ ​SYSTEM

Columns​ ​are​ ​provided​ ​with​ ​necessary​ ​supports​ ​for​ ​the​ ​ends​ ​of​ ​the​ ​precast​ ​beams(corbels​ ​or​ ​cast-in​ ​steel​ ​sections).​ ​There​ ​will​ ​also​ ​be​ ​some​ ​form​ ​of​ ​connection​ ​to​ ​provide​ ​beam-column​ ​moment connection​ ​and​ ​continuity.​ ​ ​Precast​ ​column​ ​can​ ​be​ ​produced​ ​as​ ​either​ ​single​ ​storey​ ​corbel​ ​column​ ​or​ ​multiple​ ​storey​ ​corbel​ ​column.

Advantages 1.​ ​Inherent​ ​fire​ ​rating Precast​ ​concrete’s​ ​properties​ ​provide​ ​resistance​ ​to​ ​extremely​ ​hot​ ​temperature. 2.​ ​Flexible​ ​sizing​ ​and​ ​configuration Customise​ ​concrete​ ​columns​ ​based​ ​on​ ​shape,​ ​sizes​ ​and​ ​specifications. 3.Shorter​ ​construction​ ​times Easy​ ​and​ ​more​ ​effective​ ​installation​ ​in​ ​different​ ​conditions.

Disadvantages 1.​Sophisticated​ ​Connection​ ​Works Different​ ​kind​ ​of​ ​connection​ ​needed​ ​to​ ​connect​ ​other​ ​elements. 2.Handling​ ​Difficulties​ ​and​ ​Modification​ ​Limitation Need​ ​special​ ​transport​ ​and​ ​care​ ​to​ ​delivered​ ​and​ ​it​ ​can’t​ ​be​ ​modified.

Fabrication​ ​Process

1.Column’s​ ​mould​ ​are​ ​assembled​ ​on​ ​a​ ​flat​ ​surface​ ​and​ ​mould​ ​release​ ​agent​ ​is​ ​applied​ ​evenly​ ​over​ ​the​ ​surface. 2.Fixing​ ​rebars​ ​into​ ​the​ ​mould​ ​according​ ​to​ ​the​ ​drawing​ ​provided. 3.Sufficient​ ​number​ ​of​ ​spacers​ ​with​ ​the​ ​correct​ ​size​ ​should​ ​be​ ​properly​ ​placed​ ​and​ ​secure. 4.​ ​Check​ ​and​ ​verify​ ​that​ ​all​ ​details​ ​are​ ​completed​ ​before​ ​casting. 5.Concrete​ ​are​ ​being​ ​test​ ​before​ ​placing​ ​the​ ​concrete​ ​to​ ​the​ ​mould. 6.Observe​ ​adequate​ ​curing​ ​time,​ ​every​ ​column​ ​should​ ​be​ ​having​ ​the​ ​same​ ​curing​ ​conditions 7.​ ​Loosen​ ​and​ ​remove​ ​all​ ​bolts​ ​and​ ​pins​ ​from​ ​the​ ​mould​ ​before​ ​lifting.

18


FOUNDATION​ ​TO​ ​COLUMN​ ​WITH​ ​BOLTED​ ​COLUMN​ ​CONNECTION

Connection​ ​in​ ​between​ ​column​ ​to​ ​foundation​ ​are​ ​using​ ​bolten​ ​column​ ​connection​ ​which​ ​is​ ​made​ ​with​ ​anchor​ ​bolts​.​ ​The​ ​anchor​ ​bolts​ ​transfer​ ​tension,​ ​compression​ ​and​ ​shear​ ​forces​ ​to​ ​the​ ​reinforced concrete​ ​base​ ​structure.​ ​Column​ ​shoes​ ​are​ ​needed​ ​when​ ​it​ ​is​ ​connect​ ​to​ ​foundation,​ ​it​ ​cast​ ​into​ ​the​ ​columns​ ​at​ ​a​ ​precast​ ​factory.

Installation​ ​Process

1.Fix​ ​the​ ​foundation​ ​anchor​ ​bolts​ ​to​ ​the​ ​PPL​ ​template 2.Position​ ​the​ ​PPL​ ​template​ ​with​ ​anchor​ ​bolts​ ​to​ ​the​ ​foundation​ ​and​ ​cast. 3.Remove​ ​the​ ​PPL​ ​template​ ​and​ ​level​ ​the​ ​nuts. 4.Erected​ ​and​ ​lower​ ​the​ ​column. 5.Tighten​ ​the​ ​upper​ ​nuts​ ​and​ ​check​ ​the​ ​verticality,​ ​Release​ ​the​ ​crane. 6.Grout​ ​the​ ​joint​ ​and​ ​the​ ​column​ ​pockets

19


3.3​ ​BEAM:​​ ​PRECAST​ ​SYSTEM

Beams​ ​can​ ​vary​ ​in​ ​their​ ​complexity​ ​of​ ​design​ ​and​ ​reinforcement​ ​from​ ​the​ ​very​ ​simple​ ​beam​ ​formed​ ​over​ ​an​ ​isolated​ ​opening​ ​to​ ​the​ ​more​ ​commonly​ ​encountered​ ​in​ ​frames​ ​where​ ​the​ ​beams​ ​transfer their​ ​loadings​ ​to​ ​the​ ​column.

Methods​ ​of​ ​connecting​ ​beams​ ​and​ ​columns​ ​are​ ​A​ ​precasting​ ​concrete​ ​haunch​ ​is​ ​cast​ ​on​ ​to​ ​the​ ​column​ ​with​ ​a​ ​locating​ ​dowel​ ​or​ ​stud​ ​bolt​ ​to​ ​fix​ ​the​ ​beam.​ ​A​ ​projecting​ ​metal​ ​corbel​ ​is​ ​fixed​ ​to​ ​the column​ ​and​ ​the​ ​beam​ ​is​ ​bolted​ ​to​ ​the​ ​corbel.​ ​Column​ ​and​ ​beam​ ​reinforcement,​ ​generally​ ​in​ ​the​ ​form​ ​of​ ​hooks,​ ​are​ ​left​ ​exposed.​ ​The​ ​two​ ​members​ ​are​ ​hooked​ ​together​ ​and​ ​covered​ ​with​ ​in-situ concrete​ ​to​ ​complete​ ​the​ ​joint.

