. , • • 1;. • .».,
'" •
.1..-'■ •.;- ■•' •• ' • ■ . 'i- 'h
'^■ • '- ** ♦■.■■ ■ .•*•'■ .' ■' • •■-'
>>■ . * I
- 1'
3'
1 r.'>", .
v"-:
^
aH'i-
'
K
, í> 'í?¿i^'^.''l-!j'Vtfíi
•srfTi
•I'"/..-.
. 'V '
-
- -;
i' '-
i* ^ ^ f
' .-;-T
é'
^; i
V ■ - ■ ■'. ■ .
:m it
<h\
.' ' :'>■
K ^ •' ' !
t
é
•■
■
t
;
•
.
'
■• .
*
'
•
.
•
, • , ,<
'
' V
•
y*";' ■ , .•,.yf ■ '
• •■'
. í'
y # v
. y
. * ■'
*' J->*.
' .', .4 .
}
«<• '• '■ : A ''
,
A '. '
•
>
^
, .\
■ ■ ' ' ■ '
• ■ ■'
•. ,■ ■,
'
.
. -. ■
'.r,
■ •,
'f
•, jíl
'••f.
Éíf c
■■ '
y "'-i?
tuj:
"/í V
>
4v
COGENTRIX
junt?
XE= ¿^Planificación
INFO^fp^SEPROPS^il
,
'fif •>
'.>7
íjí I
'
■* ■ ■■ ' f
•-'' s
. , ■•
■^i-
:- .A^-',i'
'^.V
>;;y; -•
, '• ■ 1 . > ',,i' , 'V, J i/;, i
b'
■
-
>,
' ": --'^r' , ,!'•• '.r,"i \'i ■ ' i .'
; ■/.
t í. r r .V-
/; '■
-■-•';•! -iT*^
•
^UJl4r«
; _..
V»
Respuesta a las vistas de
la Junta de Planifícación de Puerto Rico
Complejo de Energía de Mayagüez
Mayagüez, Puerto Rico octubre JQ9?
t í. r r .V-
/; '■
-■-•';•! -iT*^
•
^UJl4r«
; _..
m
Información Adicional de Parte Proponente 14 de octubre de 1992
Exhibitl:
Información Sobre Plantas Generatrices de Cogentrix en Estados
Unidos y Comparación de Tres (3) de ellas con la Propuesta en
Mayagüez
Comparación entre tres centrales Congentrix y la pro puesta en Mayagüez
II.
Densidades poblacionales
III. Proximidad a sectores vecinos de centrales de Cogentrix IV.
Zonas de Amortiguamiento
V.
Fotografías e información sobre las plantas de Cogentrix
Exhibit II:
Protección del Carbón Durante Tormentas ^ Exhibit IIIs
Lavador de Gases de Agua de Mar 1.
centrales Térmicas en Islas Canarias
2.
Flakt - Hydro Process
3.
Información Técnica
Exhibit IV;
Area de Charca de Aereación (véase exhibit I,A,I, pág. 2) Exhibit V:
Notificación de Violaciones por Agencias Reguladoras. Excepto por una, informe que se perdió en el correo y la imposición de
$150 de multa, ninguna conllevó imposición de multa (éstos aparecen con la violación.
por determinarse, que no fue significativa
Exhibit Vi!
Earthguake Vulnerability Study of Mayagüez Area, Western Puerto Rico, by Juan Carlos Moya and William R. McCann Exhibit VII:
Protocolo Oleaje de Tempestad Exhibit VIII;
Documentos de referencias de terceras personas o entidades no
afiliadas a Cogentrix Exhibit IX!
Evidencia de necesidad de ceniza en Puerto Rico
Exhibit X:
Medidas de Construcción para Proteger las Estructuras de Toma y Descarga Durante Tormentas
Exhibit XI;
Respuestas
a
Planificación.
mfr
las Preguntas
de
la
Vista
de
la
Junta
de
♦Ti-'
•*feÍ!Li.
:*
■
;V ' »
' : 't
;■ ■ ■ - ' '11 •'
t
,tf-'-m i--^
, ."• » . 1
mí»
m Cogentrix, a privately-held Corporatíon
headquartered in Charlotte, North Carolina, develops, owns and operates standardized coal-fired cogeneration fadlíties. The electricity generated is soid to public utilities and steam is sold to an industrial user.
The planes have been designed by Duke Power Company as utility-grade facilities having a 30-pIus year plant life. A conventiona! utiliiy steam cycle in conjunction with múltiple stoker-fired boilers results in high plant availabillty.
The Company's staff consisis of management and engineering personnel who have long-term experience in design, management and operation of utility and industrial steam and
electric generaiing facilities. Cogentrix utilizes standardized designs
to provide the required plant capaci^. All work related to thefacility including engineering.Jinandng, licensing, construction, and operation is at the risk and expense ofCogentrix. !N>lK.Tr:;Vl INTERFACE
Plants are designed with múltiple boilers to maintain the process steam supply at
the required level even during boiler or turbine outages. Process steam demand variations are met
by using condensing turbines. Steam requirements to 500,000 Ibs/hr can be provided. Steam pricing is based on coal and is not subject to the uncertainties of oil and gas pricing. The steam user can retain a multifuel option.
INFORMACION SOBRE PLANTAS
GENERATRICES DE C06ENTRIX EN
ESTADOS UNIDOS Y COMPARACION
DE TRES CS)DE ELLAS CON LA PROPUESTA EN MAYAGimZ
INDICE
PAGINA
I.
Comparación entre tres centrales Congentrix y la propuesta en Mayaguez
II.
Densidades poblacionales
III.
Proximidad a sectores vecinos de centrales de Cogentrix
IV.
Zonas de Amortiguamiento
V.
Fotografías e información sobre las plantas de
1-2
3
4
5-8
Cogentrix:
Elizabeth Town, NC
9
HopeweII, NC
10
Kenansvílle, NC
11
Lumberton, NC
12
Portsmouth, VA
13
RIchmond, VA
14
Rocky Mount, NC
15
Roxboro, NC
16
Southport, NC
17
Comparación entre tres centrales Cogentrix y Mayagúez
Richmond, VAf Portsmouth, VAt HopeweII, NCt 220 MW 110 MW 110 MW
Capacidad
Mayagüez, PR§ 300 MW
Cabida total:
Acres (Ac) Cuerdas (Cd) Pies cuadrados(PC)
22.62
17.71
32.27
35.04
23.29
18.24
33.23
36.08
985,327.20
771,447.60
1,405,506.96
1,526,342.40
Cabida interior dentro
Ac
22.62
12.58
28.00
33.03
de la verja
Cd
23.29
12.95
28.83
34.29
985,327.20
547,985.50
1,219,896.25
1,438,786.80
78,966.40
47,452.25
47,452.25
67,392.25
0.00
0.00
5,016.00
Mejoras: Edificio de turbina/caldera Edificio administración
4,961.1
Sumideros edif. principal
156.05
86.67
86.67
0.00
7,224.00
7,224.00
4,406.39
1,333.89 30,300.00
2,968.80 42,300.00
58,000.00
8,736.10
8,736.10
19,399.99
19,399.99
Almacén
PC
11,012.89 4,795.98 69,000.00 3,482.1
Torre de enfriamiento
PC
31,348.43
Patio de transformadores Patio almacén de condensado Estación de interruptores
PC
2,026.38 8,208.00 7,770.94
Lozas de bombas de agua
PC
0.00
555.00
555.00
1,248.00
Charca de aguas usadas Casa de bomba de aguas usadas
PC
20,341.33
11,673.25
9,192.00
PC
1,153.86
606.70
606.70
12,546.21 1,934.00
Area de descargue de charca
PC
1,316.67
0.00
0.00
0.00
Edif. eléctrico torre énfriam.
PC
1,110.00
0.00
0.00
0.00
Edif. químico torre enfriam.
PC
0.00
234.69
234.69
0.00
Area descarga edif.quim torr. Almacén aceite y lubricantes
PC
0.00
658.97
658.97
0.00
anque neutralización Base soplador tanque neutr. Sumidero agua cruda
191.36
0.00
0.00
0.00
1,555.29
1,154.11
2,002.97
200.00
PC
0.00
79.22
79.22
0.00
PC
0.00
0.00
0.00
4,196.94
4,196.94
978.56
978.56
10,836.00 1,200.00
PC
PCI
Edificio demineralizaclón
PC
1,056.00 12,343.55
Area descarga edif. demineral.
PC
905.00
3ase transformadores e. demín
anques agua calderas Gasa bombas agua calderas
PC
456.72
0.00
0.00
0.00
PC
7,029.41
2,714.84 1,507.92
7,051.32 1,929.59
7,861.50
PC
0.00
0.00
0.00
0.00
PC
3,748.50 2,958.22
0.00
0.00
0.00
Silo de cenizas
PC
4,320.00
1,410.79
1,568.00
2,088.28
Edificio aspiradora cenizas
PC
744.38
200.00
200.00
0.00
avador de gases
PC
22,159.20
0.00
0.00
1,859.00
Baghouses'
PCI
6,003.00 2,248.51
6,003.00
18,099.61
PC
11,852.50 2,732.77
2,248.51
8,228.76
PC
525.00
0.00
0.00
0.00
PC
1,562.50
0.00
0.00
0.00
624.72
475.00
475.00
2.344.00
Edif. reciclaje y almacén cal
anque pasta de cal
Abanicos chimenea
dificio muestreo chimenea
Equipo NOX oso trampa de aceites
PC
0.00
Comparación entre tres centrales Ccgentrix y Mayagüez Base charcas sedimentación
PC
3.626.122
O.OC
O.OO
17,000.00
Area almacén cart)ón
PC
122.250.0(
60.204.62
127.697.38
200.211.00
Zanjas almacén carbón Rieles descarga y vías Edificio supresión polvo
PC
O.OC
7.470.0C
10,269.00
PC
538.0C
713.0C
9.528.00 72,567.29
PC
O.OG
0.00
26.67
0.00
Base reclamo carbón
PC
1.696.62
468.05
468.05
4,266.87
Edificio mantenimiento FGC
PC
1.033.43
0.00
0.00
0.00
Foso de fase densa
PC
0.00
235.99
235.99
0.00
Tanque almacenaje agua de pozo PC Tanque almacén hidrógeno PC
0.00
3.525.66
3,525.66
0.00
0.00
464.00
464.00
0.00
0.00
Romana de camiones
PC
1,075.95
0.00
0.00
0.00
Calles
PC
97.806.34
PC
2,361.59
52,249.57 2,361.59
141,178.93
Base soportes condulete caldera
107,832.46 0.00
Estación levante sanitario
PC
73.11
73.11
73.11
0.00
Edificio aceites residuales
PC
0.00
0.00
806.36
0.00
Soportes vapor de proceso
PC
191.26
1,103.50
862.78
Edificio de desalinización
PC
7,500.00
Charca de aereación
PC
Casa bombas charca aereación
PC
0.00
0.00
Edificio Fomento existente
PC
33,471.67 9,794.00 49,625.00 1,275.94 45,600.00
Edificio Diesel
PC
645.00
Totales
PC
Fábrica de perdigones
PC
Tanque combustible ignición
PC
Uso de terrenos {%)*
540,726.98
323,656.26
437,014.73
742,102.73
54.88%
59.06%
35.82%
51.58%
*EI bajo porcíento de desarrollo relativo al predio en la central de Hopewe se debe a que
el combustible se entrega no por la vía marítima, sino por tren. - Densidad poblacional de Virginia: 156.3 habitantes por milla cuadrada; 60.3 habitantes por kilómetro cuadrado. t Densidad poblacional de Carolina del Norte: 136.1 habitantes por milla cuadrada; 52.5 habitantes por kilómetro cuadrado. § Densidad poblacional de Puerto Rico: 1.027.9 habitante{s por milla cuadrada; 396.9 habitantes por kilómetro cuadrado.
II. Densidades poblacionalGs N C, Va, P R
804 m 800 m 30.5 m
200 m
201 m 400 m
1.6 km 402 m 91 m
Roxboro, NC 1.6 km
402 m
274 m
274 m
800 m
183 m
1.6 km
Southport, NC
160 m
482 m
mas cercana
más cercana
Elizabethtown, NC Hopeweil, NC Kenansville, NC Lumberton, NC Portsmouth, VA Richmond, VA Rocky Mount, NC
Industria
3.2 km
8 km
9.6 km
3.2 km
3.2 km
3.2 km
4.8 km
1.2 km
4.8 km
más cercana
Escuela
2.4 km
4.8 km
16 km
9.6 km
4.8 km
3.2 km
14.4 km
1.6 km
4.8 km
más cercano
Hospital
1.6 km
402 m
200 m
30.5 m
1.2 km
2.4 km
4.8 km
183 m
482 m .
más cercano
Comercio
3.500
7.000
100.000 250.000 1,000
20.000
950
10.000 50.000
Población total
Proximidad a sectores vecinos de centrales Cogentrix en EE UU
Residencia
III.
Población zona
500
400
70
10.000
150
4.000
20
2.500
1.000
residencial más cerca
Comentarios sobre "bufferzone"
(zona de amortiguamiento)
El Interés en zonas de amortiguamiento tiene dos vertientes predominantes. La primera es la de control de ruido. El ruido se atenúa con la distancia. La preocupación vecina en torno a los ruidos que puedan originarse en el proyecto quizás tenga un motivo histórico. Siendo Puerto Rico un país tropical, muchas de las actividades fabriles en el pasado se hacían al descubierto. Aún nuestras generatrices existentes tienen mucho
descubierto, aunque estén bien protegidas por andamiajes estructurales. Distinta a las generatrices existentes, la cogeneratriz propuesta para Mayagüez estará complétamete cobijada dentro una estructura cerrada y cuyas paredes serán de paneles de metal con un aislamiento interior para atenuar ruidos. Siendo este el caso, la pared de por sí es un amortiguador y puede decirse que la zona de amortiguamiento para ruidos de la caldera, de las turbinas y de los generadores será
el grueso del panel de la pared. El amortiguamiento en este caso está no en distancia, sino en el esquema de construcción ("building scheme"). En una radioemisora, telemisora o estudio de grabación, las paredes son también de amortiguamiento de ruidos. Aquí el peligro es que el ruido de la calle o del vecindario pase al cuarto de grabación o de transmisión. Se reduce o se elimina ese riesgo con paredes amortiguadoras. La segunda vertiente del interés en la zona de amortiguamiento es disminuir o eliminar el riesgo de que algún "contaminante" pueda afectar a alguien o a algo de valor ecológico. Aparte del "contaminante" de sonido, que ya se ha discutido, los únicos otros "contaminantes" posibles son los que se descargarían al mar o los que se descargarían a la atmósfera.
El amortiguamiento principal para que éstos no afecten la salud o el ambiente será,
no distancia, sino el uso y la implementación de la mejor tecnología de control disponible (BACT;Best Available Control Technology).
Las emisiones de particulados serán atenuadas o amortiguadas mediante filtros de
tela ("baghouses'l cuya eficiencia de filtrado es de más de 99% en partículas de tamaños de hasta 0.3 p. Asimismo, los óxidos de azufre de un combustible de un
contenido inicial de 1.5% de azufre o menos serán atenuados o amortiguados por ios lavadores de gases en un 93% como mínimo.
La zona amortiguadora de la descarga al mar lleva el nombre de zona de mezcla. Es la zona entre la salida del difusor y el punto de cumplimiento (point of compíiance) con ios parámetros ambientales. Todos ios parámetros —temperatura, pH, sólidos
disueltos— quedan satisfechos y en cumplimiento a una distancia de 50 pies (15 m) del punto de descarga. Por lo tanto, la zona de amortiguamiento de la descarga ai mar es de 15 metros o 50 pies.
Lo que no sea atrapado, atenuado c amortiguado por ios filtros de tela o los lavadores de gases, saldrá entonces por la chimenea. Aquí la atenuación o amortiguamiento sí es distancia, y esa distancia será el alto de la chimenea y el factor de dilución entre la altura de la chimenea, 350 pies o 107 m, y el piso. ####
co<XNTRDc//msfwmioiñm North Carolina Highway 87, Elizabethtown, North Carolina 28337 VV"
•
■'Mims^
y 7
i3
'i'-.
^v* .r- '
H
-<n
A" '•
f I'
'-'«'••.•.-f'i
.«1-. • •VÍ^
The plant was developed by Cogentrix, Inc., headquartered in Charlotte, North Carolina. It is a sister plant to units in Kenansville and Lumberton, North Carolina. The plant is operated by Cogentrix of North Carolina, Inc„ a wholly owned subsidiary of Cogentrbc, Inc. Construction began in September, 1984 and was completed, with plant start-up and operation, in December, 1985.
The total installed cost of the plant was $30 million.
The facility produces ovar 315,000 pounds of steam per hour at 1,500 pounds per square inch pressure at a temperature of 950°E Steam is provided to West Point Pepperell Corporation for its textile manufacturing process. The facility generates over 35,000 kilowatts of electricity; equivalent to the needs of approximately 20,000 homes.
All of the electricity generated is delivered to Carolina Power & Light Company with the exception of approximately 3,000 kilowatts required to opérate in-piant equipment. Approximately 16 tons of stoker coal is utilized per hour, or 120,000 tons per year; equivalent to 1,500 rail cars of coal per year. 15,000 tons of coal are stored on site.
The facility operates 24 hours/7 days per week with a staff of 30.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 Telephone 704-525-3800, Fax 704-529-5313
CaCBVTRIX//HímEWmL 912 East Randolph Road, Route 10, Hopewell, Virginia 23860 ^
m-
i'
The Plant was developed by Cogentrbc, Inc., headquartered in Charlotte, NC. The plant is owned by James River Cogeneration Company, a general partnership between Capistrano Cogeneration Company, a subsidiary of Mission Energy Company, headquartered in Irvine, California, and Cogentrix of Virginia, Inc., a wholly owned subsidiary of Cogentrix, Inc. Construction began in June. 1986, and was completed, with plant start-up and operation, in November, 1987.
The total installed cost of the facility was $92 milliom
The facility produces over 945,000 pounds of steam per hour at 1,500 pounds per square inch at a temperature of 950°E
Steam is provided to the Allied-Signal Corporation, Fibers Group chemical manufacturing plant. The facility generates over 110,000 kilowatts of electricity; equivalent to the needs of approximately
84,000 homes. All of the electricity produced is delivered to Virginia Power with the exception of approximately 5,000 kilowatts required to opérate in-plant equipment.
Approximately 48 tons of stoker coal is utilized per hour or 360,000 tons per year; equivalent o 4,000 rail cars of coal per year. Approximately 30,000 tons of coal are stored on site. 'he facility operates 24 hours/7 days per week with a staff of approximately 50.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 IfeleDhone 704-525-3800. Fax 704-529-5313
aX!ENTRIX//KBMNS\mi£ Route 11 North, Kenansville, North Carolina 28349-0806
V l .l
_J.
■■■
N
í- >C\Í.
¥
The plant was developed by Cogentrbc, Inc., headquartered in Charlotte, North Carolina. It is a sister plant to units in Lumberton and Elizabethtown, North Carolina. The plant is operated by Cogentrbc of North Carolina, Inc., a wholly owned subsidiary of Cogentrbc, Inc. Construction began in February, 1985 and was completed, with plant start-up and operation, in March, 1986.
The total installed cost of the plant was $32 million. The facility produces over 315,000 pounds of steam per hour at 1,500 pounds per square inch pressure at a temperature of 950°E
Steam is provided to Guilford East Corporation for its textile manufacturing process. The facility generates over 35,000 kilowatts of electricity; equivalent to the needs of approximately 20,000 homes. All of the electricity generated is delivered to Carolina Power & Light Company with the exception
of approximately 3,000 kilowatts required to opérate in-plant equipment. Approximately 16 tons of stoker coal is utilized per hour, or 120,000 tons per year; equivalent to 1,500 rail cars of coal per year. 15,000 tons of coal are stored on site. The facility operates 24 hours/7 days per week with a staff of 30.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 Tfelephone 704-525-3800. Fax 704-529-5313
I
ayCENTRIX/LUMBERTON State Road 2202/Hesterto\vn Road, Lumberton, North Carolina 28358
i
V*
4
.-
*. íf"'-
he plant was developed by Cogentrbc, Inc., headquartered in Charlotte, North Carolina. It is a sister plant to units in Kenansville and Elizabethtown,North Carolina. The plant is operated by Cogentrix of
North Carolina, Inc., a wholly owned subsidiary of Cogentrix, Inc. Construction began in August, 1984 and was completed, with plant start-up and operation, in December, 1985.
The total installed cost of the plant was $30 million.
The facility produces over 315,000 pounds of steam per hour at 1,500 pounds per square inch
pressure at a temperatura of 950°E Steam is provided to West Point Pepperell Corporation for its textile manufacturing process. The facility generates over 35,000 kilowatts ofelectricity; equivalent to the needs of approximately 20,000 homes.
All of the electricity produced is delivered to Carolina Power & Light Company with the exception of approximately 3,000 kilowatts required to opérate in-plant equipment. Approximately 16 tons of stoker coal is utilizad per hour, or 120,000 tons per year; equivalent to 1,500 rail cars of coal per year. 15,000 tons of coal are stored on site. The facility operates 24 hours/7 days per week with a staff of 30.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 Tfelephone 704-525-3800, Fax 704-529-5313
One Wild Duck Lañe. Portsmouth, yirginia.23703
íá- s
--
..
r^-^-rr/X^^SSm: ^ i M
fc^-rr,-^,
•-S?*
'' ■..: %^ P,
•r-C'^T-—-".iVÍT^
¿Í.'-';^T-:-7 íLp. '**
f
ly.-^
he Plant was developed by Cogentrix, ínc., headquartered in Charlotte, NC. The plant is operated by Cogentrix Virginia Leasing Corporation, a wholly owned subsidiary of Cogentrix, Inc. Construction began in June, 1986, and was completed, with plant start-up and operation, in May, 1988.
The total installed cost of the facility was $92 million. The facility produces over 945,000 pounds of steam per hour at 1,500 pounds per square inch at a temperature of 950°F.
Steam is provided to Virginia Chemicals Corporation for its chemical manufacturing process. The facility generates over 110,000 kilowatts of electricity; equivalent to the needs of approximately 84,000 homes.
All of the electricity produced is delivered to Virginia Power with the exception of approximately 5,000 kilowatts required to opérate in-plant equipment. Approximately 48 tons of stoker coal is utilized per hour or 360,000 tons per year; equivalent to 4,000 rail cars of coal per year. Approximately 15,000 tons of coal are stored on site. The facility operates 24 hours/7 days per week with a staff of approximately 50.
9405 Arrowpoint Boulevard. Charlotte. North Carolina 28273-8110
CXXÍENTRDC/RKMMND 5001 Comnierce Road, Richmond, Virginia 23234
- "■2?í
Ir
^Hc., headquartercd in Charlotte, North Carolina. The plant
_ by Cogentrix oF Richmond. Inc., a wholiy owned subsidiary of Cogentrix, Inc.
Construction b^gan in February 1991 with completion and plant start-up projected for May 1992.
The total installed cost of the plant is proiected to be $250 million.
The facility produces over 2,000,000 pounds of steam per hour at 1,500 pounds per square inch pressure at a temperature of 950°F.
f
^
Steam is provided to Du Pont for its textile fibers manufacturing process. The facility generales over 200,000 kilowatts of electricity, equivalent to the needs of approximately 125,000 homes^ All of the electricity generated is delivered to Virginia Power with the exception of approximately 16,000 kilowatts required to operare in-plant equipment. Approximately 96 tons of stoker coal is utili2ed per hour, or 740,000 tons per year; equivalent
to 8,500 rail cars of coal per year. Approximately 50,000 tons of coal are stored on site. The facility operates 24 hours/7 days per week with a staff of approximately 65.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 Tfelephone 704-525-3800, Fax 704-529-5313
COCENTRDC/ROCKY MOUNT Rouie 2, State Road HOO, Battieboro, North Carolina 27809
The D. C. Battle Steam Plant was developed by Cogentrix, Inc., headquartered in Charlotte. North Carolina. The plant is operated by Cogentrbc of Rocl^ Mount, Inc., a whoUy owned subsidiary of Cogentrix, Inc. Construction began in July 1989 and was completed, with plant start-up and operation, in October 1990.
The total installed cost of the facility was $107 million.
The facility produces over 1,000,000 pounds of steam per hour at 1,500 pounds per square inch pressure at a temperature of 950°E
Steam is provided to Abbott Laboratories for its pharmaceutical manufacturing process. The facility generates over 110,000 kilowatts of electricity, equivalent to the needs ofapproximately 84,000 homes.
All of the electricity produced is delivered to North Carolina Power with the exception of approx imately 5,000 kilowatts required to opĂŠrate in-plant equipment. Approximately 48 tons of stoker coal is utilized per hour or 360,000 tons per year; equivalent to 4,000 rail cars of coal per year. Approximately 45,000 tons of coal are stored on site.
The facility operates 24 hours/7 days per week with a staff of approximately 40.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 Tfelephone 704-525-3800, Fax 704-529-5313
axmTRix/a•yj-i'iii' 162 Clay Road, Roxboro. North Carolina 27573-1153
E
«afc
i"'
*
The Plant was developed by Cogentrbc, Inc., headquartered in Charlotte, NC. The plant is operated
by Cogentrix of North Carolina, Inc., a wholly owned subsidiary of Cogentrix, Inc. Construction began in June, 1986, and was completed, with plant start-up and operation,
in August, 1987. The total installed cost of the facility was $44 million. The facility produces over 472,500 pounds of steam per hour at 1,500 pounds per square inch
at a temperature of 950°F.
Steam is provided to CoUins & Aikman Corporation for its textile manufacturing process. The facility generates over 55,000 kilowatts of electricity; equivalen! to the needs of approximately
42,000 homes. All of the electricity produced is delivered to Carolina Power and Light Company with the exception of approximately 4,000 kilowatts required to opérate in-plant equipment, \ Approximately 24 tons of stoker coal is utilized per hour or 180,000 tons per year; equivalen!
to 2,100 rail cars of coal per year. Approximately 20,000 tons of coal are stored on site. The facility operates 24 hours/7 days per week with a staff of approximately 40.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 Telephone 704-525-3800, Fax 704-529-5313
*'íí2
COCENTRIX/SOUmPORT East Leonard Avenue, Southport, North Carolina 28461 .»
-
-
?:-:i
:
'
s^'íteíw-
-"rf
4i:'' •'
¿
JS-* r ■•-■. •• •. '■^r-yS-H
•"" "1^ v^: 5i5H
»' -JEJ ■
■• ,e-4-
•SSwr.ií -v
he Plant was developed by Cogentrbc, Inc,. headquartered in Charlotte, NC. The plant is operated by Cogentrbc of North Carolina, Inc., a wholly owned subsidiary of Cogentrbc, Inc.
Construction began in June, 1986, and was completed, with plant start-up and operation, in September, 1987. The total installed cost of the facility
$84 million.
The facility produces over 945,000 pounds of steam per hour at 1,500 pounds per square inch at a temperatura of 950°F.
Steam is provided to the Archer Daniels Midland Co. for its pharmaceutical manufacturing process. The facility generates over 110,000 kilowatts of electricity; equivalent to the needs of approximately 84,000 homes.
All of the electricity produced is delivered to Carolina Power and Light Company with the exception of approximately 5,000 Mowatts required to opérate in-plant equipment. Approximately 48 tons of stoker coal is utilizad per hour or 360,000 tons per year; equivalent to 4,000 rail cars of coal per year. Approximately 45,000 tons of coal are stored on site. The facility operates 24 hours/7 days per week with a staff of approximately 50.
9405 Arrowpoint Boulevard, Charlotte, North Carolina 28273-8110 Tfelephone 704-525-3800, Fax 704-529-5313
t í. r r ; _.. •
.V-
/; '■ ^UJl4r«
-■-•';•! -iT*^
Obras de Construcción para
Proteger el Carbón Durante Tormentas
No se requiere construcción aiguna para proteger la pila de carbón durante tormentas, como tampoco se requiere construcción alguna para proteger los montones de piedra en los graveros o canteras de Puerto Rico durante tiempos de borrasca.
Generatrices de Cogentrix en Carolina del Norte han sufrido embates de huracanes
con poco o ningún daño. De hecho, Carolina dei Norte sufre más huracanes que Puerto Rico. Durante Hugo,todas las generatrices de Cogentrix Carolina del Norte —con la excepción de una que estaba en mantenimiento— se mantuvieron en
operaciones ininterrumpidamente, lo que le logró a Cogentrix una comendación por parte de la cliente Carolina Power and Light Company (se incluye). Cabe mencionar que el inventario promedio de carbón en el piso en Mayagüez tendrá un valor de alrededor de $ 3.6 millones. Si hubiere algún riesgo de que ese inventario se pudiera perder durante una tormenta, se tomarían medidas para ello,
pero no hace falta. Cabe señalar también que si cayera carbón al mar, éste no tendría ningún efecto
adverso y en nada afectaría ia vida marina. El carbón no es soluble. El carbón no flota ni se dispersa en la superficie como lo hace una capa de petróleo. Al carbón derramado en el mar sólo habría que recogerlo, recobrarlo y aprovecharlo.
□CT-09-'92 FRI
13:50 ID:COB E/TOUN NC
0002 «663 P02
Cf»&L Carolina Powar & LIght Company
Occober 6,
1989
Mr. Donald Dowling
Sénior Vice President & Operatlng Officer Cogentrix of North Carolina, Inc. 9405 Arrowpoint Boulevard Charlotte, North Carolina
28217
Dear Mr. Dowling:
As you are aware, Hurricane Hugo recently caused extensive damage co the Carolina Power & Light Company Transmission and Distribución Sysceins. Other
ucllities experienced extensive damage as well. I would like co commend your organization for its performance during chis cime. All of the Cogentrix unics, with the excepción of the Elizabechtown Unic which was down for scheduled maintenance, operaced continuously during chis period. It is this type of performance that greacly enhances power syscem reliability.
Please convey my compliraents to others on this performance. Yours very truly,
C. M.
Clark
Manager
System Operations CMC/js cc:
Mr.
B. L. Montague C. T. Canipe
Mr.
J.
M.
Cárter
Mr.
Ms.
H. D. N.
K. M. N.
Goodman McLaurin
Mr.
N. L.
Mr.
Mr.
Evans
Pendieron,
01100689.ajs
411 FayetleviUe Streat • P O. Bo* 1551 • Raieigh N C 27602
.vsuri
* '* «i * '. •••• . f* \ .••
•' ■ --■•
«vt, -j:."
••
'-■■
.Vi .-•:
•. .. . v: ;; ■. • ,;■ . ;. ;■
v-;
_ ■' .r
'V ; ;•■ •
. í'; . •• "»d.'i • i .'t
•
■ 'x" •^>tf';-^^.H---... ,
•
■ ,.=;.A-v- V , •• ;. .-• -sC^ i.
?..•■••.
,
-•.-
»»,-
'■■■• ■: I - -. . \ ';'
••
"íV"'.'
'•• .»•
■'
-,
..
-• .
'.i-w ',
.''"^V
. ..
. "*''' "■"•«.••■• ,
'
' V
:• ■ ••--.r
'•. '•
'• A. .' ^'
.
,í.-> •••,
. ' "■ "
■
. • •'
*
j
•' . •
*.
'
»'• •.' f'■•»^'í-
ii, ./•«••' '.'•
'vAeí-e-íít.'^V
,
-
' 'J
'• j-
s
■'
• *«*7 ••■•'■ir-.-■■»£«•.
^^7
^
■' .-I •' ; ••«.I
•■
- ■- . .■■" ■ ' ' i \
- ■ . •,
,
,'
-
^
•
'*
■'
^
• 'ai*
•• •
•■
•»■.
i.
CENTRALES TERMICAS Y MEDIO ÁMBIENTE.
Dos nuevas centrales térmicas se instalarán en las Islas Canarias, una de ellas en Tenerife y la otra en Gran Canaria.
Un aspecto decisivo será su impacto sobre el medio natural y por eso deberán cumplir las reglamentaciones y normativas tanto locales como Comunitarias.
Unfactor importante en lo que se refiere al impacto sobre el medio ambiente es el grado de emisiones de óxido de azufre. Este sucinto documento presenta un sistema que utiliza los mismos métodos que la
naturaleza para resolver el problema de las emisiones de SO^ y que por tanto, es el ideal en este tipo de proyectos.
En los anexos se podrá encontrar información más detallada.
-l.-
INDICE
Página
EL AGUA DE MAR-EXCELENTE ABSORBENTE DEL SO. EL PROCESO FLAKT - HYDRO EL AZUFRE EN EL MAR
DESCRIPCION DEL SISTEMA EXPERIENCIA
GARANTIAS
CONCLUSIONES lí
c
ABB Flakt Norsk Viftefabrikk
EL AGUA DE MAR - EXCELENTEABSORBENTE DEL SO^ El agua de mar es alcalina por naturaleza,ya que el agua pluvial recoge continuamente grandes cantidades de hidróxido cálcico en su camino hacia los mares y océanos.
El razonamiento en este caso es sencillo; el agua de mar tiene por si misma capacidad para absorber y neutralizar gases ácidos, tales como el dióxido de azufre(SO2). Es más, el SO^ absorbido se convierte en idn sulfato en disolución, que es uno de los principales constituyentes del agua de nuestros mares y océanos.
AGUA DE MAR
( ETAPA DE
GASES DI COLECTOR
COMBUSj TION I
DE
ABSORCION
PARTICULAS
DE SO,
RECALEN-
TAMIENTO
PLANTA DE TRATAMIENTO DEL AGUA DE
,
MAR
I
AGUA DE MAR TRATADA
Este simple principio permite construir plantas de desulfuración con altos rendimientos.
EL PROCESO FLAKT-HYDRO
precisamente el núcleo del proceso de desulfnracián Hakt-Hydro,
la torre de lavado como absorbente del SO,contenido en los gases de
f
^
SO2 retenido, y se env a
de
ABB Flakt Norsk\^ftefabríkk
El agua de mar, una vez tratada,es completamente compatible con el medio ambiente marino, y por tanto puede descargarse de nuevo al mar,de donde fue recogida.