Advantages 1.​ ​Economic Saving​ ​in​ ​cost,​ ​material,​ ​time​ ​&​ ​manpower 2.​ ​Independent​ ​of​ ​weather​ ​condition 3.​ ​Quick​ ​installation

Disadvantages 1.​ ​Non-monolithic​ ​construction 2.​ ​Skilled​ ​labor​ ​and​ ​supervision​ ​is​ ​required

20


BEAM​ ​TO​ ​COLUMN​ ​CONNECTION

Installation​ ​process

1.​ ​Precast​ ​beam​ ​are​ ​set​ ​on​ ​bearing​ ​pads​ ​which​ ​are​ ​located​ ​on​ ​the​ ​column​ ​corbels. 2.​ ​Steel​ ​angles​ ​are​ ​welded​ ​to​ ​the​ ​metal​ ​plate​ ​which​ ​casted​ ​into​ ​the​ ​beams 3.​ ​Columns​ ​and​ ​the​ ​joint​ ​is​ ​grouted​ ​solid.

21


3.4​ ​SLAB​ ​SYSTEM​ ​:​ ​HOLLOW​ ​CORE​ ​SLAB

Hollow​ ​core​ ​slab​ ​is​ ​also​ ​known​ ​as​ ​a​ ​voided​ ​slab,​ ​hollow​ ​core​ ​plank​ ​or​ ​simply​ ​a​ ​concrete​ ​plank.​ ​It​​ ​is​ ​a​ ​precast,​ ​prestressed​ ​concrete​ ​element​ ​that​ ​is​ ​generally​ ​used​ ​for​ ​flooring​ ​for​ ​both​ ​commercial buildings​ ​and​ ​homes.​​ ​The​ ​main​ ​purpose​ ​of​ ​the​ ​cores​ ​are​ ​to​ ​decrease​ ​the​ ​slab​ ​self​ ​weight​ ​and​ ​materials,​ ​yet​ ​maintaining​ ​the​ ​maximal​ ​strength.​ ​The​ ​high-strength​ ​hollow-core​ ​slabs​ ​can​ ​provide​ ​floors that​ ​support​ ​heavy​ ​loads.

Advantages 1.​ ​ ​Long​ ​span​ ​without​ ​the​ ​need​ ​of​ ​temporary​ ​supports ​ ​ ​ ​ ​ ​Opening​ ​interior​ ​spaces​ ​in​ ​projects​ ​and​ ​allows​ ​designers​ ​to​ ​maximize​ ​functional​ ​layouts. 2.​ ​ ​Flexible​ ​in​ ​design 3.​ ​ ​Fast​ ​construction 4.​ ​ ​Light​ ​weight​ ​structure ​ ​ ​ ​ ​ ​The​ ​longitudinal​ ​voids​ ​in​ ​the​ ​cross-section​ ​are​ ​saving​ ​the​ ​concrete​ ​and​ ​at​ ​the​ ​same​ ​time​ ​reducing​ ​self-weight. 5.​ ​ ​Floor​ ​voids​ ​and​ ​penetrations​ ​for​ ​services​ ​are​ ​available ​ ​ ​ ​ ​ ​The​ ​long​ ​hollow​ ​cores​ ​(voids)​ ​can​ ​be​ ​used​ ​to​ ​run​ ​mechanical​ ​and​ ​electrical​ ​equipment. 6.​ ​ ​Fire​ ​resistance ​ ​ ​ ​ ​ ​Through​ ​the​ ​choice​ ​of​ ​the​ ​different​ ​thicknesses​ ​of​ ​the​ ​lower​ ​part​ ​of​ ​the​ ​element,​ ​floors​ ​can​ ​be​ ​produced​ ​with​ ​a​ ​high​ ​fire​ ​resistance​ ​up​ ​to​ ​180​ ​minutes.

Disadvantages 1.​ ​Irregular​ ​shaped​ ​Hollow​ ​cores​ ​are​ ​fairly​ ​costly 2.​ ​They​ ​must​ ​be​ ​made​ ​in​ ​segments​ ​that​ ​will​ ​fit​ ​their​ ​transport ​ ​ ​ ​ ​Transport​ ​can​ ​be​ ​costly​ ​depending​ ​on​ ​the​ ​distances​​ ​to​ ​site. 4.​ ​Slabs​ ​cannot​ ​be​ ​cut​ ​on​ ​site ​ ​ ​ ​ ​It​ ​must​ ​be​ ​carefully​ ​designed

22


Fabrication​ ​process

1.​ ​Prestressed​ ​hollow-core​ ​slabs​ ​are​ ​produced​ ​on​ ​casting​ ​beds. 2.​ ​Strands​ ​are​ ​pulled​ ​and​ ​spread​ ​by​ ​a​ ​special​ ​device,​ ​each​ ​strands​ ​are​ ​then​ ​tensioned​ ​simultaneously. 3.​ ​Concrete​ ​is​ ​transported​ ​from​ ​batching​ ​and​ ​mixing​ ​plant​ ​by​ ​an​ ​overhead​ ​transport​ ​system. 4.​ ​Extrusions​ ​of​ ​the​ ​slabs​ ​carried​ ​out​ ​as​ ​a​ ​continuous​ ​process. 5.​ ​The​ ​openings​ ​to​ ​be​ ​made​ ​by​ ​slabs​ ​are​ ​marked​ ​with​ ​a​ ​plotter. 6.​ ​Openings​ ​can​ ​be​ ​made​ ​by​ ​machine​ ​or​ ​by​ ​hand. 7.​ ​When​ ​the​ ​process​ ​is​ ​done,​ ​the​ ​concrete​ ​is​ ​covered​ ​with​ ​tarpaulins​ ​to​ ​minimize​ ​evaporation. 8.​ ​After​ ​curing,​ ​the​ ​tension​ ​of​ ​the​ ​strand​ ​is​ ​released​ ​and​ ​the​ ​slab​ ​is​ ​cut​ ​according​ ​to​ ​measured​ ​markings. 9.​ ​The​ ​slabs​ ​are​ ​then​ ​transferred​ ​to​ ​an​ ​automatic​ ​drilling​ ​device​ ​that​ ​drills​ ​drainage​ ​holes​ ​in​ ​both​ ​ends​ ​of​ ​the​ ​slabs.

Installation​ ​process

HCS​ ​slabs​ ​are​ ​installed​ ​on​ ​a​ ​leveling​ ​neoprene​ ​strip,​ ​fastened​ ​to​ ​the​ ​bearing​ ​structure.