Sin vertedero
Una característica única de este sistema es que en el proceso completo de desulfuración no hay formación
de sólidos, y por tanto el vertido se hace innecesario. Tampoco hay ningún tipo de depósito de sólidos en el mar.
Sin aditivos químicos
Otra de las características de este sistema es que no necesita de aditivos químicos: basta con el aire y el agua de mar. Por eso,no se requieren importaciones de aditivos ni su almacenamiento en las islas.
EL AZUFRE EN EL MAR
I No es la desulfuración por agua de mar tan solo una manera de transferir la contaminación del aire al mar?. !La respuesta es NO!
Sin contaminación del agua de mar:
El proceso Flakt-Hydro es un sistema controlado que transforma el azufre en ión sulfato. Este último es completamente inofensivo y no provoca en absoluto ningún tipo de contaminación en el agua de mar. Expertos oceanógrafos, autoridades y ecólogos son conscientes de ello. Se podría explicar del siguiente modo:
El agua de mar,en su estado natural, contiene grandes cantidades de azufre en forma de ión sulfato. De hecho,el salitre marino contiene más de un 10% de sulfates, y éstos no son más que uno de los ingredientes imprescindibles para que exista vida marina.
El proceso Flakt-Hydro convierte el SO^-absorbido en el agua-de los gases de combustión de las centrales térmicas en sulfates inocuos antes de descargarlos en el mar. El control ajustado del proceso impide que se puedan verter al mar sulfates en proporciones mayores al 3% sobre la composición natural. Esta pequeña adición de sulfates al mar es completamente inofensiva para el entomo marino que los recibe. El agua de mar es ligeramente alcalina en su estado natural, debido a su contenido en carbonates y bicarbonatos en solución,tales como cal y sosa. El proceso Flakt-Hydro utiliza precisamente esta
alcalinidad para neutralizar el efecto ácido del SO2 absorbido de los gases de combustión. Como resultado,el agua resultante del proceso es neutra(su PH es aproximadamente 7), y el contenido de sal (cloruro sódico) permanece invariable durante todo el proceso.
El agua de mar y el agua dulce son muy diferentes: La capacidad de neutralización (efecto amortiguador)del agua de mar permite una mejor absorción del
SÓjque la que consigue el agua dulce,como por ejemplo la lluvia. La lluvia no tiene efecto amortiguador y por eso se acidifíca cuando entra en contacto con el azufre(SO2)contenido en el aire, aunque esté en bajas concentraciones. El azufre en forma de SO2 gaseoso es precipitado por la lluvia ácida y provoca efectos perjudiciales en el.suelo. Sin embargo,el azufre en el agua de mar -siempre que haya reaccionado, neutralizado y descargado en condiciones adecuadas- es completamente inocuo para el
ABB Flakt Norsk V^ftefabrikk
Mm
Instalación de bioensayos. Durante un año de operación no se produjeron efectos perjudiciales para los organismos marinos. Tampoco pudieron detectarse efectos perjudicóles para el proceso.
Balance de oxígeno en el agua de mar
El balance de oxígeno es un aspecto fundamental para la vida marina. El agua que descarga al mar el sistema Flakt-Hydro está tratada y controlada, de modo que se mantenga el contenido de oxígeno necesario para la vida en el mar.
Las partículas en el agua de mar:
Uno de los puntos al que el proceso presta especial atención es la retención de partículas originadas en la combustión. Los gases son desempolvados en un eiectrofiltro de alta eficacia antes de entrar en contacto
con el agua de lavado. Se ha comprobado que las trazas de partículas en el agua de descarga del proceso Flakt-Hydro son inapreciables y están siempre muy por debajo de los límites exigidos por las más estrictas normas de vertido al mar.
Descarga de agua enfriada
El sistema Flakt-Hydro utiliza la instalación de refrigeración de agua de la central para enfriar el agua de proceso del sistema de desulfuración de gases. Los principios de funcionamiento para la mezcla y descarga del agua de proceso son equivalentes a los normalmente usados en centrales térmicas costeras.
Control biológico del medio ambiente marino:
El completo y correcto control de los aspectos biológicomarinos es uno de los puntos más importantes en la tecnología Flakt-Hydro.
Especialistas en biología marina de reconocido prestigio han experimentado el proceso para asegurar que las condiciones del medio marino han sido tenidas en cuenta de manera segura, responsable y eñcaz.
ABB Flakt NorskVifte&bríkk
Estos experimentos incluyen:
*
Evaluación de las condiciones del medio receptor: profundidad, corrientes marinas, calidad del agua, vida marina en la zona,etc.
*
Seguimiento de las recomendaciones de vertido para conseguir la correcta eliminación y dispersión.
*
Evaluación de resultados,incluyendo análisis de vida marina en el medio receptor.
*
Elaboración de documentación.
Los expertos en biología marina sostienen una opinión muy positiva hacia el sistema Flakt-Hydro. La misma opinión sostienen las Autoridades y las Organizaciones ecologistas noruegas, que no han puesto objección alguna a las más de 14 instalaciones con sistema Flakt-Hydro existentes en las costas noruegas.
Las características marino-biológicas del proceso Flakt-Hydro fueron probadas en acuarios y plantas piloto durante mucho tiempo antes de la construcción de la primera instalación. Las conclusiones a las
que se llegó reflejaban la ausencia de efectos perjudiciales para la vida marina. Tampoco se han podido observar efectos negativos en las instalaciones ya en funcionamiento.
Informes de pruebas in situ y ensayos biológicos, asi como los subsiguientes informes de comportamiento en zonas de descarga pueden encontrarse en los anexos.
/
IFM
RAPPORT
INSTmiTr FOR FISKERI-OG MARINBIOLOCI
A BENTHIC SURVEY BEFORE AND
AFTER THE DEPLOYMENT OF A SEAWATER SCRUBBER OUTLET
% rnitmf
Citcr»/
tSSHQÍOymi
RAPPORT NR.7,1991
Las ensayos en laszonas de descarga prueban la ausencia de ./■
^
f.. j: . j
.
íBB Flakt NorskV^fteíabiikk
Conclusiones Medioambientales
La tabla adjunta muestra un estudio comparativo de la composicidn del agua de entrada y de descarga en la instalación con tecnología Flakt- Hydro que se propone. Como puede observarse, tan solo existen cambios de calidad marginales.
La zona de descarga será investigada por expertos biólogos especialistas en medio ambiente marino. Las plantas e instalaciones de tratamiento de agua se diseñarán para satisfacer los requisitos medio ambientales de la zona de descarga y las normativas y reglamentaciones en vigor. Por tanto, no podrá haber efectos peijudiciales para las costas de las Islas Canarias debidos a las plantas 0'
de depuración de gases tipo Flakt-Hydro.
'.■SFarametro
XJnidades
i^inperaturá^ : .
,&idez,L;3-S
S^ato en disolución.
:f^
Exceso de DQO ^ Oxígeno disueltO' ^
' r, ; 4;
Exceso d? sólidos en suspensión Exceso deísóUdos sediihentados
DESCRIPCION DEL SISTEMA
En principio, la Planta Flakt-Hydro propuesta para los proyectos de las Islas Canarias tendrá un aspecto similar al de la figura adjunta.
RECALENTAIENTO Y MEZCLA DEL GAS
COLECTOR DE POLVO
ENFRIADOR
\
CHIMENEA
DE AIRE
LAVADOR
^ AIRE
AGUA DE MAR DEL CONDENSADOR-^ AGUA DE MAR AL CONDENSADOR-
v^^^^^/efluente^^^l^^ DE tratamiento ^—
DEL AGUA DE PROCESO
BOMBA DE ALIMENTACIÓN DE AGUA DE MAR
ABB Flakt NorskViftefabrikk
Los gases de combustión salen de las calderas y entran en el colector de partículas, del tipo electrofiltro, en el cual se retienen con gran eficacia las partículas sólidas que pudieran transportar los gases. Los electrofiltros(EPS)son equipos robustos, de gran disponibilidad y ampliamente utilizados para la retención y filtrado de partículas en gran cantidad de instalaciones de combustión de fuel y carbón. Los gases de combustión pasan entonces a la torre de lavado, es decir, al reactor.
Por un lado se sumimstra agua de mar al proceso (por la parte superior de la torre), mientras que se inyectan los gases en contra-coiriente(por la parte inferior). El uso de elementos especiales en el interior de la torre permite el íntimo contacto de los gases con el agua de mar,consiguiéndose así una eficacísima absorción del SO^ contenido en los gases.
Cuando los gases abandonan el reactor, éstos pasan a través de un recalentador, donde la niebla se
elimina, y se deshumidifícan los gases de manera que se reduzca el penacho de vapor.
El reactor de absorción de SO^ posee.tal eficacia que incluso sin depurar parte de los gases, se cumplirán los niveles de emisión exigidos(400 mg/Nm^).
El agua de refrigeración de la planta de condensación se utiliza como agua de lavado de los gases de combustión.
Parte del agua de mar es bombeada hacia la parte superior del reactor. El resto se mezcla con el agua de mar que proviene de la parte inferior del reactor, antes de ser enviada a la planta de tratamiento. La planta de tratamiento del agua de mar está contenida en un estanque de hormigón construido in situ. Esta característica de construcción local es también aplicada a muchas otras partes de la instalación.
Im planta de tratamientc delagua de mar está constituida básicamente por estanques de aireación del agua, cuya construcción es siempre locaL
ABB Flakt Norsk Viftefabrikk
EXPERIENCIA
ABB-Flakt es líder mundial en tecnología medioambiental en lo que se refiere a la amplitud de sus servicios y al tamaño de sus instalaciones. ABB-Flakt es propiedad de ABB,Asea Brown Boveii, y es la compañíá responsable,dentro del Grupo ABB,del segmento de mercado Medioambiental.
El proceso Flakt-Hydro ha sido desarrollado por ABB-Flakt Noruega, que es la compañía responsable del marketing, siempre en estrecha colaboración con las compañías locales del Grupo ABB,como en este caso ABB Industria.
Las plantas en operación hasta el momento han demostrado operatividades extraordinarias, en parte
debido a su sencillez de funcionamiento y en parte por la gran experiencia acumulada en materiales de construcción. Las plantas que aparecen en la foto están instaladas en centrales térmicas de combustión de fuel. Durante un gran número de años estas plantas han funcionado en continuo y no han requerido más de 20 horas de parada al año.
Flakt IVorsk Viftefabrikk
GARANTIAS
ABB Flakí garantiza los rendimientos de la planta:
Las principales garantías se refieren a las emisiones a la atmósfera y al mar: Emisiones de SO^ a la atmó^era:
Menores de 400 mg/Nm^ de acuerdo con la autorización y normativa de la CEE. Calidad del agua de mar:
Superan las requeridas por la CEE, y siempre se definen de acuerdo con las recomendaciones de expertos biólogos en medio ambiente marino.
CONCLUSIONES
Este proceso ofrece un método en el que la central térmica cumple por completo con las regulaciones
medio-ambientales del aire y el mar. Además,éste proceso, ofrece otro tipo de ventajas tales como: No existen consumos de sustancias químicas para la neutralización del SO^ No existen productos de reacción sólidos, y por tanto no es necesario el vertido de los mismos.
Es una tecnología sencilla con altos rendimientos y elevadísimos periodos de operación. No produce alteraciones en el mar ni afecta a la vida marina.
Tiene amplias posibilidades de participación local en suministro e instalación.
ABB Environmental
Flue gas desulfurízation
by seawater scrubbing
THE MARINE ENVÍRONMENT X**.—
i-r
,
The FLAKT-HYDRO Process uses seawater to remove sulfur from flue
gases and discharge it into the sea. Does this move a poHution probiem from air to water? No â&#x20AC;&#x201D; it does not. On the contrary, this is one of the environmentaiiy soundest solutions to the sulfur emission probiem.
\ 1
SEAWATER
-AN EXCELLENT ABSORBEN! FOR SO2 Te evalúate the effect of discharging sulíurous effiuent water into the sea, the properties of seawater need ío be understood. The content of various salts and minerals makes the seawater very unllke fresh water in many respecta:
NATURAL SULFUR CONTENT Natural seawater is rich in sulfur. One ton of fresh
17m seawater contains nearly 1 kg of puré sulfur, ín the ■'
form of sulfate in solution. This sulfate is a natural
and necessary ingredient in the marine envlronment.
The oceans of the world contain more than
1,000,000,000,000,000 tons of natural sulfur.
_10m
This number needs to be visualized. It corresponds
to a layer of puré sulfur approx. 1.7 meterá thick on the surface of al) the oceans!
It is estimated that the world's exploitable resources
of fossil fueis (coal, oil and gas), contain a
magnitude of 100,000,000,000 tons of sulfur. This corresponds to a paper-thin layer on top of the substantial 1.7 m of natural seawater sulfur.
Sooner or later, most of the sulfur which has been
emitted to the atmosphere by human activity will LlOOm
find its way to the sea. The FLAKT-HYDRO process
represente a short-out of this cycle preventing the sulfur(and associated acidity) from detouring through the atmosphere, lakes and vegetation where it would cause serious damage.
LlOOOm
'+aOPQlni
lL3800m
Seawater contains enormous amounts of sulfur.
■
THE SULFUR IN FOSSILE FUELS ORIGINATES FROM THE SEA
The same anaerobio envlronment preserves and
fossillzes dead organlc material, which is ultimately transformed inte fossile fueis by geological processes
in sedimentary rock. Its sulfur conten! is fossilized seawater sulfate.
Sooner or later, most of the sulfur which has been The sulfur is a resuit of bacteriológica! processes
(sulfur bacteria) which conven the dissoived sulfate in
emitted to the atmosphere by human activity wlll find its way to the sea. The FLAKT-HYDRO process represents a short-cut of this cycie preventing the
seawater into sulfide and puré sulfur. This conversión
sulfur (and associated acidity)from detouring
of sulfate takes place in anaerobio envlronments(no
through the atmosphere, lakes and vegetatlon
oxygen) in the seabed bottom sludge.
where it wouid cause serious damage.
^ "• -ti
The Cliffs of Dover consist of alkaline material.
lakes and rivers are dead due to acid rain. The
precipitation of sulfuric acid has acidified the fresh water to a lethal ievel for the fish. A correspondlng
ALKALINITY
addltion of sulfuric acid to seawater ís quite a
Seawater is naturaiiy alkaline. It contains an excess of calcium and sodium carbonates (like limestone
seawater remains on the alkaline side and marine
tíifferent story; all the acid wili be neutralized, the lite is not affected.
and soda) in solution. These components give seawater a substantial capacity to absorb and
The carbonate balance of the oceans is maintained
neutraliza SOg from flue gases.
by the seawater's continuous contact with huge
In this context the quality of seawater is very
Rivers aiso continuously transport dissoived
different from fresh water. In severa) areas inland
alkaline limestone into the sea.
marine and coastai deposits of alkaline sediments.
i
..
-
"•'• ■} ''i.^'- -f Sr
5", -1
bteíogy and thétneans tb ? ! ■.
m
Of.tílB tí?®*
■'<r-f'
ín
: v Geneití^^ as prc^i)y3áborato^%xeeií^
s' Ploassay testing ofeffluéht,^re are^eSWnhiflM^ '
■ •i
.
ironmentibmisa
^
v^'
Ja miaidein^aph
J
&:
in eompiiance
^IjiQldesj
qlfernentsi
■ marine
.iilftmenfe ■TT' ■
r.-iw,-'
iJ; It ^
.?
£?
ic-jít
surfíirconje
v: • V ^ Tñenatural'aul
wgler
_«¡oxim
^ncentrat
idaL'vái;
4ímp .Zb'Htíñl ubafl
ín
?■
•
•oneyearto* .
.che9lnhelbng-te
No effecís related tólne d^cted.-.
jsJ^i^l^fW^dniams. yROprodBsswa» *
Chemícal Oxygen Demand(COD)and Oxygen The absorbed SO2 in the effluent is through the process converted to sulfate in solution. In this reaction, dissolved oxygen ís consumed.
Trace elements
Seawater contains all existing elements and minerals in solution. Even so, the marine life Is vulnerable to Increased concentrations of elements
and metáis that may accumulate in the marine
The FLAKT-HYDRO technology therefore comprises reaction and aeration facillties to compíete
nouhshment chains.
this reaction prior to discharge and to ensure a high oxygen content in the discharge water; to fully
Stringent legal requirements therefore exist for the
sustain marine lífe in the recipient.
elements in seawater.
máximum acceptable concentrations of such
ií
-Ci£
Reaction and aeration facilities at a power utility.
The FLAKT-HYDRO process assures a mínimum to insígnificant addition of trace elements to the
In this context it is interesting to note that the main
absorber water. The principie is efficient cleaning of
Sea waters prove to have precipitated from the air (with rain). This is a result of air pollution.
the flue gas with removal of such elements upstream of the absorber in dust collectors, i.e. prior to the contact between gas and seawater. By this pullution control principie the most stringent
part of excess trace elements in for instance North
Rivers are aiso relatively significant contributors, while the pollution from industrial effluent waters is quite insignificant in this context.
legal requirements can be maíntained with safe margins.
The most efficient means to reduce the trace metal content of the North Sea and other oceans will be
to reduce dust emissions to air In the surrounding land areas.
é '-y'-.r- ^' -
".'.*
* "« r.-^ ;.^-$í¿;¿3
«No narTnfulsffectsonihei H rS^SIBI
I'
B '^1 ~^V **
f <And(ttQnaliVáí3nB JBampüfik..<
i"'-^
í
.
.-■-■■■ ■: J' ■■*'-^Co&uáín:-
„
iéb:^
FliAIGF«YDRO^
:'r..-; ' -W'.- -.. .'"■ '--.^^detecMdi^ «níthav!dnl^.t)fdls-r ; .
W
31i:is^iatioñs has bMn v-^Pi
jA
,f'y
m-\
W^^"*ÍX5S9i^
conc
erívironméñ -V
^ •
r -..
•
.
1/
...>•
• • ,
"'ÍV
'
'•c
A -• \ ;'
•■
-"■ '"'^ 'A' '-A ' rr
^ f •. • Sí
^ ■
: ^'•>—
^ * ABElEnvironmental »-
Norsk Viftefabrikk '
División for Flakt-Hydro •Ole Deviks vei KT
.• St'rec-"
J
"v
P.O. Box 6260 Etteístad ,
0603 OSLO
Phone: + 47 2 7290 00. Telefax: + 47 265 85 40
Telex:'71 745 vifte n. Cable «No^kvlfte».
.fcr.
'
t
Atl
I
ASEA BROWN BOVERI
Cogentrix Inc
9405 Arrowpoint Boulevaro Charlotte, NC 28217 USA
M*: 92 «09 30
Owrif.i
Bill Campbell
Ame El 1 estad
FLAICT-HYDRO / MAYAGüEZ Dear Bill,
Some coronents wUh respíct to sulfate ln sediment are gWen In the followlng. INCREASED SULFATE COUCEiniATIOII IN SEDINEHT The recipient follow-up study carrled out at Ihowe^l sllght Ihcrease 1n sulfate content 1n the sedltnent.
The reason for thelntncrease at the Unlversity Bergen has and Peen NIVA (Norweglan*|nítí55trfor*ttoter^esearrt^ Instltute Tor naxe. Their conanon explanatlon 1s as follows:
ASaraindocumented ln the,«Port <'^P®5y'^?21\|5oledlii»n?íarcoar^ wd'leS slze analyses ln 1989 and 1990. The 1®^ ueaiainArt oither bv sinall hcmogenous than the 1989 sedlment. This can
deviatlons ln positlon ln 1990 or
.. samoling area caused
Se^flne particles from the sedlinent.
by the outlet which would tend to remove the fine partici®:»
II» lulfitt ln m lirtl"»;» '¡."l'Síl'Lrtíeí't trfeoñ"!'! !h."St¡¡nt*¡lí! content Increases.
,s «f .. c»«.r. « th. wln.
follow-up studies one year after ln Harch 1981.
•
«"•"
"No harmful Inipact on the benthos was«"CSr ®''®®1|!!®*'®tals *excepVfor*lMd!''re«alñs and the content of ?Se In^lSta? conditlons ln wlthln the natural range of marine "J ™?,;"g¿™nd continué to be so the area were very good before the outlet was oepioyeo «m »after 18 months of continuous use". ABB Environmental División for Flakt-Hydro
HOT AÍR
TEMP « /i9*C
FROM ABSORBER UNIT 2
■N TEMP =
35*C
FLOW = 660500 Nm'/h SO2 = 79 kg/h SO5 = I7 kg/h HCl
-
O SEAWATER
TEMP = 34.4*C SEAWATER
FLOW = 5500 m'/h
X
FLUE GAS
TEMP =
pH = 8. 1
sol' = 2.81x10"^ mol/1 HSO¡ -0
FLOW = 58600 mVh
EFFLUENT FROM ABSORBER 2
TEMP = 35.6*C
FLOW = 5500 m'/h
FLOW = 69600 mVh
149*C
SO2 = 1.0x10''® mol/1
FLOW = 671300 Nm^/h SO2 = 1819 kg/h SO5 = 2A kg/h HCl = 63 kg/h
HSOj = 2.0x10 -5
SEAWATER TREATMENT PLANT
TEMP = 40. re
FLOW = 5500 mVh pH = 2.9
1 Imi n
RESIDENCE TIME AREA = 2600m2 DEPTH = 5m
SO2 = 2. 9x10'* mol/1 HSOj =4.6x10'^ mol/1
mol /I
SOj" = 4. 3x10'^ mol/1 sol' = 2. 89x10'^ mol/1 HSO¡ - O COD =
1
mg/1
SOj = 9. 0x10 ' mol/1
sol' = NOTE
74x10'^ mol/1
A lili
HSO¡ = 9. 8x10'* mol/1
1
COD =
ABB Environmental ASEA ÍROWN IOVERI
78 mg/1
IN THE LIQUID SIDE CALCULATIONS, THE SO5 AND HCl ABSORBED IN THE LIQUID IS REPRESENTED AS EOUIVALENT AMOüNT OF SO2.
División fer Fhtl - Hydro
Ibis áraiilm is s«l yu In confidence and wst mi be.copled or disdoscd lo ihird pariies vlihoat «-liten periission.
COGENTRIX. 2x150 MW FLGKT HYDRO FGD
SULFUR BALANCE F-No.
l
?«?. o9. o9
Rev.
Dat e
VM
' /f.
[orttMO ba CW^cked' Rpproved
ISSUED FOR Reason
for
Issue
INFORMATION
C-No.
Rae* No.
Asseaiblü No.
Drewlns No-
Rev
210.0410 Cad F| la
Date
fZ. o9, O 9.
Drawn bv
VM
pprp^d
Sea le
N59744 1 1
"c -
AU AS6ABfteWN80WEñ4
precipitatioh of calcium sulfate
Mhen concentratlons of calcium and/or sulfate are Increased In a solutlon. calcium sulfate wlll eventually precipítate out of the solutlon. Solublllty 1s
defined through the solublllty product K -
* ^$04^"
^ means
concentratlon.
^seawater 1s far from saturated wlth respect to calcium sulfate. Keeping a
fixed calcium concentratlon. one would have to Increase the sulfate concentratlon approx. 30 times to be able to precipítate calcium sulfate. This means that the sulfate concentratlon must Increase from 2700 mg/1 to moco mg/1. The sulfate concentratlon through the seawater FGD plant only increases to 2780 mg/1, thus precipitatlon wlll not occur.
Yours falthfully ABB Environmental
División for Flakt-Hydro
Ame Ellestad
ABB Environmentel División for Fiakt-Hydro
Comparadón entre tres centrales Cogentrix y Mayagüez
Base charcas sedimentación Area almacén cart}ón
PC
3,626.12!
0.00
0.00
17,000.00
PC
122,250.001
60,204.62
127.697.38
200,211.00
O.OO!
7,470.00
9,528.00
10,269.00
713.00
72,567.29
0.00
Zanjas almacén carbón
PC
Rieles descarga y vías
PC
538.00
Edificio supresión polvo
PC
0.00
0.00
26.67
0.00
Base reclamo cartsón Edifido mantenimiento FGC
PC
468.05
468.05
4,266.87
PC
1,696.63 1,033.43
0.00
0.00
0.00
Foso de fase densa
PC
0.00
235.99
235.99
0.00
Tanque almacenaje agua de pozo Tanque almacén hidrógeno
PC
0.00
3,525.66
3.525.66
0.00
PC
0.00
464.00
464.00
0.00
Romana de camiones
PC
0.00
0.00
Calles
1,075.95 107,832.46
0.00
PC
97.806.34
52,249.57
141,178.93
Base soportes condulete caldera Estación levante sanitario Edifico aceites residuales Soportes vapor de proceso Edifido de desalinizadón Charca de aereación Casa bombas charca aereación
PC
0.00
2,361.59
2,361.59
0.00
PC
73.11
73.11
73.11
0.00
PC
0.00
0.00
806.36
0.00
PC
191.26
1,103.50
862.78
Fábrica de perdigones
PC
Tanque combustible ignidón
PC
Edifido Fomento existente Edificio Diesel
PC PC
645.00
Totales
PC
PC
PC
Uso de terrenos (%)•
540,726.98
323,656.26
437,014.73
742,102.73
54.88%
59.06%
35.82%
51.58%
*EI bajo porclento de desarrollo relativo al predio en la central de Hopewe se debe a que el combustible se entrega no por ta vía marítima, sino por tren. 1 1
t Densidad pobladonal de Virginia: 156.3 habitantes por milla cuadrada; 60.3 habitantes por kilómetro cuadrado. ti Densidad pobladonal de Carolina del Norte: 136.1 habitantes por milla cuadrada;
52.5 habitantes por kilómetro cuadrado. 1 1
6 Densidad poblacional de Puerto Rico: 1,027.9 habitantes por milla cuadrada; 396.9 habitantes por kilómetro cuadrado.
i j j
0.00
7,500.00 33.471.67 9,794.00 49,625.00 1,275.94 45,600.00
PC
Or.f.
"J-
0'.< - f i(pcojectjiasSi5}í Exhibit No. ¿t.ll
Page _[_ of ATen Year Environmental Comoliance Historv Violatiog
Date
Regulatorv Aeencv
Fine($)
Status
(describe DAture, amount, etc.)
Facility Ñame: Liunbcrton 0 NC 8/86
Failure to keep
NCDEM
Compliance
NCDEM
correct records
NCDEM
3/91
Exceeded zinc limit Exceeded zinc limit Exceeded zinc limit
NCDEM
Compliance Compliance Compliance
9/91
Exceeded zinc limit
NCDEM
Compliance
NCDEM
Compliance
NCDEM
Compliance
8/90
975*0
Facility Ñame: 8/89
Facility Ñame: 9/90
Kenansville. NC Exceeded TSS limit
Rocky Mount. NC Exceeded flow limit
[.project-name] Exhibít No.*4.11
Page
of
Tea Year Environmental Compitance Historv Date
Violation
Regulatorv Agencv
Fine($)
Status
(describe nature, amount, etc.)
Facility Ñame: Portsinoiith, VA 7/88
Overflow of
SWCB
Compliance
Compliance
neutralization tank
11/88
Exceeded zinc limit
SWCB
10/90
Exceeded zinc limit
SWCB
Facility Ñame: 11/89
Facility Ñame:
O
Compliance
Hopewell> VA Exceeded pH limit
Richmond» VA
SWCB
Compliance
.[prqfeCt'naínfí}' Exfaibit No. 4.11
Page _2i_ of 2Z. Ten Year Bnvironmental Comnliance Historv Dato
Violatioa
Regulatorv Agencv
Fine(S)
Status
(describe nature, amount, etc.)
Facility Naxoe; Ringgold» PA
Facility Ñame:
Ellasabethtown, NC
Facility Ñame:
Roxboro, NC
3/90
Late Submlttal o£ Monthly Report
NCDEM
SlüQ.00
Compliance
^.project-aame] ExliibUNol4.il Page 'f of Ten Year Environmeata! Comoliance Historv
Pate
Violation (describe nature, amount» etc.)
Facility Ñame;
Facili^ Ñame:
Facility Ñame:
Southpoirt ^ NC
Regulatotv Ageocv
Fine
Status
O-0O"[T COMISION DE SEGURIDAD CONTRA TERREMOTOS
EARTHQUAKE VULNERABIUTY STUDY
OF THE MAYAGUEZ AREA,WESTERN PUERTO RICO
FINAL OOCUMENT BY
JUAN CARLOS MOYA ANO WILUAM R. McCANN
X
Leandro RodrÃguez,PhD.
Mr. MickeyJ. Espada
President
Executive Director
lABLE GF OOltnSNIS
Abstxact
1
IntzoductlGn..
1
Seismotectonic Settii^ QEfdioie Chaxacterlstics.....
2
Onshore Chaiacterlstics
4
Begianal SelsmLdty
4
Historical Eartliquakes..
..••..••........5
Shallow Earthquákes
5
Intemedlate Dq)th EartiiqLiakes
9
Maxiiiun Mag^Cude of SeisoiLc Scurces
....10
Evaluation of EarChquake Hazazd Selecticn cf Earttiquake Haaaxd Levél
11
Regional Attenuatian
17
;
Esqpected Accelerations In ^^yaguez
13
Geology Mesozoic and Genozoic Bocks ••
late Tertiary and Qjatemazy
17
i
GeoDorphoIogical Zones
17
%
Earthqiaake Induoed Hazards in tte'Ma^yagisz Area
.:..18
s
Description of the MsttedolQgy Ground Shakipg Hazazd LLquefactian HAzazd
23
landslide Hazard.....
29
TsmamL Hazard.......
32
FLood Hazard
34
Goncluslons and BeccDmendaticRS
35
Gondusicxis......
35
Ugr'inmmPTifiaf'f
,37
AcknawlecIgenenCs
Beferences...
40
Appendlces
U
EARTHQUAKE VULNERABIIJIY STDDY OF THE MAYAGUEZ AREA, WESTKUN PUERTO RICO
Juan Carlos Mqya^ and WiUiani McCann^ ABSIRACT
Historícally the Ms^agüez area in Westem Puerto Rico has been afíected
damaging earthquakes.The vulnerabOi^ of Mayagüez has been studied by evaluation offíve shallow earthquake source legions. Three of the souroe legions are xelativefy distant ñx>m Mayagüezand,therefoie,tbeir potentíal ünpacts*are on^ modérate.Qne source región cióse to Mayagüez presents the highest potentíal for severe Hatnagt»- Primaiy earthquake and
tsunami effects, as well as geológica^ induced earthquake hazards have been identífíed for a model earthquake. Ihe presence in some aieas of lecent beacfa and swamp deposits, lanrifni.Q on saturated alluvium, and natural^ unstable slopes caused mainfy by weathering, as mil as heavy lains and land use could e3caceibate the earthquake hazard by the triggering of ground shaldng amplifícatíon, liquefactíon, and landslides. There is a hi^ probabOity of a tsunami accompanying a major submaiine earthquake. Accordingjty, the coastal zone should be considered one of múltiple geologic hazards in case of a major earthquake. INTRODUCnON
Westem Puerto Rico, is one of the most seismically active regions within the island of Puerto Rico. In 1918, the area experienced the efíect of a magnitude 7.5Ms earthquake whose epicenter was located in the northem part of the Mona Passage, west of the town of
Aguadilla. The earthquake caused a signifícant amount of rfamagft to life and property. The ünpacts were reponed
Reid and Taber(1919a,b)which mentíoned that this event killed
114 persons and caused.4 miDion dollars in damage. H
The present stucfy investígates the potentíal earthquake hazards near Mayagüez,westcentral Puerto Rico(Figure 1). The area is bounded hy latítude 18® 07'30" N and 18® 15'N
^División of Geology, Department of Natural Resources ^cCann and Assodates, Inc. 1
and longitudes 67* OS' Wand 67* 15' W and lies some 110 kflameters WSW of San Juan.
Different eaitfaquake souroes aie considered and the diverse aspects of potentíal geologic hazards induced by eartfaquakes are examined. These includr ground shaldng, ground niptuie, liquefaction, ground shakmg anq)lifícation,
and tsunanoL Following the
methodology used by MofineUi (1985 and 1988), the M^aguez Quadrangle and the westemmost part of the Rosario Quadrangle will be described in terms of three levels of
susceptibilíty to a particular hazard as determined by the geologic, hydrologic, geomorphic, and'tectomc characteristics of the area. The resulting maps are
to be a useful tool
to planners and decisión makers to provide essential iurftinmfífm for earthquake preparedness and planning lespcmse, land use planning, esthnation of economic loss, and implementation of mitigation strategies. SEISMOTECTONIC SETilNG
The tectonics of Puerto Rico have been described in some
for both ofGshore
and onshore regions(Westem Geoplqfsical Research, 1974; Asendo, 1980; McCann, 1985
and 1987; Geomatriz, 1988; McCann et aL, 1991). Offshore Characteristics^ Seismic activily near Puerto Rico results from the modérate)^
complex tectonic aclivíly produced by the oblique convergence between the North American and Caribbean Plates (Sykcs et aL, 1982). The rate of movement between the North
American and Caribbean Plates has been estimated to be as hígh as 37 wm/yT or as low as 20 mm^(Sylms et. aL, 1982). The island of Puerto Rico has been described as one of a /
series of nairow, liiiftflT tectonic blocics trapped be^veen these ttvo pintes^ therely subject
to a convergent sheaiing stress (A^ndo, 1980; Byme et aL, 1985). More spedfically,
MAYAGUEZ
Pli
Punta
18.5
18.3
RICO MAVÍ
ROSARIO
MONA 18.1
18
PASSAGE
17.9
17.8 -67.5
Figure 1-
-67.3
-67.1
■66.7
Locatión of The Hayagüez Zone in relation to Westem
Puerto Rico•
Trough
Puerto Rico Platelet
200 km •
Trench
Geonstrtx, (1988).