1.​ ​The​ ​smoothness​ ​of​ ​the​ ​bearing​ ​surface​ ​should​ ​be​ ​checked. 2.​ ​To​ ​level​ ​a​ ​resting​ ​surface,​ ​ ​the​ ​leveling​ ​plates​ ​should​ ​be​ ​placed​ ​under​ ​vertical​ ​walls​ ​of​ ​the​ ​floor​ ​slab. 3.​ ​The​ ​hoisted​ ​floor​ ​slab​ ​is​ ​directed​ ​into​ ​the​ ​proper​ ​position. 4.​ ​The​ ​installation​ ​joints​ ​that​ ​are​ ​between​ ​the​ ​slabs​ ​and​ ​also​ ​the​ ​ends​ ​of​ ​slabs​ ​should​ ​be​ ​filled​ ​with​ ​fine​ ​aggregate​ ​concrete.

23


SLAB​ ​TO​ ​BEAM​ ​CONNECTION

Installation​ ​process

1.​ ​The​ ​hollow​ ​core​ ​slab​ ​is​ ​set​ ​on​ ​bearing​ ​pads​ ​which​ ​are​ ​located​ ​on​ ​the​ ​precast​ ​beam. 2.​ ​Steel​ ​reinforcing​ ​bars​ ​are​ ​inserted​ ​into​ ​the​ ​slab​ ​keyways​ ​to​ ​span​ ​the​ ​joint. 3.​ ​The​ ​joint​ ​is​ ​then​ ​grouted​ ​solid. 4.​ ​The​ ​slab​ ​may​ ​remain​ ​bare​ ​or​ ​topped​ ​with​ ​several​ ​inches​ ​of​ ​cast​ ​in​ ​place​ ​concrete.

24


SLAB​ ​TO​ ​WALL​ ​CONNECTION

Connecting​ ​the​ ​load​ ​bearing​ ​walls​ ​and​ ​precast​ ​concrete​ ​plank​ ​can​ ​be​ ​a​ ​efficient,​ ​economical​ ​construction​ ​and​ ​a​ ​solid,​ ​firesafe​ ​building.​ ​However,​ ​the​ ​connections​ ​between​ ​them​ ​must​ ​be​ ​detailed carefully​ ​for​ ​the​ ​building​ ​to​ ​be​ ​structurally​ ​stable.

Installation​ ​process

1.​ ​The​ ​reinforcing​ ​bars​ ​are​ ​bent​ ​at​ ​a​ ​90°​ ​angle. 2.​ ​One​ ​end​ ​of​ ​each​ ​reinforcing​ ​bar​ ​is​ ​placed​ ​into​ ​the​ ​keyway​ ​between​ ​planks​ ​in​ ​the​ ​floor​ ​slab,​ ​while​ ​other​ ​end​ ​points​ ​upward​ ​and​ ​fits​ ​into​ ​a​ ​concrete​ ​block​ ​cell​ ​in​ ​the​ ​next​ ​course. 3.​ ​When​ ​the​ ​slab​ ​keyways​ ​and​ ​the​ ​block​ ​cell​ ​are​ ​fully​ ​grouted,​ ​ ​a​ ​positive​ ​connection​ ​is​ ​formed.

25


3.5​ ​WALL 3.5.1​ ​EXTERNAL​ ​WALL:​​ ​BLOCKWORK​ ​SYSTEM

Blockwork​ ​system​ ​is​ ​a​ ​system​ ​that​ ​consists​ ​of​ ​interlocking​ ​concrete​ ​masonry​ ​units​ ​(CMU)​ ​and​ ​lightweight​ ​concrete​ ​blocks.​ ​This​ ​particular​ ​system​ ​simplifies​ ​the​ ​traditional​ ​brick-laying​ ​tasks​ ​which requires​ ​the​ ​usage​ ​of​ ​mortar.​ ​ ​Usually,​ ​the​ ​block​ ​is​ ​designed​ ​as​ ​a​ ​load​ ​bearing​ ​wall​ ​system,​ ​in​ ​which​ ​the​ ​bricklaying​ ​work​ ​does​ ​not​ ​require​ ​mortar​ ​(dry​ ​system),​ ​and​ ​the​ ​component​ ​can​ ​easily​ ​be installed​ ​in​ ​a​ ​repetitive​ ​way.

Advantages 1.​ ​Durability One​ ​of​ ​the​ ​major​ ​advantages​ ​concrete​ ​blockwork​ ​hold​ ​over​ ​other​ ​construction​ ​materials​ ​is​ ​durability.​ ​Concrete​ ​does​ ​not​ ​rot​ ​or​ ​mold​ ​and​ ​is​ ​not​ ​damaged​ ​by insects​ ​or​ ​other​ ​pests. 2.​ ​Heat​ ​insulation Hollow​ ​block​ ​walls​ ​provide​ ​excellent​ ​heat​ ​insulation​ ​due​ ​to​ ​their​ ​relatively​ ​low​ ​U-value​ ​as​ ​compared​ ​to​ ​solid​ ​brick​ ​walls,​ ​they​ ​keep​ ​heat​ ​in​ ​when​ ​it​ ​is​ ​cold outside,​ ​and​ ​keep​ ​a​ ​cool​ ​when​ ​it​ ​is​ ​hot​ ​outside. 3.​ ​Fire​ ​and​ ​sound​ ​resistant The​ ​most​ ​prominent​ ​characteristic​ ​of​ ​the​ ​concrete​ ​blockworks​ ​is​ ​their​ ​ability​ ​to​ ​resist​ ​fire.​ ​It​ ​is​ ​relatively​ ​safe​ ​to​ ​use​ ​concrete​ ​blockwork​ ​instead​ ​of​ ​the traditional​ ​brickworks.​ ​Also,​ ​the​ ​air​ ​cavities​ ​within​ ​the​ ​hollow​ ​blockworks​ ​act​ ​as​ ​a​ ​sound​ ​insulator​ ​to​ ​avoid​ ​unwanted​ ​noise​ ​from​ ​travelling​ ​into​ ​the​ ​spaces. 4.​ ​In-situ​ ​construction Blockwork​ ​system​ ​can​ ​be​ ​done​ ​entirely​ ​on​ ​site​ ​by​ ​skilled​ ​workers.​ ​This​ ​reduces​ ​the​ ​journeys​ ​required​ ​to​ ​transport​ ​the​ ​building​ ​materials​ ​from​ ​one​ ​place​ ​to another.