Byme et. al. (1985); )fcCarái et. al. (1987); and
Figure 2. Approxíinate llinlCs of the I\ierto Ric» Flatelet. FVod
"uertos
r
Puerto
geophysical data demónstrales tbat most ofthe island ofPuerto Rico líes on the Puerto Rico
Platelet(Figure 2;Byme et aL,1985; McGann et aL, 1987). Four active tectonic areas bound the Puerto Rico Platelet Th^ are: the Puerto Rico Trench, the Anegada Trough, the Muertos Trough, and the Mona Passage and Westem Puerto Rica Each one has distinct
. morphological, tectonic and seismological characteristics (Figure 3). Oiúy the Anegada Passage is of lesser importance because cf its great distance &om westem Puerto Rico. Puerto Rico Trench- The main axis of die Puerto Rico Trench lies appraxünatefy 100
north of the island of Puerto Rico where it reaches a* depth of more than 8 km. The trench is the site of oblique subductíon of the North American Píate beneath the Puerto Rico
Platelet(Sykes et aL, 1982 and McCaim et aL, IS^l). The historie and instrumental record demónstrate that strong earthquakes have occuned in the trench in the past (McCann, 1987). Muertos Trough- The Muertos Trough lies about 75 km south ofPuerto Rica This tectonic
feature reaches a depth in excess of5 km and represents the southem limit of the Puerto Rico platelet The Muertos Trough has all the diaracterístics of a subductíon zone. Seismidty suggests that the relative rate of motion here is much lower than m the Puerto Rico Trench and that the laigest earthquakes are smaller thaii tfaose in the Puerto Rico t
«
Trench (McCann, 1985). No historie earth^uake has yet been assodated with the trough. Mona Passage- The Mona Passage is located between Hispaniola and Puerto Rica Seismidty in this area thieatens all the west coast, induding the dty of Mayagüez. The
tectonics of the area is complex, consistí of a series of grabens and horsts probábfy undergoing oblique extensión (Asendo,1980; McCann,1985, McCann et al 1987; Jqyoe et
W
65-
Trench
íT
L\ Ktfertos
Trough SO K»
Figure 3. BaÜiyueLry and Cectcxiic zotes azoizxl Rierto RIgo, FtoD Geometiix (1988).
aL 1987; and McCaim et aL, 1991).
The 1918 earthquake(7SMs)was felt in westem Puerto Rico,and oiigmated on one
of the faults tbat boimd the Mona Cai^n in the northeast pait of the Mona Passage(Reid
and Taber, 1919a; Asendo, 1980; and McCann, 1985). Asendo (1980) established two sources of seismidty mside of the Mona Calaron: the east
west Mona Cányon fault
zones. The West Mona Canyon Fault tnincates the Gieat Southem Puerto Rico Fault Zone (GSPRFZ). Onshore Characteristics*The GSPRFZ dominates the tectonic stnictuie of Westem Puerto
Rico (Figure 4). It has been described as an cxtensive ^tem of noithwest-trending highangle faults wíth predominante left-lateral ofEsets(stiike-slq}) throughout their histoiy. The fault zone onshore extends 112 km from Punta Higüero in northwest Puerto Rico to Bahía
de Jobos in south central Puerto Rico (Asendo, 1980). The Great Southem Puerto Rico Fault 21one(GSPRFZ)lies generaie to the north of the Westem Puerto Rico seismic zone
and in terms of recent tectnonics may be less important than its oitension ofGshore;.(Briggs, 1964; Garrison, 196^, Seiders et aL, 1972; Asendo, 1980, TnimbuD, 1981; and McCann,
1985). One of the most important faults in this system is the Cordillera Fault It appears to have had the most recent movement since it cuts other faults in the same system. Another «
important &ult is the Mayagñez &ult, the detaik of which will be discussed later. REGIONAL SEISMICnV
McCaim and Sykes (1984) and McCann (1987) estimate the long-term activity of
shallow focus along the Caribbean-North American píate boundaiy. They identify potential seismic sources around Puerto Rico and estimate máximum magnitude for these as wel as
Htoueri
111 MI Cretaceous serpentinite 20 ka
Bahía de Jobos
fault tone
6SPR ■ Great Southern Puerto Rico
fault 2one
6NPR • Great Northern Puerto Rico
••^ ' Faults* dashed where burled
X*.*é •
Rico Area: GSPR is Great Southern Puerto Rico Fault Zona. From Geomatrix (1988).
Figure 4. Generalizad geologic map with fault: zonas in t:he Puert:o
_j
I Cretaceous to Cocene sedt«entary rocks
k
[.*«'*»| Cretaceous to Cocene plutonio rocks
I
ES Ollgocene sedlaentary rocks
l.vjyr' I Quaternary sedfwnts
EXPLANATION
'•"fcfce.ii Se,
• *« •• *» «TV
Atlantic Ocean
and their long-tezm aclivlly(Figure 5).Although Puerto Rico región
historicalfy
been
shaken by strong earthquakes( 7.0) on average twíoe eveiy centuiy(McCann, 1987), in
tenns of Modifíed MercaQi Intensi^(MM),the ísland e3q)eriences on average an intensily of Vin(MM)or more oniy once eveiy hundied years (Molinélli, 1985). The three most
important earthquake potential souroes diat could produce signifícant ground «imiring íq t^e
Mayaguez Región are the Puerto Rico Trench,the Muertos Trough,and the Mona Passage and the Westem Puerto Rico seismic zone (Reid and Taber, 1919a; Asendo, 1980; Trumbun, 1981; McCann and ^kes,1984; McCann 1985; Geomatríx,1988; and McCann et ai 1991).
Historical Earthcroakes- Asencio(1980)shows that atleast 40events
be identifíed in the
histoiical record as oríginating in Mona Passage or nortfawest Puerto Rico. The Mmft author
also mentions the Central and SW Mona Passage as the locus ofsevera!strong,intennediate depth earthquakes. The most important events fáít on the «land in the past 400 years aie
shown in table 1. Numerous histoiical accounts ezist for earthquakes in the Mayagúez aiea.
The Catalog of Regional Seismidty for the Mayagüez aiea from 1524 to 1958 as compiled Asencio (1980)is included in Appendix Al
The 1918 earüiquake afíected the Mayagüezregión «nd ís the best documented large event in Puerto Rico (Reid and Taber, 1919a),ít was located in the Mona Caiyon west of Agiiadflla and was assigned a Richter Magnitude of 7.5. This event has been considered the
most damaging in the history of the Island. Duiing the 1918 earthquake, local varíations in damage caused by ground shakmg amplifícation occuned as a resuh of local geological
70*W
•iT'.'.'.'í'.'.l
-••.VA'.
I
I
SmOL
VOLCANIC
>6.0
7.5-60
7.0-7.5
6.0-7.0
MAGNITUDElMit
Caribbean - North American píate boundary. From McCann and Sykes (1984).
Figure 5. Estímate of long-term activity of shallow focus along the
SíJivy *
./.V»
I
LONO-TERM SEISMtC ACTIVITY 20*N
Table 1. Most significant histórica! eaitfaquakes in Puerto Ricc^ (After Asendo, 1980) 1524 - Data is not clear, the heme of Ponoe de León was destroyed in Añasco eíther by a storm, indiaos or an earthquake.
1670 - Damage in San Germán» ñelt in San Juan, three montbs of añershocks (probabfy more than magoitiide(M)6.0 to have three monüis of aftershocks). 1787 - Damage in dififeient zones on the island. The source could be from the Puerto Rico Trench with magnitude as large as 8.0.
18^- Damage ineastem Puerto Rico. Generated in the Anegada Trough, M = 15(Reid and Taber, 1919a).
1918 - This'event is the best known laige event in Puerto Rico.The greater in the west coast of the island. The epicenter was located in the Mona Cai^on with M = 7.5 (Reid and Taber, 1919a).
conditions. Major damage occurred in aieas buflt on alluviunL Aguada, Añasco «"d
Nlayagüezsuffered the most building damage mainly because ofground motion amplifícation
in the alluvium. The range of isoseismal intensi^ in Mayagñez was between Vn and Vm (Rossi-Forel adapted scale).
Based on the historical data, it is dear that historically laige events located around Puerto Rico have not repeated in the sane place. The data show that zones with seismic
potential are spread around and throughout the «innd
¿one that has not yet generated
significant earthquakes could veiy well be the next source: This indudes areas within Puerto
Rico and the Virgin Island platfoim, as well as the surrounding submarine areas. In the case of source zones located on land, historie data are poor «wd are not sufGcient for the defínition of source zones.
Shallow Earthownkffs* Seismic actíviQr varíes strongly across the westem part ofPuerto Rico
(figure 6). The northem región is nearjy aseismic» ^wíth siguificant seismic actívity oiishore only apparent south ofabout 18* 15'N.Seismic actívityis noteventy distributed throughout
the active región. In Figure 6 ene can see the regíons of relativety hígh seismic activiiy. Contours endose regions in whicb at least one event wasfbund within a región with a radius of 2.5 km and whose región coonected with those cf at least 4 other events. This method
tends to define regions of concentrated seismic actívity(ie.SW Puerto Rico seismic zone) and exdude those of low-level activity (the aseismic area on northem Puerto Rico). The seismic zone is probab^ mote conq)]etefy defined in the onshore región because the detectíon threshold of earthquakes is lower there. Therefore, large breaks in the seismic
zone in the marine area are probabfy due to an incomplete seismic record.
A large aseismic región is found in the shallow platform off the southem part of the west coast. It is bounded on the north by the edge of the platform and a westerfy trending group of earthquakes. The lack of earthquakes in the platform is remarkable when compared to the regions to the north and east of it There is also the suggestion of events
aligned NNW along the westem fiank of the platfiorm as defined by the 100 m batl^etiic contour. The northeastem ed|^ of the seismic región trends NW from about Añasco in the northwest, to about Salinas in the southeast ParaUeling that aseismic-seismic border, but in
the area ofseismic activity,there is an aseisinic str^ ertenrlmg almostfrom Mayagfiez to the southem coast outside the study aiea. The strip of outfying seismidty coinddes, at least in part, with the GSPRFZ.
McCann et aL(1991)define three náajor faults near the
región ofwest-central
Puerto Rica These are the: M^^agu^ and Guanajlbo Faults and the Desecheo Fault
67W00
J
18NOO
18N30
Figure 6. Western Puerto Rico seismic Zones. From McCann 1991.
67W30
system. Hie Desecheo Fault Sjrstem is composed ofihe L& Cádcna,P-n^Tinrin wnrf Hígüero
fault segments. AU of these faults appear to be assodated
extensión and some (as yct
undetennined)quantíty ofstiike-slq} motíon.The extensive shelf ofíthe southern part oftfae wBSt coast is mostty free of major fauhs. Other major fanlts appear off the coast of
northwest Puerto Rico, and are assodated with the weü-known Mona Cai^n fault system (Westem Geophysical Research, 1974).
Using the data available, a series of studíes have been made to identify potential
seismic sources in Westem Puerto Rica Based on inteipietation of aerial photographs and SLAR (Side Looking Airbome Radar)imageiy(Figure 7a,b)some geomorphological ««d structurallineaments with tectoniclandfoms preserved sucfa astruncated spuis,fault scarps, linear creeks, of&et of currents and drainage ancnnalies were defined. Tliese features were
checked in the field and could be considerad as possíble Quatemaiy faults.
La Cadena and Other Possíble Fanlts- Of^ts ofstreams «nrf trucated drainage at the front of the La Cadena Ridge to the nortfa of the study area were found. This evidence led us to consider the likelihood of a strike-slip ^tem with a normal component along the south side
of the ridge. This evidence must be anafyzed in detafl to determine if the origm of these features is completely tectonic. Two other features were observed in Westem Puerto Rico, f
a lineamerít with truncated spurs in the &banh Grande area, and small but continuous
lineaments and possíble segmentation offaults and ridges(en echelon pattems)in the Lajas and Guánica area, to the south of the stady area. Using the seismological and morphological data onshore and ofi&hore Westem Puerto
Rico, and following Asendo(1980), McCaim (1987), Geomatríz(1988), and McCánn et al
8
I
m
íí
W
FlgMre 7b. Marphollneaments better expt«ssed:.£h' Che' MayagMsz Area.
(1991), two featiues were considered as potentíal seismic sources.
Mayagfiez Fanlt- This feature appeais as a seismically active fault zone that extends from
the ofEshore zone to the onshore zone in Mayaguez. McCaim et al (1991) have defíned a lengdi of about 15 kin -and a depth of 20 to 25 km, givmg it the potentíal to produce a máximum event of about dS. The fault strikes 300* and dips SW85* (Figure 8). Asencio
(1980) has defíned some geopl^ical aspects of tbis fault such as: spatial hypocenter distributíon, scaips in the of&hore, the focal mechanisms, and the depth distríbutíon of faypocenters (figures 9,' 10, and 11). Some Quaternaiy landforms assodated with the
apparent easterfy extensión of this fault weie found in the field. These are: an apparent small pulí apart in the "El Recreo" arca,linear vaUeys, aligned swale, knots of fractures,
triangular facets, fault scarps modified by landslides and ponded alluvium. Webb (pers. comm.,1991)found Holocene features in marine sediments in Mayagüez Bay and fractured
coral assodated with the ofEset of the Mayagüez fault, suggesting recent fault activily affecting nearshore morphology.
Cordillera Fault- Using microearthquake locations, McCann et al (1991) defined a seismotectonic feature with a length of appraximatety 18 km,azimuth of 281* and a dip of
SW80* (Figure 12). Moya (unpub. data) found geomorphological inegularíties assodated %
with this fáult such as scaips, faceted ridges, linbar valleys, ponded alluvium, and troughs. A tectonic and geomorphologic analysis of all evidence for the existence of the Mayagüez
and Cordillera faults are outside the scope of tlus study because the spedfíc purpose of this \
work is earthquake induced geologic hazards.
Intermedíate Depth Earthauakes- Subcrustal earthquakes. could also be strongly felt in
c
<Âż4
^w
\V; ^O
Figure 8, Earthquake epicenters in the MayagĂşez guadrangle. From McCann 1991.
19.30
INDI II
MAI>
cir?
MAYAGUCZ
O "rüTTri V 2S.0 SO.O 100.0
0.0
OyilhfAmJ
SEOUENCE
íxhanauon
Magnifwat
th. Itoy^z
AGUAOILLA
v^' PUNTA MIOUCnO
MAYAGUEZ
FAUUT
OT^W
INOCX
SAN GERMAN
MAYAGUEZ
CABO ROJO
erho'
MAP
ie速20'
- ie速io
ie速N
Figure 10. Offshore structural features in western Puerto Rico showing the Mayag端ez fault.
m
OIMIAIION
p lAvc p lAVE
SOLUTION
UAYACUC2
the Mayagüez fault región. From; Asencio, 1980.
Figure 11. Composite focal mechanism solution (lower emisphere) for
K
nnsi uotioNS
UAYACUE2
CORDILLERA FAULT SEISMICfTY 18.3
.cTTAlrs
o
o o c
18.2-
c co ° o o*-
18.1
G -
o C O = •
°
cpnpA Cc
o
Q
^ 18-! -67.15
co
O
^gp .— -67.05
•66.95
-66.85
-66.75
CORDILLERA FAULT
Figure 12-
Horizontal and cross section showing earthquake
distribution of.the Cordillera fault. From McCann et. al. 1991.
Westem Puerto Rico, since intermedíate depth earthquakes are foimd beneath the area.
Tliat 2^ne, wliich wiiich ^ctends to the eastem Doniioicaii Republic, hgg produced «ftífimirevents of magmtude 7.0 in the past. Similar tectonic envirouments, such as the Lesser Antilles, have produced events as laige as 7.5.Because aftheir distance ñom westem Puerto
Rico, intermedíate depth events in the Donmiican Republic as «mnii as 6.0 may be felt in
the Mayagüez Area with onfy modérate intensity.Events as ^naii as5.0 have been felt(Ü-III MM)in the MayagOez AUuvial Plafn, but not in the mountainous aiea to thé west TvraYiwinm Mfl|ynitnde of
Smi^Tecs* SoHle of the sbaüow seismic zones with seismic
potential and an estúnate of the niazimum magnitude that each might generate are shown
in figure 5(McCánn and Sykes,19S4). Hie shallow zones in rough order ofimportance are; 1. The Mona Cai^on; Capable of generating shocks of 7.5-8.0. In 1918 generated an event of 7.5.
2. The Puerto Rico Trench; Capable of generating a
event of M
8.0. In 1943
it produced an event of 7.75.
3. Westem Puerto Rico seismic zone; capable of generating earthquakes as large as 6i. 4. The Muertos Trough; Capable of generating a events of 7J-8.0. 5. The Anegada Trough; Capable of generating a shocks of 7.5-8.0. In 1867 generated an event of about 7.5.
n
The first three sources are considered the most important for westem Puerto Rico. The fourth source would produce accelerations similar to those generated by source 2so it
will not be addressed as a sepárate caise here. The threat from intermedíate depth earthquakes is possibly as important.as shaUow sources. Rffects of a major intermedíate
10
deptfa eaithquake could be similar to those ofa major eartfaquakB in tfae Puerto Rico Trench
(source 2)so that case vñJl not be treated independentty heie. EVALUATION OF EARTHQUAEE HAZARD Selectiop nfP'jirthaDake
The histórica]data indícate that the island ofPuerto
Rico experiences on the average an earthquake with a MercaHí Modified intensily of vn once eveiy50 yeais and intensily Vm once eveiy 100 years(Der Khueghian and Ang,1975; and Molinelli, 1985, Table 2).