Disadvantages 1.​ ​Not​ ​resistant​ ​to​ ​extreme​ ​weather If​ ​the​ ​structure​ ​is​ ​exposed​ ​to​ ​extreme​ ​weather​ ​like​ ​heavy​ ​rain​ ​or​ ​freezing​ ​temperature,​ ​masonry​ ​cannot​ ​be​ ​laid​ ​or​ ​it​ ​will​ ​form​ ​a​ ​building​ ​that​ ​is​ ​structurally unsound.​ ​As​ ​the​ ​construction​ ​of​ ​blockwork​ ​system​ ​belongs​ ​to​ ​wet​ ​construction,​ ​it​ ​needs​ ​a​ ​longer​ ​time​ ​to​ ​set​ ​and​ ​dry​ ​adequately​ ​or​ ​else​ ​it​ ​would​ ​expand and​ ​replacements​ ​are​ ​required. 2.​ ​High​ ​risk​ ​when​ ​exposed​ ​to​ ​dampness Due​ ​to​ ​the​ ​minimal​ ​use​ ​of​ ​mortar,​ ​the​ ​gaps​ ​between​ ​the​ ​blockworks​ ​are​ ​likely​ ​to​ ​be​ ​exposed​ ​to​ ​moisture​ ​and​ ​dampness.​ ​Water​ ​particles​ ​can​ ​easily​ ​seep through​ ​these​ ​tiny​ ​gaps​ ​to​ ​the​ ​inner​ ​wall​ ​and​ ​causing​ ​ ​the​ ​formation​ ​of​ ​mould,​ ​subsequently​ ​contribute​ ​to​ ​the​ ​safety​ ​issues​ ​of​ ​the​ ​particular​ ​building.

26


Installation​ ​process

Blockwork​ ​system​ ​has​ ​the​ ​same​ ​installation​ ​procedures​ ​as​ ​the​ ​traditional​ ​brickworks.​ ​However,​ ​blockwork​ ​system​ ​only​ ​requires​ ​a​ ​minimal​ ​amount​ ​of​ ​mortar​ ​as​ ​the​ ​blocks​ ​are​ ​made​ ​to​ ​interlock​ ​with one​ ​another​ ​to​ ​form​ ​a​ ​strong​ ​structural​ ​wall​ ​that​ ​resists​ ​various​ ​type​ ​of​ ​loads. 1.​ ​Blocks​ ​are​ ​being​ ​placed​ ​as​ ​the​ ​base​ ​layer​ ​of​ ​the​ ​load-bearing​ ​wall. 2.​ ​Minimal​ ​amount​ ​of​ ​mortar​ ​is​ ​being​ ​placed​ ​in​ ​between​ ​the​ ​blocks​ ​and​ ​at​ ​the​ ​same​ ​time,​ ​additional​ ​rebars​ ​are​ ​being​ ​positioned​ ​to​ ​strengthen​ ​the​ ​structure. 3.​ ​Second​ ​layer​ ​of​ ​blockwork​ ​is​ ​being​ ​placed.​ ​The​ ​unique​ ​shape​ ​and​ ​form​ ​of​ ​the​ ​block​ ​allows​ ​them​ ​to​ ​be​ ​interlocked​ ​with​ ​each​ ​other. 4.​ ​The​ ​process​ ​is​ ​being​ ​repeated​ ​until​ ​the​ ​desired​ ​height​ ​is​ ​achieved.

27


3.5.2​ ​INTERNAL​ ​WALL:​​ ​METAL​ ​STUD​ ​FRAMING​ ​WITH​ ​GYPSUM​ ​WALLBOARD​ ​(NON​ ​IBS)

Gypsum​ ​board​ ​is​ ​often​ ​called​ ​drywall,​ ​wallboard,​ ​or​ ​plasterboard.​ ​It​ ​differs​ ​from​ ​other​ ​panel-type​ ​building​ ​products,​ ​such​ ​as​ ​plywood,​ ​hardboard,​ ​and​ ​fiberboard,​ ​because​ ​of​ ​its​ ​noncombustible​ ​core and​ ​paper​ ​facers.​ ​When​ ​joints​ ​and​ ​fastener​ ​heads​ ​are​ ​covered​ ​with​ ​a​ ​joint​ ​compound​ ​system,​ ​gypsum​ ​wall​ ​board​ ​creates​ ​a​ ​continuous​ ​surface​ ​suitable​ ​for​ ​most​ ​types​ ​of​ ​interior​ ​partitions​ ​which​ ​do not​ ​carry​ ​any​ ​form​ ​of​ ​loads.

Advantages 1.​ ​Ease​ ​of​ ​installation Gypsum​ ​board​ ​building​ ​systems​ ​are​ ​easy​ ​to​ ​install​ ​for​ ​several​ ​reasons.​ ​Gypsum​ ​board​ ​panels​ ​are​ ​relatively​ ​large​ ​compared​ ​to​ ​other​ ​materials​ ​so​ ​they​ ​quickly​ ​cover​ ​large​ ​wall​ ​areas.​ ​It​ ​also​ ​requires simple​ ​tools​ ​to​ ​construct​ ​and​ ​it’s​ ​extremely​ ​lightweight. 2.​ ​Fire​ ​resistant Gypsum​ ​board​ ​is​ ​an​ ​excellent​ ​fire-resistive​ ​building​ ​material.​ ​Its​ ​noncombustible​ ​core​ ​contains​ ​nearly​ ​21%​ ​chemically​ ​combined​ ​water,​ ​as​ ​described​ ​earlier,​ ​which,​ ​under​ ​high​ ​heat,​ ​is​ ​slowly released​ ​as​ ​steam​ ​and​ ​subsequently​ ​ ​retards​ ​the​ ​transfer​ ​of​ ​heat​ ​and​ ​the​ ​spread​ ​of​ ​fire. 3.​ ​Durability Gypsum​ ​board​ ​is​ ​used​ ​to​ ​construct​ ​strong,​ ​high​ ​quality​ ​walls​ ​and​ ​ceilings​ ​that​ ​offer​ ​excellent​ ​dimensional​ ​stability​ ​and​ ​durability.​ ​Surfaces​ ​created​ ​using​ ​gypsum​ ​board​ ​are​ ​easily​ ​decorated​ ​and refinished.

Disadvantages 1.​ ​High​ ​risk​ ​when​ ​exposed​ ​to​ ​dampness Gypsum​ ​wallboards​ ​cannot​ ​be​ ​used​ ​for​ ​outside​ ​walls​ ​since​ ​they​ ​retain​ ​dampness.​ ​Also,​ ​gypsum​ ​walls​ ​cannot​ ​be​ ​done​ ​in​ ​areas​ ​which​ ​are​ ​continuously​ ​damp​ ​such​ ​as​ ​bathroom.