Table 2. Retnm Períods of Strong Eartiiquake In Pnerto Rico
Retnm period in veáis
.MM
Estimated marinmm acceleration
50
vn
.15
90
vn-vm
.18
100
vn-vm
.19
200
vm
25
450
Vm-K
33
500
K
25
(Der Kime^iian and Ang, 1975).
FoUowing McCann and Sykes(1984),the Mona Passage has the potential to produce large earthquakes gieater than 7^ and,therefore, due to the doseness to Mayagfiez and the large magnitude of potential events represents one ofthe major threats tb the Mayaguez Area. The MM IntensiQr to be felt in Mayagfiez with this Idnd of event wíll be between Vn
11
and Vm based on the historie.infoimatíoD obtamed by Reíd and Taber (1919). Based on the-histórica],tectonic and seismic data available,the selected hazard leve! to be used in this
stucfy corresponds to an event similar to that of the 1918 Mona Cai^on quake (7.5). This event corresponds to the most probable inteosities to be expected in the next50 to 100 years in Puerto Rico (Table 2).
Reíd and Taber(1919a, b)modifíed the Rossi-Forel scale intensity so as to talca ínto
account the local constnictíon characteristícs in tiieir description of the 1918 quake. This
modifícatíon reduced the assigned intensity by'moie or less ene intensity level below the
normal Rossi-Forel scale. Th^ calculated a Rossi-Forel intensi^ of Vni for the Mayagüez Región which corresponds on the Mercalli Modifíed scale ^víth an intensity of Vn, and coirelates with an estimated peak ground acoeleratíon of between 0.1()g and 0.15g. Due to the neamess of some seismic sources (Le. Mayagüez and Cordillera Faults located in the Puerto Rico seismic zone), it is possible that a modérate earthquake could occur in the
Ma3^güez area generating intensities higher than that those postulated above.
Regional Attennation- In Puerto Rico attenuation data is limited to historie observations,
mainly from the 1918 and 1867 earthquakes (Reid and Taber, 1919a). Molinelli (1985) presents a graph of regional earthquake intensity (MM) attenuation of the foUowing earthquakes: 1946 in The Dominican Republic,''1957 in Jamaica and the data of Reid and
Taber.(1919a). Empmcal data from other regions have been adapted to Puerto Rico
(Housner,1973). Frankel(1982)calculated a Q factor(1/attenuation)of about 400for both P and S-waves in the Virgin Islands. \Vhile it is diffícult to compare this directty to attenuation of accelerations, a Q valué of 400 suggests that.the regional cnustal attenuation
12
is mtennediate between the highfy attenuattog cnist of Califinnia and the crust of the Eastem
Due to lack of details in seismic wave attenuation for Puerto Rico,in this work
the foimulas set forth by Donovan (1973)to describe the attenuation of acceleration have been emplcyed.
Expected Acceleratíons in Mavagñez- No stnmg motíon data is available for large earthquakes in or near Puerto Rico,so peak ground acceleration and attenuation has been
deduced based on behavior observad in other aieas (ie^ Donovan, 1973; Housner, 1973;
Der Kiureghian and Ang, 1975; Manero et aL,'1983; and Rodríguez and Capacete, 1988). A general agreement exists among these lesearcbeis conceming acceleration data for the westem Puerto Rica Ageneral agreementerists amonglesearcheis conceming acceleration datafor westem Puerto Rica Some authors have suggested máximum acceleratíons between
0.07g and 0.18g. Eaq^ected acceleratíons have been estimated based on relatíonships between fault
length and magnitude,and magnitude and acceleration(Slemmons,1982;Bonilla et al 1984; Donovan,1973;De Polo et aL,1989 a,b). Thisinformation can be applied to westem Puerto
Rico using the most hnportant seismic sources; Mona Canyon, Puerto Rico Trench, I
Mayagüez and Cordillera faults. Ihese estimates are preliminary and their intent is to t
►
♦ Á .
estímate nóaximum acceleratícms for Puerfo Ridb based on those meásured in other areas
according to the kind of fauHs and source distancel The data presented in appendix C relates
distances and sizes of sources around Puerto Rico to acceleratíons as calculated using the t
formula of Donovan (1973).
13
GEOLOGY
Mesozoic and Cenozolc Rocks- Hie Mayaguez Región líes between the contact of two different geologic units; the Siena Benneja complex
an volcanic complex. The oldest
rocks in the island belong to the Siena Benneja Complex (Mattson, 1960). They include mainly voléame and metamoiphie roeks and some dierts of pre-Cretaeeous to Ear^
Cretaeeous age.The geology and the stratigraphie summaiy ofthe Mayagüez Región appear ih'the Figure 13 and Table 3.
A folded sequenee ofsedimentaiy and voleanie roeks of late Cretaeeous(?)to earty
Tertiaiy age uneonformably overl^ this eomplex (Krushenslgr, 1978; and Krushensky and Curet, 1984). Both sequenees are intruded by andesitie «hH basaltie hypabyssal roeks. Some h3^ab3^ssal stocks of diorite, quartz diorite, andesite «nH basalt intrude the oíd and the young eomplexes. Tliese roeks have been dated as being from Late Cretaeeous to Early Tertiaiy (Curet, 1986).
Difíerent types of metamoiphism are found in the rocks of the región: zeolitization,
as well as hydrothermal and dimatie alteration. Metamoiphie effeets observed in the
voleanie-sedimentaiy sequenee are probab^ related directa to the intrusive activity which affected the voleanie mateiials during Late Cretaeeous and Early Tertiaiy times.
Struetural deformation, mostly faulting and folding is greatest in the oldest eomplex. However, both older and younger umts are afíeeted by minor and major faults assoeiated
with the GSPRFZ. Major faults have almbst vertical dqis and show evidenee of left-lateral stríke-slip movement.Evidenee of recent movements,if any,Js erased rapidty by the intense
14
Tkab
9
y
Figxire 13. Geologic map of Hayag\iez regiรณn showing lit:hologic imitis. See descrip'tion in Tables 3a and 3b. From Cureb, 1986
Table 3a. SjaratAgrapTi1c Table of the Mayagüez zt-»» (After Curet, 1986)
Age
Sbrabigrapliy
Brief Descriptions
af Artificial Fill
Sand, gravel and rock
Sand, silt and gravéis,
Qal Alluvium
includes rocks falla and
landslide deposita. 0b Beach Deposite
Sands, gravéis clasts of Shells, chert, guartz and volcanic lithic clasts.
Qs Swasip Deposita •
Holocene
Clay, silt, and organic matter
0m Hangrove Swainp
Sand silt, and organic
Deposite
matter
Quatemary
QTs Quartz Sand
Friable and nassive sands
and
Deposite
Tertiary
Esorly Tertiary TI^d> Basaite
Basalts and Basalts veatbered.
Maes-trictian
(Maes't.)
Tl^oa Andesite-
Porphyritic andesite-
diorite
diorite.
TKpaa Andesite-
Alterad Porphyritic
diorite
andesite-diorite.
TKbp Diorite
Porphyritic homblende diorite (nassive)
TKab Basalt
Porphyritic augite basalt (nassive)
Klg Lago Garzas
Meissive breccia,conglomé rate, tuff,and linestone
•
Late and Hiddle Xex WpXo ijr
Formabions "
Klgm Las Marias &
Linestone
L. Garzas Formation
Table 3b. Stratigraphic Table of tbe Mayagüez Area (After Curet^ 15
1986)
Age
Stratlgraphy
Brlef Descrlptlon
Maeslir.
Kmr Harlcao
Masslve breccla,conglomérate
aná
Formatlon
sandstone and llmestone
Campanlan Maes-tr.
Maestr. to
l^dPeñones Llmestone Masslve Llmestone Ksg Sabana Grande
Masslve breccla, conglomérate sandstone, sUtstone, claystone and llmestone
Formatlon
Turonian Maes-tr. to
Ky Yauco Formatloii
Calcareous volcanoclastlc
sandstone, sUtstone, claystone, llmestone,
Campanlan
breccla, conglomérate. Maesto.
and
Kylg Yauco and Lago Masslve volcanoclastlc Garzas Formatlons breccla, conglomérate,
Campanlan
Interbedded
tuffs, claystone, mudstone, sandstone.
Maesto. and
Kmsg Harlcjao & S. Grande Formatlons
Masslve breccla, sandstone, conglomérate, sUtstone, and
Campanlan
Interbedded
claystone
Early Cretaceous
Early
Masslve serpentlnlte, breccla
Kbs Clastlc
Serpentlnlte KJsp
and conglomérate
Spllite
Masslve basalt.
Cretaceous
and Júrasele Pre.late
V
Jse Serpentlnlte
Masslve and weathered
serpentlnlte
Klmmerldglan
Ja iZüi^blbollte
CrystalUne, nonfollated and sllgbtly foUated amphlbollte.
5
T
16
weathenng and erosión common to the humid tropics (Geomatrís, 1988). Tjiie Tgrtiniy awi
Sediments- Quailz sand, swamp, beach, alluvium and
colluvimn deposited both in terrestiial and in coastal environments make up the yomigest
deposits in the aiea(Cmet,198Q. Quartz sand deposits consist af massive and ñiable sands ivith 50 to 60 percent of quartz sands in a
matriz of kaolinite, hemathe,and goetbite.
These deposits of Late Teitiaiy to Quatemaiy age are found in the southem portion ofthe stucfy area, overiaying the serpentinite ofthe Bermeja Complez. Mangrove swamp deposits consist of moderatefy to well-saited, fme graiiled sand and sflt with variable amounts of
organic matter. Otfaer swamp deposits consist of
sflt, and oiganic matter.
Holocene beach deposits consist of rounded, modérate^ to well-soxted sands, and
minor graveL Late Pleistooene and Holocene alluvium is poorly to moderately sorted, moderatefy to well-bedded sand, sflt, and cobble or boulder graveL Whfle chief^ stieam
deposits,the units also include unsorted rock fall and landslide debris(colluvium)at the foot of steep slopes.
The thickness of the afluvhun in the Guanajibo River ranges between 50 to 100 fL
(Colón, 1985),whfle thicknesses of more than 100 ft aie common on the Añasco River plain, reaching 455 ft near the Añasco River (Díaz and Jordán, 1987).
TwgT borings in the oíd YagOez Rmr diannel reached 120 ft without encountering a fírm stratum, and sand coveied lagoonal deposits were found to average 35 feet thick
(Capacete and Herrera,1972),whfle other sites are more than 170fL thick in the Mayagüez
alluvial plain(McGuinness, 1946),and ma^ up to 300 ft(Rodríguez and Capacete, 1988). Geomorohological Zoncs» The area of study is divided into.thiee main geomorphic zones;
17
the coastal deposits of Holocene age, the alhivial plain, and the mountains.
one has
spedfíc cfaaiacteristics.The coastal deposits are found altn^the coast ofMayagOez Bay.The bay is foimed fay two lengths of coast,a long soiitfaem segment and a shorter northem one. The
líes at the northem tennination of the mde insular shelf of westem Puerto Rico.
The alluvial plain consists msúiáy of the aUuvial deposits of the Yagüez and Guanajibo Riveis, with some swampy arcas, lagoon and mangrovc deposits. Groundwater levels are
found at 3-5 meters deep in the alluvial plain. The long southem coastal segment bordering the bsy is^ere the wider coastal plain is found;Thewidest portion ofthis-flatland is at the mouth of the Guanajibo River to the south and the nariowest portion is just to the north
of the mouth of the Yagüez River. Finalfy, the central range of mountains are foimd along the near coastal arca and rapidly rise to 350 meters abovc sea levcL Hígh annual rainfall and
the tropical dimate combine to produce high erosional rates, and thus steep slopes on the mountain sides of the stu(ty aiea. EARTHQUAKE DOIUCED HAZARDS TO THE MAYAGUEZ AREA
Pescrintion of Methodoloev- The methodology emplcyed by Molinelli(1985,1988)for the
study ofSan Juan,Aredbo,Aguadilla,and Ponce,has been used to define the zones subject
to different earthquake induced hazards. The methodology dassifys a site according to the geologic characteiistics of the materials (kind of rodc or sediment and age), and the geomorphology. This methodology defines three potential hazards assodated with an
earthquake:ground motion amplification,liquefactíon potential,and ground failure potentiaL
Each one is described in temos ofthe leveí ofsusceptibility: low,modérate,and hígh- Finalfy, tsunami and flood hazards assodated with an earthquake are also defined, mainly based on
18
historie consideratíons and geomoipholcgícal cbaracteristics ofthe zones(see Table 4). The defínitíon of units as presented in the vulnerabilily map was based on aerial photo inteipretatíons from 1936 and 1987 photograpbs, geológica] and l^drological infonnation, histórica] descriptíoDS, geotedmica] boxings, and geomoiphological interpietatíons.
Gronnd Shaldng Hazard- Ground gbalrfng is one ofthe mostimportantearthquake hazards. Earthquakes generate seismic waves (body and suiface) \viiicb produce víbrations ^th
different frequendes that can damage buíldings when they resonare (Molinelli, 1985).
Body waveS(P and S)travel as high frequency vibratíons, whüe surface waves(Love
and Ralei^)are chaiacteiized by lower ¿equencbs. Most structural damage is caused by surfiace waves. Soil conditions such as thickness, water content, pineal properties of the unconsolidated deposits and underlying rock, water saturated mud, uncompacted artificial
fOls (mainfy over swamp and lagoonal deposits) among others, can modify the ground motíons, changing the amplitudes and firequendes of the motion. Thus,£rom areas located
at similar epicentral distance and all other factors being the same, laige spatial variations in damage reflect local changes in the geologic characteristics that affect ground motion (Molinelli, 1985).
The spatial vaiiation in damage is explained
the fact that the local geologic
mateiials ámplify to different degrees the ground motion input in a period range that
coincides with the natural period of vibration for many structures. Thus,structures founded on unconsolidated materials are firequently
(Hays, 1980). ADuvial zones are veiy
vulnerable to ground shaking amplifícatión but generahy less vulnerable than artifidal fíU placed over swamp,lagoonal, alluvium and beach deposits. Fill materials have shown shown
19
Table 4. Generalized earthqnake indnoed geologic hazards zones for tfae Mf^yagoez Area.
GROtINO
MOTION
AMPLIFICATION NOT
A- 1
LIOUEFACTION
CROCINO FAILURE
FOTENTIAt
POTENTIAL VCRY
LOW
SiaNinCANT
«•2
LOW LOW
NOT SiaNIFieANT<<ro'uO«
A-S .
MOOCRATC
TO
HIOH*WNEIIE TNEMATCR1AI.S ARE NOT LATERALLY CONFMEO ano MOOERATELY
MION
SLOFINO A-9 -I
HION
NieH*iN SANO LAOOONAL
B-1 1
1^ a 2 »
) NOT SieNfFICAfir •'
11
MOOCRATC to VCIIY NIOH
í
coveneo
NIOH-IN SANO COVERED
OCFOSITS
LAOOONAL VERV
NONC
NIOM-SFCCIAULY
WNENE
TMC
OEFOStTS
LOW
MATCRiAtS ARC NOT LATEIUU.Y CONFINCO
HlOM-ALONO RIVCR BANKS SLUMP. FLOOrS ANO LATERAL SFREAOS
NiOH-SFCCIALLY IN THC LOOSE SANOS LAOOONAL OCFOSITS
hiom-sijumfs-fuws no lateral SFREAOS
i-2
HION
C- 1
NOT
SIONIFiCANT
NONE
e- 2
NOT
SIONIFICANT
NONE
c-s
NOT
SIONIFICANT
NONE
LOW
MOOERATE TO HION NiON
5.
X
20
to behave veiy poorty during earthquate& The ground shaking damage wffl be determined Tnainly by the depth of the focus, attenuatíon, magnitude, «Tid distanoe of the souroe to the stucfy area. Dunng an earthquake areas underlain by Quateniaiy sedimentaiy deposits such as alluvial plain and coastal deposhs shake harder and longer than sites located over bedrock.
Ground motíon axnplification is a signifícant hazaid in the lowlands of the Mayaguez Región because of the presenoe of large amounts of imcoosolidated mateiials. These
imconsolidated mateiialsin the stncfy aiea induije Holocene to Recent deposhs'of alluvium, stream sediments,swamp deposits, water satuiated mud,beadi and uncompacted artífícial
filis. The ground water level is shaHow (no more than 3 or 4 meters deep)in the alluvial plain and near the lagoonalzones.In downtown Mayaguez,specifical^in the YagOeztheater zone,the area is located only about five meters above sea level,and piesents a ground water level that stands within a meter of the surEace (Cápacete and Herrera, 1972). Sediments in the Rio Guanajibo aiebetween 50 and 100feet thidc As was dted,data
for the thickness of the M^agüez alluvial plain is scarce. McGuiness(1946) documented deposits between 120 ft and 170 ft thick. For Puerto Rico, Marrero et aL (1983)(dted by; X
Rodríguez and Capacete, 1988) has reconunended an aniplifícation factor of 1.5 for deep 1
soil deposits over 300 fi thick. Based on thas consideration, the Añasco, the Mayaguez
the Rio Guanajibo alluvial plains (aU with sites which has thickness of more than 120 ft) could be subject to modérate to high intensity ground shaking due to ground motion
amplification(see descr^'f^^^ ™ map).Tliése zones have been mapped as B-2and B-3zones (see main map and table 4 for description). B-3 zones include all the alluvial deposits of
21
Holocene age with thick depo$its, while B-2 índudes same Fleistooene tenaces composed
of alluvial deposits, but with mateiials more compacted timti those of B-3 zones. In the 1918 eaxthquake, ezteosive damage occnired in the stiuctures located at the
west end of Méndez Vigo and lAcKsiúsy Streets,on the YagOezRiver floodplain,and on the
east end of Méndez Vigo St wheie it joins the floodplam (Capacete and Henera, 1972). This aiea has been defined as a B-3 zone.