28


Installation​ ​process

Non-load​ ​bearing​ ​or​ ​non-structural​ ​metal​ ​studs​ ​and​ ​framing​ ​are​ ​not​ ​designed​ ​or​ ​intended​ ​to​ ​carry​ ​any​ ​axial​ ​loads.​ ​They​ ​are,​ ​however,​ ​designed​ ​to​ ​carry​ ​the​ ​dead​ ​load​ ​of​ ​many​ ​typical​ ​wall​ ​finishes such​ ​as​ ​gypsum​ ​board,​ ​plaster​ ​work,​ ​or​ ​similar​ ​finishes,​ ​and​ ​to​ ​provide​ ​resistance​ ​to​ ​normal​ ​transverse​ ​loads. 1.​ ​Non-load​ ​bearing​ ​metal​ ​studs​ ​and​ ​framings​ ​are​ ​being​ ​installed​ ​according​ ​to​ ​the​ ​layout​ ​of​ ​the​ ​building,​ ​together​ ​with​ ​the​ ​openings​ ​for​ ​doors​ ​and​ ​windows. 2.​ ​Deflection​ ​tracks,​ ​headers​ ​and​ ​sills,​ ​and​ ​sliders​ ​are​ ​being​ ​installed. 3.​ ​To​ ​increase​ ​acoustic​ ​and​ ​fire​ ​insulation,​ ​a​ ​layer​ ​of​ ​insulators​ ​is​ ​added​ ​within​ ​the​ ​air​ ​space. 4.​ ​The​ ​gypsum​ ​wallboards​ ​are​ ​then​ ​tapered​ ​to​ ​desired​ ​dimension​ ​to​ ​be​ ​secured​ ​onto​ ​the​ ​metal​ ​stud​ ​framing​ ​with​ ​fasteners. .

29


3.6​ ​ROOF​ ​TRUSSES​ ​:​ ​STEEL​ ​ROOF​ ​TRUSSES

Roof​ ​trusses​ ​are​ ​characterised​ ​by​ ​an​ ​economic​ ​use​ ​of​ ​construction​ ​materials.​ ​The​ ​truss​ ​of​ ​a​ ​structure​ ​is​ ​its​ ​main​ ​framework,​ ​consisting​ ​of​ ​posts,​ ​rafters,​ ​struts,​ ​or​ ​bridges.​ ​The​ ​structural​ ​height​ ​of​ ​a truss​ ​is​ ​usually​ ​larger​ ​than​ ​the​ ​height​ ​of​ ​similar​ ​structures​ ​using​ ​solid​ ​beams.

Advantages 1.​ ​High​ ​durability​ ​and​ ​low​ ​maintenance​ ​costs ​ ​ ​ ​ ​It​ ​does​ ​not​ ​have​ ​the​ ​needs​ ​for​ ​chemical​ ​treatments​ ​to​ ​maintain​ ​the​ ​frame​ ​and​ ​are​ ​not​ ​subject​ ​to​ ​insect​ ​infestations. 2.​ ​Lightweight ​ ​ ​ ​ ​Allowing​ ​easy​ ​and​ ​quick​ ​installations​ ​on​ ​site. 3.​ ​Can​ ​be​ ​recycled​ ​easily

Disadvantages 1.​ ​High​ ​cost ​ ​ ​ ​ ​It​ ​is​ ​usually​ ​more​ ​expensive​ ​than​ ​timber​ ​trusses. 2.​ ​Labour-intensive ​ ​ ​ ​ ​Required​ ​skills​ ​for​ ​installation.

30


Fabrication​ ​process

1.​ ​Cutting ​ ​ ​ ​ ​Fabricators​ ​use​ ​several​ ​tools​ ​to​ ​cut​ ​the​ ​steel​ ​of​ ​a​ ​truss,​ ​including​ ​plasma​ ​cutters,​ ​lasers,​ ​and​ ​water​ ​jets.​ ​The​ ​metal​ ​fabricator​ ​punches​ ​holes​ ​using​ ​high-pressure​ ​notches. 2.​ ​Forming ​ ​ ​ ​ ​Fabricators​ ​use​ ​both​ ​press​ ​baking​ ​and​ ​rolling​ ​process. 3.​ ​Assembly ​ ​ ​ ​ ​This​ ​process​ ​includes​ ​welding​ ​pieces​ ​together,​ ​bringing​ ​the​ ​final​ ​product​ ​together​ ​to​ ​serve​ ​its​ ​intended​ ​purpose​ ​as​ ​a​ ​truss.

Installation​ ​process

1.​ ​Handling ​ ​ ​ ​ ​Most​ ​of​ ​the​ ​steel​ ​trusses​ ​which​ ​are​ ​delivered​ ​to​ ​sites​ ​are​ ​ready​ ​to​ ​be​ ​installed,​ ​but​ ​they​ ​still​ ​must​ ​be​ ​handled​ ​with​ ​care. 2.​ ​Bracing​ ​and​ ​restraints ​ ​ ​ ​ ​To​ ​ensure​ ​the​ ​accurate​ ​installation​ ​of​ ​steel​ ​trusses,​ ​temporary​ ​and​ ​permanent​ ​bracing​ ​are​ ​required.​ ​The​ ​bracing​ ​is​ ​to​ ​hold​ ​the​ ​members​ ​upright,​ ​straight​ ​and​ ​in​ ​place. 3.​ ​Installation​ ​variables ​ ​ ​ ​ ​Interior​ ​walls​ ​and​ ​beams​ ​will​ ​keep​ ​the​ ​trusses​ ​supported​ ​as​ ​temporary​ ​bracing​ ​is​ ​installed​ ​to​ ​keep​ ​trusses​ ​in-plane.​ ​Scaffolding​ ​is​ ​commonly​ ​utilized​ ​for​ ​long-​ ​span​ ​trusses​ ​to​ ​be​ ​in​ ​place​ ​during installation. 4.​ ​Hoisting​ ​and​ ​connecting ​ ​ ​ ​ ​Cranes​ ​and​ ​scissor​ ​lifts​ ​are​ ​used​ ​to​ ​hoist​ ​the​ ​steel​ ​roof​ ​trusses​ ​to​ ​the​ ​support​ ​and​ ​be​ ​braced.

Concrete​ ​connections​ ​for​ ​steel​ ​trusses

31


Components​ ​of​ ​Roof​ ​Structure

32


3.7​ ​STAIRS:​ ​PRECAST​ ​SYSTEM

Concrete​ ​stairs​ ​provide​ ​a​ ​safe​ ​means​ ​of​ ​escape​ ​in​ ​event​ ​of​ ​fire​ ​and​ ​can​ ​be​ ​installed​ ​instantly,​ ​they​ ​are​ ​used​ ​in​ ​every​ ​development​ ​type​ ​where​ ​there​ ​is​ ​a​ ​requirement​ ​for​ ​access​ ​and​ ​egress.