Severa] artificial fiüs sitK aie'located near the beadi «nd on the Mayagüez plain. These areas aie imdeilain by beadi,swamp and fluvial ^posits with a hig^ ground water level that wfll be afEected by ground shaldng ampUfícation.Some zones have been identifíed
based on data presented
Hickenlooper» (1968),and Cnret(198Q.Additional data on the
location of fill sites was obtained flrom a comparative analysis of aerial photos fron^ 1936,
1951, 1964,1971,1979 and 1987(Figure 14). FOl areas with a high susceptibDily to ground shaldng He along the north and south sides of the Rio Yagüez mouth,fiUed swamp areas to the south of Ms^guez and areas north of Caño Corazones, which could be an andent
mouth of the Rio Guanajibo. In the eariy 60*s, the aiea between Punta Algarrobo and the V
Malecón was filled in to ezpand the-port zone. New industrial facflities were buflt on the
landfni aiea. This area is located in a zone with a higih ground
amplifícation
potential (B-3).
Zones with low ground shaking ampUfícation potential hazard (B-1) have been
mapped in some Pliocene-Fleistocene (?) tenaces composed of quartz sand deposita,
appeazing mainty in the Sierra Sabana Alta part of the stucly area(Curet, 1986; Volkmann, 1984). Althougfh the tenaces consist mainly of sflt and sand sediments, weathering and
22
compactíon has incieased the rígídily of the deposits. UonejEttction Hazard- Groiind failiire produoed by soil lique&ctíon has been one ofthe most
important causes of damage duiing some of the most destnictive earthquakes in histoiy. Differentia]settlement and tílting ofbufldmgs,coUapse ofbrídges,emergence oflight buríed
stnictures, and deformation of undergroiind pipe lines aie some of the damages produoed by this phenomenon during and after earthquakes. From a geotechnical point of view, the factors used to identífy sites with soil
liquefactíon potentíal'aie:"age' of soil, groundwater he^t, grain size, density, origm,
thickness, and ground accelerations and duratíon of the shairing (Budhu et al, 1990). GeologícaUy,tbis phenomenon occurs in recent sediments(mainty not older thnn Holocene) composed ofloose fine- to medium-grained sands and silty sands(day fice)up to 20 meters
below the ground surCace, and 'with a relativety shaUow water table (less than 10 meters below the surface).
The applícation of cyclic shear stresses produoed ty the ground-motions(induoed by an earthquake) causes pore-water pressure buildup in saturated oohesionless soils (Seed, 1968). If groundwater drainage is impeded duiing the ground motíon, beoause there is an
increase in the pore-water pressure and a deorease in the intergranular stress,and the cyolio
shearing is continued,this can cause a large amdunt ctf straining straining and even flowage; the soils, then, behave as a fluid mass (Obermeier, 1984). When the pore-water pressure becomes equal to the total mean stress, the soil looses its strength and liquefíes. The duration of the ground shaldng will be a veiy important factor in the liquefactíon prooess. Long- duration shaldng will produce the cyclic shear stress neoessaiy to cause a 100%excess
23
Figwe 14â&#x20AC;˘ Artificially filled areas for urban use in the MayagĂźez Quadrangle.
'
pore pressme ratio if the conditíons leqmied ezist
Youd and Perkíns (1978) developed a table to estímate the susceptibilily of
sedünentaiy deposits to liquefactíon duríngstrong seismicshaking(Table 5).FoUowmg Youd and Perkíns (1978), for a ground water leve! at or near the suiface, the data of Tinsley et
al (1985) indícate that most of the late Holooene sand and silt deposits in the world are
highfy liquefiable. Loose sand or sflt (d^&ee) of low densitíes are less resistant to liquefactíon than sands and silts wíth high lelatíve densitíes. Also, veiy young deposits less
than 500 years in age are more susceptible to liquefactíon than older (Holocene and
Pleistocene age)deposits(Youd and Perkins,1978).Itis possible that liquefactíon can occur on clay-rích sediments which are veiy young(no older than a few tens or hundred of years)
and in extreme^ soft clay-rich soils (Obermeier, 1984). The geomoiphological evidence of liquefactíon is evidenced by sand blows,sand dikes,lateral spieads, ground físsures, ground settlement and difíeientíal defonnatíon of the ground sorface.
Youd and Perkins (1978) suggested that ground failure induced
liquefactíon
damage can vaiy according to the ground suiface slope. Obermeier(1984) presents a table simplifying Youd's data of damage assodated to the ground slope recognized duiing past earthquakes on sand-grained deposits. Hie
caused
liquefactíon will depend on
the gradieút where this phenomena occiirs and the cyclic stress ratio produced by the shaking of the soil: Failni^^ode
Ground Sniílaoe Slope
Beaiing Capadty
< 0J %
Lateral Spread
0.5.5.0 %
Flow landslide
>5.0%
24
According to the Natíonal Researdi Councfl(1989),the four dififeient maxiifestatiozis of liquefactíon that can cause xnajor damage to bufldings and facflitíes aie: 1. Flow slides from slopes; 2. Loss offcundatíanbeaiing capadty,leading to laige setüement and/or tfltmg of structuies; 3. Lateral spreading, that is, a movement of gradually sloping ground towaid
low points; 4. Ground osdOatíon, where ground overl^ing saturated sand breaks up into josding "plates". When the first two manifiestations occur,there is great damage and loss of
lifc. Due to the low slopes of the Mayaguez aiea, manifestations 2,3,and 4 are most IhoBly to occur during a major eaxthquake. Earthquake durationand accelerationare other crítical&ctors that affectliquefactíon potentíaL Duration and acceleratíon thiesholds capabie of causing liquefactíon have been empirically derived for different aieas. Tbese stndies show that liquefactíon can occur
(measured in terms of Magnítude and or Intensity) duiing longer-duratíon,lower-frequen^ shakíng of large earthquakes.
The threshold of acceleratíon where liquefactíon was produced in past earthquakes over soft sediments
been when the ground ghairing has exceeded 0.13g. This indudes
earthquakes as gmnii as 5.0 Ms with a souroe distance less than 10 km,or with an intensiQr V(MM)with the same souroe distance (Seed and Idriss, 1971; Keefer, 1984; Obermeier, 1984; Tinsley et aL, 1985).
«
To data applied to Puerto Rico, Molinelli (1985) mentíons that other geologic conditíons favoring liquefactíon are: 1)a potentíal]^ liquefiable bed or lens of porous, well
sorted sand, 2) water saturation of intlergranular pore spaces in the bed or lens, 3) confinement of pore water by impenueable li^rs above and below the liquefiable bed,and
25
Perkins, 197&
Ceneral
Likelihood That Cohesionleaa Sediaienta»
(6)
Pre-Pleiatocene
Low
,
Vhen Saturated, Vould De Susceptible
(5)
Pleiatocene
to Llquefaction (by Age of Deposit)
Distribution of Coliesionlesi Sedicaenta in
Table 5. Estimated Susceptibility of Sedímentaiy deposíts to Uquefaction During Strong Oround Shaking. From; Youd and
Type of Deposit (1)
(A)
lligti
Low
Very low
Very low
llolocene
Hoderate
Videipread
lligh
lligh
Hoderate
Hoderate
Hoderate
Low
Very low
Low
Low
Low
Very low
Very low
Very low
Very low
Very low
Very low
Very low
Very low
Delta and fandelta
Variable
lligh
Low
Low
Unknown
ir
(3)
Very high
Low
Uciiatrine and
Variable
Low
Hoderate
lligh
Very low
M
<500 yr
Locally variable
lligh
Low
Deposita (2)
Locally variable
Hoderate
(a) Continental Deposita
Flood plain Wideapread
River cliannel
Alluvial fan and
plain
Colluviun
Videapread
lligh
lligh
Very low'
Very low
•
Talus
Videapread
lligh
Low
Very low
Videapread
Duoes
Variable
Low
Low
Harint ierracei
Loest
Variable
Low
playa
and plaina
Glacial till
Rare
*
Tuff
O)
Type of Oepotit
Tephra Reaidual aoila Sebka
Esturine fieach energy
• Hlgh vive
enargy
• Low wave
Lagoonal Fare ahore
UncoBipacted fill Compacted fill
General Distribution of Coheaionless Sedinentf In
Llkeliliood That Coheaionless Sedinenta,
When Saturated, Would Be Suaceptible to Liquefaction (by Age of Depoait)
Low
Low
Vcry low
Pleiatocene
Very
Very
low
low
Very low
Very low
Pre-Pleiatoceoe
llolocene
Low
Very low
<500 yr
Hoderate
Very low
Very low
Deposita
Low
Low
Locally variable
Wideapread
Locally variable
Vcry high
Low
Very low
Very
(b) Coaatal Zone
Hoderate
(a) Continental Depoalts (cont*d)
Hoderate
Hoderate
Uidespread
Widespread
High
Hoderate
Low
low
Hoderate
(c) Artificial Very high
"
Wideapread Locally variable Locally variable
Variable Variable
^na Sedtoertaty áepaaita to liqtefectím During Strong Ground Shaking. Froo; Youd and Perkins, 1978.
4) praxmiity of tfae liquefiable bed to the smface (50 feet or less).
Dunng the 1918 eaxtfaqiiake,soilJiqiiefactíon was located on aSuvial deposits,mamly in the Añasco alluvial plain(Reidand Taber,1919a). No descriptíons existfor the Mayagüez zone, but it is possible tbat the.evideiiGeweie not observed because in 1918 tfae populatíon
was veiy scarce and onty a small aiea of tfae M^agüez
was mbanized and occopied.
Also, the intensive agrícultaral activitíes coiddJiave hnríed tfae cvideDce.
In Üie Mayagüez aiea. Arrayo (1991), assessed tfae liquefaction potential of one
thousand boríngs in the stndy-aiea?. He nsed tfae FETAL3 Program by Cfaen (1988) (Penetratíon Testing and LiquefactioD) to define ^vfafaicfa boiings piesent evídence of liquefaction susceptíbilily. The program uses tfae lelatiooslióis proposed by Seed and Idris and others to evalúate the hquefactíon potential of sancfy soíls vdtfa a fine percent of less than 40 % and gravelfy soüs.
The PETAL3 program needs tfae foUowing mput data to make tfae liquefaction computations: a)number of layéis of the site studied; b)deptfa of eacfa l^n c)saturated densily and wet density; d) the e^qiected deptfa of tfae ground water duiing the design earthquake; e)the earthquake magnitude and nummnTn acceleration; Q the type of in situ
test perfoimed (SPT or Gone Penetratíon Test CPT); and g) tfae SPT faanmter effidency. %
Boring data is presented in Appendis B. ^
h
Only 43 of tfae one thousand boiings satisfied tfae ciiteria for use of tfae Seed and Idriss and otfaers metfaodology. AH borings are located on Holocene alluvium, beacfa and
swamp deposits. Arroyo obtained tfae saféty factor for tfaese 43 boiings. Valúes greater than
^ Data obtained from public agendes and prívate companies. 26
or equal to one aie considered sa& or nonfiquefiable, valúes less than one indícate sites pf
liquefaction potentíal(Figuie 15). Almost all borings vnth saSsty factois ofless thai^ i tjave layéis ofloase sandy and silty-sand soüs ^th ^ter table level veiy shallow (between 1 and
5 meteis deep), and the blow counts (SFI)langíog between 1 and 10. These borings are located over the alluvial plain of Mayagüez(see map).
The liquefactíon potentíal zones lound by Ancyo (1991) show añ almost peifect conelatíon'with the estimated susoeptibility ofsedímentaiy depositsto liquefactíon presented
by the Youd and Perldns mediodology (1978)(Table*5). Ibis was the same methodology used by Molinelli (1985 and 1988) for the liquefaction susceptíbility maps in San Juan, Aiecibo, Ponce and AguadiUa. Untfl now the two known studies ofliquefaction susceptíbility based on geotechnical
data(Soto et al, 1985; and Arroyo, 1991)confiim veiy well the appHcation of the Youd and
Perkins (1978) methodology to liquefaction assessments without data logs for pmposes of general vulnerability mapping in Puerto Rica In the case of the area of stucfy, the aieas A-3 and A-3-S weie defíned as the zones
most prone to liquefaction, based on Arrayo's data, the Youd and Perkins (1978) methodology, the location of recent deposits (Cuiet, 1986), and the mapping done by this %
study on the landforms of Holocene and láte Pleistocene environments obtained from the
interpietation of the 1936 aerial photos. These zones are located, as described befoie, over
the beaches, mangrove, lagoonal, swamp, and alluvial zones, with a veiy recent date and X
where sand deposits appear (Figures 15,16).
A modérate to low potentíal zone (A-2) is identífí^ by the alluvial terrace and
27
i
Figure 15. Sites with high liquefaction potential in the MayagĂźez Quadrangla. Froin Arroyo, 1991.
V
MATACO
J¡
FiguiTG 16 > Units of tti© ©£ic^íi<^uéücG inducsd qgoIoqíc hazards map for the Mayagüez Area. For description see Table 4.
coUuvial zones(Holooene to late Pleistocene)located in the Qty of M^aguez and over the plains located aloog the maigms of some mountaizis.
Reíd and Taber(1919a,b),described mai^líquefactioñ charactenstics in the alluvial plains, mahúy groimd cracks and sand blows due to the 1918 earthquake. Groiind cracks
parallel to the path of the seighboring stieams(caused by the sliunping of its banks), and cracks of different typcs (fonned in fíat lovtdands wheie the water table stood dose to the
surface)weie described. The groimd water carne up through cradts biinging up sand,which was deposited on the sur£Eioe."Also,-inmiediate^ after the earthquake, the ditches in the
fíelds were fiooded because of liquefaction induoed ground water discharge. The water contínued to flow in the ditches for severa! weeks.
Different zones of the Msyaguez urban arca at the moment are located over fíat
fluvial,swamp,and lagoonalzones(Figure 16).These areas have been coveied by numerous subdivisions and fíUed for ccnstruction puiposes.
Rodríguez and Capacete (1988), using the Mona Canyon as the source of an
earthquake (Figure 17), present a graphic relationship between the conected N valué SPT (number of blow counts duríng the standard penetration test) and the depth of the water
table at which liquefaction will probabfy occur in the west coast of Puerto Rico duríng an
earthquake similar to the 1918. (The data for Mayagüez do not consider the possible acceleration for an event produced in the Puerto Rico Trench north of the island).
Keefer (1984) used a world-widé datábase of over 40 earthquakés compiled by Kuribayashi and Tatsuoka (1975) and Kuribayashi (1977), to present a graphical
28
«(«cMMceTn
«
•
Figure 17. Curves shoving corrected N valúes at which liguefaction will probably occur in the west coast durlng an earthquake similar to the 1918 earthguake. From Rodrigues and Capacete, 1988.
40
4J
SO
Si
M
fO
'i
00
«i
«O
*S
Mo^tiido 4.m)
Figure 18. Máximum distance from earthguake epicenter where lateral spreads associated with liguefaction have occurred in past earthquakes. From Keefer, 1984.
\
representatíon of the maxnniun distanoe from epicenter ivheie lateral spreads assodated
with liqiiefaction have occuzied in past earthqaakes(Figme 18). Also,Tinsley,et aL(1985), based on empírica] data, present how líquefactíaii is related to near aiid distant shorks
(Figure 19).
Based on Keefer's relatíonshq), liquefaction in the M^agüez región could also be produced, ^with an eartfaquake of 7.5 M located at a distanoe of 100 km. This event could be generated on the southem waH of the Puerto Rico Trench.
Landsllde Hatutuí,Earthquake induoed landsb'des have cansed tens of thousands of deaths
and biHions of dohars in losses cluring this centuiy around the world (National Research
Council, 1989). The term landslide is used in the generic sense to refer to the various types of mass movements following the Vames (1978) dassifícation. This includes;
fiows,
slides, topples, and complex combinations. Earthquake induced landslides present a signifícant hazard according to the susceptíbility of the terrain. When the locadon of the population and buildings coincide ^th these areas, the risk is significante increased.
Landslides triggered by earthquakes have been studied widely (Seed, 1968; Wilson
and Keefer, 1983; Keefer, 1984; Jíbson and Eeefer, 1984; WOson and Keefer, 1985). Keefer(1984)and Wilson and Keefer(1985)examined the relationship of landslides to the
duration, intensity, magnitude, distanoe pf the source, and the area affected during earthquakes. Empirical data obtained
Keefer(1984),shows that the selected hazard level
of 7.5 Ms used in this study may trigger some landslides over an area up of 40,000 kni7
(square kilometers) around the epicenter(Figure 20). The maTímum distanoe of landslides produced by an event of 7.5 Ms is up to 200 km from the epicenter. An event of about
29
DMgnitudc 5*0 is thc sniflllcst cflillupislcc lilcc]^ to c&iisc Isndslidcs in thc cpicentral zonc (Wiison and Keefer, 1985), mainfy rock faUg and rock slides.