Advantages 1.​ ​Durable​ ​construction 2.​ ​Low​ ​maintenance ​ ​ ​ ​ ​Precast​ ​concrete​ ​stairs​ ​require​ ​less​ ​maintenance​ ​than​ ​other​ ​materials​ ​and​ ​will​ ​never​ ​squeak​ ​or​ ​sag. 3.​ ​Effective​ ​Pricing ​ ​ ​ ​ ​Costs​ ​can​ ​be​ ​more​ ​accurately​ ​estimated​ ​earlier​ ​in​ ​the​ ​process​ ​because​ ​of​ ​the​ ​tightly​ ​control​ ​of​ ​precast​ ​concrete​ ​and​ ​shorter​ ​production​ ​process. 4.​ ​Green​ ​design ​ ​ ​ ​ ​The​ ​stairs​ ​can​ ​be​ ​recycled​ ​after​ ​the​ ​building’s​ ​service​ ​life.

Disadvantages 1.​ ​Settling ​ ​ ​ ​ ​Due​ ​to​ ​the​ ​heaviness​ ​of​ ​concrete​ ​stairs,​ ​the​ ​stairs​ ​often​ ​settle​ ​which​ ​then​ ​creating​ ​uneven​ ​stairs​ ​and​ ​also​ ​a​ ​trip​ ​hazard. 2.​ ​Repairing​ ​damage ​ ​ ​ ​ ​Once​ ​the​ ​concrete​ ​creaks,​ ​it​ ​is​ ​almost​ ​impossible​ ​to​ ​repair​ ​the​ ​damaged​ ​concrete​ ​steps​ ​as​ ​there​ ​are​ ​no​ ​other​ ​structural​ ​elements​ ​within​ ​the​ ​concrete. 3.​ ​Railing​ ​Attachment ​ ​ ​ ​ ​Precast​ ​steps​ ​are​ ​not​ ​sufficiently​ ​supported​ ​by​ ​lateral​ ​pressure,​ ​therefore​ ​making​ ​it​ ​unsafe​ ​to​ ​install​ ​railings.

33


Fabrication​ ​process

1.​ ​Formwork ​ ​ ​ ​ ​Formwork​ ​is​ ​maintained​ ​to​ ​provide​ ​completed​ ​precast​ ​concrete​ ​units​ ​of​ ​shaped,​ ​lines,​ ​and​ ​dimensions​ ​indicated,​ ​within​ ​fabrication​ ​tolerances. 2.​ ​Reinforcement ​ ​ ​ ​ ​Welded​ ​wire​ ​fabric​ ​is​ ​installed​ ​in​ ​lengths​ ​as​ ​long​ ​as​ ​practicable. 3.​ ​Concrete​ ​mixing ​ ​ ​ ​ ​After​ ​concrete​ ​batching,​ ​no​ ​additional​ ​water​ ​may​ ​be​ ​added. 4.​ ​Measuring,​ ​mixing,​ ​transporting,​ ​and​ ​placing​ ​concrete ​ ​ ​ ​ ​Place​ ​concrete​ ​in​ ​a​ ​continuous​ ​operation​ ​to​ ​prevent​ ​seams​ ​or​ ​planes​ ​of​ ​weakness​ ​forming​ ​in​ ​precast​ ​concrete​ ​units. 5.​ ​Place​ ​the​ ​concrete​ ​by​ ​internal​ ​and​ ​external​ ​vibration​ ​without​ ​dislocating​ ​or​ ​damaging​ ​reinforcement​ ​and​ ​built-in​ ​items 6.​ ​Cure​ ​concrete ​ ​ ​ ​ ​Using​ ​low-pressure​ ​live​ ​steam​ ​or​ ​radiant​ ​heat​ ​and​ ​moisture.

Installation​ ​process

1.​ ​Steel​ ​brackets​ ​are​ ​bolted​ ​to​ ​the​ ​foundation​ ​using​ ​concrete​ ​anchors,​ ​to​ ​catch​ ​the​ ​legs​ ​at​ ​the​ ​back​ ​of​ ​the​ ​stairs. 2.​ ​Small​ ​concrete​ ​pads​ ​are​ ​set​ ​under​ ​each​ ​side​ ​of​ ​the​ ​steps​ ​toward​ ​the​ ​front​ ​of​ ​the​ ​unit. 3.​ ​The​ ​precast​ ​stairs​ ​are​ ​then​ ​set​ ​on​ ​the​ ​brackets​ ​and​ ​pad. 4.​ ​The​ ​railings​ ​are​ ​installed​ ​in​ ​the​ ​precast​ ​unit​ ​and​ ​held​ ​in​ ​place​ ​with​ ​anchoring​ ​cement.

34


4.0​ ​SEQUENCE​ ​OF​ ​CONSTRUCTION

1.​ ​FOUNDATION

2.​ ​GROUND​ ​BEAM

​ ​3.​ ​GROUND​ ​SLAB

4.​ ​COLUMNS

35


​​​​

​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​ ​5.​ ​BEAM

7.​ ​EXTERNAL​ ​WALL

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​6.​ ​INTERNAL​ ​WALL

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​8.​ ​DOORS​ ​AND​ ​WINDOWS

36


9.​ ​PRECAST​ ​STAIRS

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​10.​ ​COLUMN​ ​AND​ ​SLAB​ ​(REPEAT​ ​THE​ ​PROCEDURE​ ​3&4)

​​​​​​​​​​​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​11.​ ​BEAM​ ​AND​ ​INTERNAL​ ​WALL​ ​(REPEAT​ ​THE​ ​PROCEDURE​ ​OF​ ​5&6) 7&8)

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​12.​ ​EXTERNAL​ ​WALL,​ ​DOORS​ ​AND​ ​WINDOWS​ ​(REPEAT​ ​PROCEDURE

37


​​​​​​​

​​​​​​​​​​​​​​​​​​ 13.​ ​COLUMNS,​ ​SLABS​ ​AND​ ​COLUMNS​ ​(REPEATED​ ​3-5)

​ ​ ​ ​ ​14.​ ​WALLS,​ ​SLABS,​ ​DOORS​ ​AND​ ​WINDOWS​ ​(REPEATED​ ​PROCEDURE​ ​6-8)

15.​ ​ROOF​ ​TRUSSES

38


5.0​ ​IBS​ ​SCORE​ ​CALCULATION 1.​ ​Construction​ ​area​ ​per​ ​floor

i)​ ​Area​ ​for​ ​1​ ​units​ ​of​ ​apartments​ ​:​ ​117m​² ii)​ ​Staircase​ ​Area​ ​:​ ​14m​² iii)​ ​Area​ ​for​ ​ ​floor​ ​:​ ​(117m​²​+117m​²​+14m​²​)​ ​=248m​²

2.​ ​Structural​ ​Systems

i)​ ​Beams​ ​:​ ​Precast​ ​concrete​ ​beam ii)​ ​Columns​ ​:​ ​Precast​ ​concrete​ ​column iii)​ ​Slabs​ ​:​ ​Hollow​ ​core​ ​slab iv)​ ​Roof​ ​Truss​ ​:​ ​Prefabricated​ ​steel​ ​truss

3.​ ​Wall​ ​Systems

i)​ ​External​ ​Wall​ ​:​ ​Blockwork​ ​systems ii)​ ​Internal​ ​Wall​ ​:​ ​Metal​ ​stud​ ​framing​ ​with​ ​gypsum​ ​wallboard

4.Other​ ​simplified​ ​construction​ ​solutions.

i)​ ​Beams​ ​:​ ​100%​ ​complies​ ​with​ ​MS​ ​1064​ ​Part​ ​10​ ​:​ ​2001 ​ ​ ​ ​Columns​ ​:​ ​100%​ ​complies​ ​with​ ​MS​ ​1064​ ​Part​ ​10​ ​:​ ​2001 ​ ​ ​ ​Walls​ ​and​ ​Slabs​ ​:​ ​100%​ ​complies​ ​with​ ​MS​ ​1064​ ​Part​ ​10​ ​:​ ​2001 ​ ​ ​ ​Doors:​ ​60%​ ​complies​ ​with​ ​MS​ ​1064​ ​Part​ ​4​ ​:​ ​2001 ​ ​ ​ ​WIndows:​ ​100%​ ​complies​ ​with​ ​MS​ ​1064​ ​Part​ ​5​ ​:​ ​2001 ii)​ ​Horizontal​ ​repetition​ ​of​ ​structure​ ​=100% ​ ​ ​ ​ ​Vertical​ ​repetition​ ​of​ ​structural​ ​floor​ ​layout​ ​=​ ​100% ​ ​ ​ ​ ​Repetition​ ​of​ ​floor​ ​to​ ​floor​ ​height​ ​=​ ​100% ELEMENTS

AREA​ ​(​m2​​ )​ ​or​ ​Length​ ​(m)

IBS​ ​FACTOR

IBS​ ​SCORE

COVERAGE

Part​ ​1:​ ​Structure​ ​Elements Precast​ ​beams​ ​+​ ​Precast​ ​column​ ​+ Precast​ ​concrete​ ​hollow​ ​core​ ​slab floor Ground​ ​floor​ ​area​ ​=​ ​248m​²

248m​²

1.0

(248/1240) =0.2

0.2​ ​x​ ​1.0​ ​x​ ​50 =10

Precast​ ​beams​ ​+​ ​Precast​ ​column​ ​+ Precast​ ​concrete​ ​hollow​ ​core​ ​slab floor First​ ​floor​ ​area​ ​=​ ​248m​²

248m​²

1.0

(248/1240) =0.2

0.2​ ​x​ ​1.0​ ​x​ ​50 =10

Precast​ ​beams​ ​+​ ​Precast​ ​column​ ​+ Precast​ ​concrete​ ​hollow​ ​core​ ​slab floor Second​ ​ ​floor​ ​area​ ​=​ ​248m​²

248m​²

1.0

(248/1240) =0.2

0.2​ ​x​ ​1.0​ ​x​ ​50 =10

Precast​ ​beams​ ​+​ ​Precast​ ​column​ ​+

248m​²

1.0

(248/1240)

0.2​ ​x​ ​1.0​ ​x​ ​50

39


Precast​ ​concrete​ ​hollow​ ​core​ ​slab floor Third​ ​floor​ ​area​ ​=​ ​248m​² Roof​ ​truss​ ​using​ ​prefab​ ​roof​ ​truss Roof​ ​area​ ​=​ ​248m​² Total​ ​Part​ ​1

248m​²

1.0

1240m​²

=0.2

=10

(248/1240) =0.2

0.2​ ​x​ ​1.0​ ​x​ ​50 =10

0.6

50

Part​ ​2:​ ​Wall​ ​System External​ ​wall​ ​using​ ​concrete blockworks

258.18m

0.5

(258.18/364.44) =0.708

0.708​ ​ ​x​ ​0.5​ ​x​ ​20 =7.08

Internal​ ​wall​ ​using​ ​plasterboard (non​ ​IBS)

106.26m

-

-

-

TOTAL​ ​OF​ ​PART​ ​2

364.44m

0.708

7.08

i)​ ​100​ ​%​ ​of​ ​beam​ ​sizes​ ​follow​ ​MS 1064​ ​Part​ ​10​ ​:​ ​2001

100%

4

ii)​ ​100%​ ​of​ ​columns​ ​complies​ ​with MS​ ​1064​ ​Part​ ​10​ ​:​ ​2001

100%

4

iii)​ ​50%​ ​wall​ ​thickness​ ​sizes​ ​follow MS​ ​1064​ ​Part​ ​10​ ​:​ ​2001

50%

2

iv)​ ​100​ ​%​ ​slab​ ​thickness​ ​follow​ ​MS 1064​ ​Part​ ​10​ ​:​ ​2001

100%

4

iii)​ ​60%​ ​of​ ​door​ ​sizes​ ​complies​ ​with MS​ ​1064​ ​Part​ ​4:​ ​2001

60%

2

iv)​ ​100%​ ​of​ ​window​ ​sizes​ ​complies with​ ​MS​ ​1064​ ​Part​ ​5:2001

100%

4

i)​ ​Repetition​ ​ ​of​ ​floor​ ​to​ ​floor​ ​height

100%

2

ii)​​ ​Horizontal​ ​repetition​ ​of​ ​structure

100%

2

iii)​ ​Vertical​ ​repetition​ ​of​ ​structural

100%

2

Part​ ​3:​ ​Other​ ​simplified construction​ ​solutions UTILISATION​ ​OF​ ​STANDARD COMPONENTS​ ​BASED​ ​ON​ ​MS 1064

REPETITION​ ​OF​ ​STRUCTURE

40


floor​ ​layout

TOTAL​ ​OF​ ​PART​ ​3 IBS​ ​CONTENT​ ​SCORE​ ​OF PROJECT​ ​(PART​ ​1​ ​+​ ​PART​ ​2​ ​+ PART​ ​3)

24 50+7.08+24=​ ​81.08

41


6.0​ ​CONCLUSION Throughout​ ​this​ ​project,​ ​we​ ​understand​ ​the​ ​IBS​ ​application​ ​ease​ ​the​ ​efficiency,​ ​quality​ ​and​ ​productivity​ ​of​ ​projects.​ ​We​ ​have​ ​also​ ​face​ ​some​ ​issue​ ​such​ ​that​ ​we​ ​are​ ​unable​ ​to​ ​make​ ​the​ ​building​ ​fully constructed​ ​by​ ​IBS​ ​system​ ​due​ ​to​ ​the​ ​dimensions​ ​of​ ​floor​ ​plan​ ​that​ ​we​ ​have​ ​designed.​ ​Despite​ ​that,​ ​we​ ​have​ ​gained​ ​some​ ​knowledge​ ​on​ ​IBS​ ​system​ ​through​ ​the​ ​process​ ​from​ ​case​ ​study,​ ​designing to​ ​model​ ​making.​ ​We​ ​realised​ ​that​ ​through​ ​further​ ​research​ ​we​ ​are​ ​able​ ​to​ ​achieve​ ​better​ ​outcome​ ​in​ ​the​ ​future.

42


7.0​ ​REFERENCES Ahamad,​ ​M.​ ​S.​ ​(n.d.).​ ​Constructability​ ​of​ ​IBS​ ​Blockwork​ ​System​ ​for​ ​Bungalow​ ​House.​ ​Retrieved​ ​October​ ​5,​ ​2017,​ ​from https://www.academia.edu/21345725/Constructability_of_IBS_Blockwork_System_for_Bungalow_House Reisdorf,​ ​Mark.​ ​“Light​ ​Gauge​ ​Metal​ ​Stud​ ​Framing.”​ ​Light​ ​Gauge​ ​Metal​ ​Stud​ ​Framing​ ​-​ ​Buildipedia​,​ ​4​ ​Mar.​ ​2010, buildipedia.com/aec-pros/construction-materials-and-methods/light-gauge-metal-stud-framing-planning-and-practices Using​ ​Gypsum​ ​Board​ ​for​ ​Walls​ ​and​ ​Ceilings​ ​Section​ ​I.​ ​(2011,​ ​December​ ​02).​ ​Retrieved​ ​October​ ​06,​ ​2017,​ ​from https://www.gypsum.org/technical/using-gypsum-board-for-walls-and-ceilings/using-gypsum-board-for-walls-and-ceilings-section-i/#limitations Precast​ ​concrete​ ​stairs.​ ​(n.d.).​ ​[ebook]​ ​Available​ ​at: http://bethlehemprecast.com/wp-content/uploads/2015/08/specs_for_stairs.pdf​​ ​[Accessed​ ​5​ ​Oct.​ ​2017]. Precast​ ​Concrete​ ​Columns​ ​|​ ​Prestressed​ ​Concrete​ ​Columns.​ ​(n.d.).​ ​Retrieved​ ​October​ ​08,​ ​2017,​ ​from ​ ​https://nitterhouseconcrete.com/product/columns/ Simplicity​ ​of​ ​design​ ​ease​ ​of​ ​precasting​ ​speed​ ​of​ ​erection..​ ​(n.d.).[PDF]​ ​Peikko.​ ​Available​ ​at https://media.peikko.com/file/dl/i/yGix0w/0ZFj6oWsDyxeMUHvUgp3oA/peikko_columnconnections_final.pdf​​ ​[Accessed​ ​6​ ​Oct,​ ​2017] Essays,​ ​UK.​ ​(November​ ​2013).​ ​Precast​ ​Concrete​ ​Construction.​ ​Retrieved,​ ​October​ ​07,​ ​2017,​ ​from https://www.ukessays.com/essays/construction/precast-concrete-construction.php?cref=1 Reinforced​ ​Precast​ ​Concrete​ ​Columns.​ ​(n.d.).​ ​Retrieved​ ​October​ ​09,​ ​2017,​ ​from http://floodprecast.ie/precast-concrete-products/precast-concrete-columns/ User,​ ​S.​ ​(n.d.).​ ​Reinforced​ ​Concrete​ ​Square​ ​Pile.​ ​Retrieved​ ​October​ ​08,​ ​2017,​ ​from http://www.humeconcrete.com.my/index.php/features/bagged-2/reinforced-concrete-square-pile?view=page&id=68 S.​ ​(2015,​ ​May​ ​09).​ ​WHAT​ ​ARE​ ​THE​ ​ADVANTAGES​ ​&​ ​DISADVANTAGES​ ​OF​ ​PRECAST​ ​CONCRETE​ ​PILES?​ ​Retrieved​ ​October​ ​08,​ ​2017,​ ​from http://civilblog.org/2015/05/09/what-are-the-advantages-disadvantages-of-precast-concrete-piles/# Info​ ​on:​ ​Precast​ ​concrete​ ​in​ ​Melbourne,​ ​Precast​ ​concrete​ ​floor​ ​slabs,​ ​Precast​ ​concrete​ ​beams,​ ​Precast​ ​concrete​ ​walls,​ ​Precast​ ​concrete​ ​building,​ ​Manufacturers,​ ​Suppliers​ ​&​ ​installers​ ​of​ ​precast​ ​concrete.​ ​(n.d.). Retrieved​ ​October​ ​06,​ ​2017,​ ​from​ ​http://www.hollowcore.com.au/hollow_core_floor_slabs.php P.​ ​E.​ ​(n.d.).​ ​Hollow​ ​Core​ ​Slabs​ ​[PDF].​ ​Available​ ​at http://www.nordimpianti.com/brochures/eng/pdf_mr/3.1_ENG_Hollow_Core_Slabs.pdf Brakefield,​ ​K.​ ​(n.d.).​ ​Fabricating​ ​Structural​ ​Steel​ ​Trusses.​ ​Retrieved​ ​October​ ​05,​ ​2017,​ ​from http://blog.swantonweld.com/fabricating-structural-steel-trusses

43


Hollow​ ​core​ ​slab​ ​production​ ​plant​ ​[PDF].​ ​(n.d.).​ ​Finland:​ ​Elematic​ ​Oy​ ​Ab.​ ​Available​ ​at http://www.ceeind.com/public/data/companyCatalogue1233069526.pdf Robins,​ ​M.​ ​(2014,​ ​July​ ​23).​ ​Taking​ ​on​ ​Roof​ ​Truss​ ​Installation.​ ​Retrieved​ ​October​ ​08,​ ​2017,​ ​from http://www.metalconstructionnews.com/articles/magazine-features/taking-on-roof-truss-installation.aspx

44


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.