Hie occunence oflandslides generated by an earthquakc wül depend mainly on:type of materia], geologíc structoie, slope angle, slope length, dégree of weatheiing, water
content, lype of vegetation cover, and cyclic stress as detexmined by ground «imifing parameters.
Puerto Rico,as in other regions ofthe world(WUson and Keefer,1985),,the number
oflandslides induced by an earthquake wül be greatfy increased if hea\y or prolonged rains occur a short time before or dming the earthquake.If the event occurs during a diy period less damage will occur.
To determine landslide hazard zones,a landslide inventoiy was prepared using 1936
and 1987 aerial photographs. The most common factors assodated with instability found during the fíeld check ofthe inventoiy wcre;oversteepening ofslopes,degree of weathering, rock type, rock stnicture, morphology of the slope, and land use.
The inventoiy(see map)shows abundant landslides.These were identifíed ngíng their morphometric characteristics as shown in air photographs as well as in the fíeld.
Approximatefy 784 landslides (only landslides with a length exceeding 3 meters downslopé were inventoried) weie found m the'^dy area. Landslide denshy in each of the
geológica] foimation is shown in table 6 which shows the degree of stability and the hazardousness of each area.
30
nsiMCC.M ««oucms
Figure 19. Earthgueüce magnitiude vs distance at which liguefaction has been observad in past earthqucüces, Fren Tinsley et al. 1985.
Mbgnitude |M)
Figure 20. Area affected by landslides in earthguakes of differenl: magnitudes. The solid line is the aproximated uppper bound enclosing all data. From Keefer, 1984.
Table 6, Landslide Potential in tfae Mayagñez-Rosario Area. Rock Foimations
Na of Slides
% of Total
ApprcK. Aiea
Yauco(Ky)
393
50.1%
40.4%
Marícao(Kmr)
111
14.1%
133%
Porpl^tic andesitedioríte (Tkpa)
107
13.6%
93%
Seipentinite (Jse)
85
ia8%
13.8%
Basalt(n^b)
62
7.9%
6.1%
%
Sabana Grande (Ksg)
14
1.7%
Others (Kr, Tkab,I^sp,
12
1.5%
6.6% 10%
Kmsg, TKIab)
Units like the poiphyritíc andesüe-dioiite, basalts,and foimatíoiis such as Yauco and
Marícao,shows the gieatest potential for landslides. A more detafled study conceming the gradients and the area should be done to evalúate the landslide potential in the Mayagüez Quadrangle (so the lesults of this study should be considered prelíminaiy), since landslide susceptibility varíes spatíali^ and temporal^.
The most important elements that change the behavior of slopes and generate landslides duríng an earthquake aie; the nagnitude of the acceleratíons, the duration of the
quake, the degree of rock weatheríng, and time and duration of the rains. Duríi^üiefiBld check it was obseived that weatheríng has produced two kinds of effects in sohs that inhibit
or facilitate the development oflandslides. Fiist,in several places weatheríng has formed a
highfy altered clayey mantle which gíve the slopes more resistance to shear stress duríng diy 31
periods. Second, WBathenng has developed weak zones io locks TnaVíng them more susceptible to landslídes during diy or wet periods. The amount of rain that has fallen in the zone before an earthquake dictates the
predominant ^^pe oflandslídes due to the amount of moisture in the soiL Sofl slumps,earth
and debiis flows, rock slides, and lateral spieads could be the most common mass wasting in the Mayagüez región dining a wet period. During a diy peiiod the landslídes induced eaithquakes may cause less damage, whh the occunenoe of rock fan», debiis slides, debris
slumps,rock slides,lateralapreads'(ni^be caused by liquefoctíon),soflslumps,and soil block slides being more probable.
A signifícant number of slides may occur alfwig mountain roads where steep cuts and fíUs have been placed over potentially unstable mateiials. A laige number of roadside structuies are Uk&ly to be affected, and oíd iflnrigKdfs may be leactivated.
In the mountainous aieas, poorty designed structuies over weak foundations piesent a seríous risk. It is conunon to have houses constructed on long columns whose height
exceeds thirQr feet Strong ground shaldng is likefy to coUapse or tft these stnictures. A ^ical scenario may be one in wUch the £a]] of one structuie wiD cause the coUapse of
others located downslope.In the case ofsome steep areas,a combination between landslídes
and structiiral damage may produce seríous própery damages to «"«n bufldings. According to evidence found in the región the amount ofearthquake damage in rural areas could be as signifícant as those in the urban zone of Mayagüez.
Tsnnami H«7«rd- Historícally,the Cáribbean región have been affected by tsunamis.In the 1918 earthquake a big tsunami stnick the westem coast ofPuerto Rico,and kílled about 40
32
peisons.The effects ofthis tsunanri weie studicd by Reíd and Taber(1919a)and they found
that the wave nmup and the anival time vaiied for di£ferent points along the west coast Reíd and Taber foimd that in some places north of M^aguez the water marks indicated
that the wave reached a height of6.0 meteis above sea level, but to the south of Mayaguez the water mark leached onfy 1.5 meteis above sea teveL
In this woxk, as a preliminaiy estímate a height of two(2) meters above sea leve] along the Mayaguez coast has been defined as the diange in sea level caused by the tsunami
in 1918. This pielimmaiy estímate is based npob the-Reid and Taber desciiptions, and the descríptíons found in the dironid^ of the Redentorist Fatheis,(v^o descríbed the damage
to the Del Carmen Church) when the tsunami wave readied this aiea. The Del Carmen Church is located approsluiate^ 400 meters ñom the beach on the aUuvial plaiiL
For now,the cbatiga m sea level of6 meters(18ft)can be considered the Tnavíimim for tsunami effects along the west coast, as occuned in Aguadilla. It is probable that the 1918 tsunami in the coastal zone had washed aw^ some other earthquake effects such as
liquefactíon or lateral spreads located on the beach or near the mouth ofthe Yagüez River. McCuIloch (1985), using a global dataset, presents a classifícatíon of tsunami
magoitude and the máximum runup height in meters based on earthquake magnitude
(Figure 21).Die same author presents thé relationshó)between earthquake magnitude and tsunami magnitude (Figure 22). Based on the McCuUog^ data, the 1918 event would have
generated a tsunami wíth a magnitude of.5 to 1.0 (tsunami magnitude) with a TnayirnnTn runup height between 1.5 to 3 meters in Aguadilla. More studies to evalúate the riamag#» potential of tsunamis must be done in the area, since at the moment there are many
33
TtUMsni
iMgiutaae
TtuiufRi(
clmificKon'
tumip
»trgt(CBoiipeunds)
5—
— 25.6x10**
4.5
~ 12.6x10** (9.4x10**) — 6.4x10**(4.7 xlO>«) — 3.2x10**(2.4x10**) — 1.6x10**(1^x10**) — .6x10**(.59x10**) — .4x10» (.29x10**) — Jx 10*» (.15x10**) — .1x10**(.074x10**) — .05x10**(.037x10**)
4—
3.5 3—
2.5
1.5 1 — .5-.
— — — — —
O— -.5 .1 ...
•13 •
Ib iMtai* ftaq
>32(>105) 24-32(79-105) 16-24(323-79) 12-16P92-523) 8-12(262-392) 6-8(1917.262) 4-6(1X1-192) 3-4(99-1X1)
. 2-3(68-99) 18-2(48-68) 1-18IX2-49) 25-1(XS-X2)
.025x10**(ÜIBx 10**) .0:25x 10«*(JOÜ92K 10**J .095x10**(.0044x10**) .003x10**(jOOTIk 10*^ .0015x10**(.0011 s 10»^
80-.75(18-28) 80-80(18-18) ^ —, <80(<lJQ)
Figure 21. Magnitud, raergy, and runup heights of tsunamis Fron lida (1949) cited by McCullogh, 1985.
á 0
ii
5
^
1 • 1
a
r
2
í
/ I A #1
1»
8
3
/r
m
<
i
2
X"
1 ' <
#
/
/
8 /
z a
2 o
i
1
1
j
.7
1
/ /'
!j
-1
5
6
7
B
9
EARTHQUAKE MaGNITUDE (M )
Figure 22. T sunami McCullogh, 1985.
#
Kacnitude
vs
Earthquake
Magnitude.
Froxn
bufldings and fadlitíes (commerda], housing and industrial) on the wateifront that are potentialfy exposed to seismicsea waves.The Mona Passage must be consideied as ene with high potential to generate tsunamis.
piood Hazard- Extensive areas in the MayagüezaUuvial plain cozieqxmd to aieas ofswamp, mangrove,and lowlands susceptible to fiooding by both the YaguezRiver and the Guanajibo River. Some combinatíons may produce natural fioods in the alluvial zones caused or
associated with the effect of the earthquakes: a)hea^lains duiing or before the event; b) water outflow by liquefaction effscts in the aUuVial zones; «Tid c)fioods near shore caused by tsunami; d)landslide blockage on the banks of the Yaguez River.
Híckenlooper (1968) has defined areas of two catastrqphic fioods in the Mayagüez plains associated with heavy rains(1933 and 1963)(Figure 23). The most vulnerable zones
are the westem portíon of the town of Mayagüez,the Rio Guanajibo alluvial plain and the swamp and mangrove zones. However, channelizatíon and imtigation works have been completed in some areas along the Rio Yagüez.
Duiing the 1918 earthquake, the aüuvial zones were fiooded due to ground water
outflow resulting ñx)m the effects ofliquefaction(Reid and Táber,1919a).Immediatefy after the 1918 earthquake, the alluvial plain of Añasco was filled by an outflow of water. The water con^ued to fiow in the ditches of the zoñe for several weeks. The ditches of the cañe
fíelds were diy before the quake (Reid and Taber, 1919a).
In the case of another earthquake occui^ng in the zone with the sami» magnitude as the 1918 earthquake, the lowlands near to the shore are the most prone tó be afíected
the runup of tsunamis. This runup may affect areas sudi as beaches,
34
swamps, and
\ X
Figure 23. Limit of the catastrophic floods occurred in this century in the Máyagüez Región. After Hickenlooper, 1968.
tfae mouths of livers. Many of these areas at the moment bave been modifíed hy CQDStTuctíon and housing activitíes. Thus,the lovt^ands could be seveiety afíécted by fiooding and other hazards such as liquefaction and ground ^Tiniring Hie consequences offloods(by
liquefactíon effect,
heayy or prolonged lains, or tsunamis dining or before the quake)
may block tiaffic in some segments of rentes #2,#102, or #341,located in the lowlands, complicating lescixe efforts if the event was veiy lazge. GONCLÜSIONS AND SECOMMENDAHONS
Gondnsioas" Three majar earthquake 'souicei most be taken inte coiisideration when planning for the M^^aguez Aiea Th^ aie:
1. Puerto Rico Trench, 70 kilometers distanoe, máximum magnitude event about &OMs.
Z Mona Cai^ron, about 35 km distanoe, nniTimiim magnitude event about 7^Ms.
3. Mayaguez and Cordillera Fauhs, about 0-10 km distanoe, máximum ,magnitude event about 6JMs.
Due to their distanoe and size,the first two souroes would generate similar intensitíes V
in rock throughout the area. The third souroe(s) oould generate signifícantiy higjher intensitíes in limited areas near the faults themselves,with intensitíes decreasing rapidty with distanoe from the fauh. Acceleratíons aic-estÍElated by iisíng the soéroe magnitude in the
attenuatíon relatíon ofDonovan(1973)to obtain acoeleration(Appendix C). Intensitíes are estimated from acceleratíons using the relatíon of Richter (1958). The maYinnim peak
acoeleration and intensity to be felt on rock in the Mayaguez area corrésponding to a máximum earthquake in one of the three souroe zones is as follows:
35
1. Puerto Rico Tiench, acceL 0.15g, intensily Vm (MM). 2. Mona Canyon, acoeL 0.21g, intensily Vm (MM). 3. Mayaguez or Cordillera Fault, acceL 0.26 to 0.41g for distances of 0-10 km from the fault, intensity VHI-IX(MM). These accelerations are mazmimum peak acceleieatians and not rms acceleratíons.
Therefore, accelerations ched above should not be used intheir absolute sense for plannng
purposes,but rather as a measuié oflelatíve acceleiation levels potentialfygenerated by any given source.
Accelerations in zones dassified as being A-3-S, B-2 and B-3 would be higher than those noted above due to an^lification of ground sbfliring. In the Mayaguez area, these zones correspond to most of the uibanized part of the dly, the aiea roughly delünited by route 2 and the Guanajibo River to the south, and a thin coastal stríp to the north of the
dty as well as the Añasco River valley. Effects vvill be more severe in the fíUed aieas to the south of Punta Algarrobo, Marina Septentrional, the area of Caño Corazones and the aiea
near Caño Majagual near Vista Verde. Zones with a high potential for liquefaction have been defined based on Arroyo's t
study as wéñ as geomorphologicalfy. These zones conespond to aieas dassified as A-3,A-39
S,B-2,and B-3. They also correspond to zuost ofthe areas previoustyinentioned for ground shaldng amplification. The slopes of the area allow the división of the mountainsides into two categories, /
C-1 and C-2. The area to the south of the Guanajibo river is dassified as C-1 and the remained of the mountainous aiea is C-2. Landslides induced 1^ strong ground shaldng
36
would occurr maixi^ in zones C-2. Mountainsides modifíed by oversteepening wiU be more likefy to slide dunng a major earthquake that low grade slopes. The tsunami threat in Mayagüez,as seen in historie records,is limited to the coastal area \vitfain 300 to 400 meters of the coast and 2-6 meters above sea leveL The distanoe to
which die sea may penétrate wiU depend npon the steepness of the coastal profQe, both o^ore and anshoie, and the earthqnake magnitude and locatíon. A combinatíon of tsunami and liquefactíon induced eaqjiilsion of water from below
the-waterievel could comphcate rescue efforts afier amajor earthquake. This effect would be observed main^ near the mouths of the Yagiiez and Guanajibo Rivers.
The coastal zone of Mayagñez is more prcme to sufEer seveiefy during a major earthquake because of the like^ combination of different earthquake induced geologic hazards. Extreme care should be taken udien developing the coastal strip affected by the 1918 tsunami. Recommendatlons-
Recognizing the implications of the condusions stated above, we have defined some s
topics that deseive prompt attention. Seismically,geologically and geomoiphologicalfy there is sufSdent evidence of Quatemaiy faulting in Westem Puerto Rico. More studies of the
geology, gebmorphology and seismic activi^ of the Mayagüez, Cordillera and other suspect fáults is urgentjy needed. The general archives of Puerto Rico contain the dntTingi» reports for the 1918 earthquake, the exact data needed to begin a microzonation program for M^agfiez as well as other dtíes in Westem Puerto Rico. One of the least understood parts ofthis study is the attenuation of acceleration fiom
37
the potentíal sources in the island. Studies of velodty and acceleratíon attentuatíon should be imdertaken as soon as possible.
The autfaois have found a fault cottíDg material of probable Quatemaiy age that
should be dated. The fault is to be found en Idlometer 3ofroute 100soutfa ofthe Guanajibo River. The descriptíon of the fault is not induded in this work because its' stucfy is in the preliminaiy stages. However,we can leconimend that the materials cut by the fault be dated so as to determine the seismic histoiy of the fault
Itis necessaiy to domoie studies to betterunderstand the máximum limits oftsunami
hazards. These studies indude potentíal sources in Mona Passage, and efíects of the near coast profQes on run-up height
Acknowledgements- This project was possible because of a grant from the Federal
Emergenc^ Management Agency and the Seismic Safely Commission of Puerto Rico. We
gratefulty acknowledge the help of Mr. Mickey Espada the Executive Director of the CommissioiL Dr. José Molinelli ph^ñed an important role in the development and executiion
of some parts of this program, his partídpation is grategully acknowledged. We aslo thank
E. Arroyo for providing us with rcsults of his studies. R. Mfllan and E Macan* provided many worthwüe editorial comments that markedly impraved the text
JCM- Dept of Natural Resóurces, Box 5887 Puerta de Tierra, Puerto Rico 00906
WRM- McCann and Assodates, 732.Counr^ Woods Orele, Kissinunee FL 34744-4625
#
38
REFERENCES
Arroyo, E.N^ 1991, Liquefactíon AnaJ^is Potentíal on some site on the Mayaguez Area based on geotechnical leports. Research prc^ct presented to ihe Geology Department, UniveTsily of Puerto Rico, Mayaguez Gampus. 27p. Asendo, E. Jr., 1980, Westem Puerto Rico Seismidly. U.S. Department of the Interior Geological Survey, Ofien File Report 80-192.
Bolt,B.A.,1978,Earthquakes- A Primer.Ed.W.H.Freeman and Company,San Francisco.
Bonilla, M. G., Marck, R. F., and lienkaemper, J. J., 1984, Statistical Relatíons Among Eartfaquake Magnitude, Surface Rupture Length and Suiface Fault Displacement BulL Seism. Soc. of Amer., 74,2379-241L
Boore, D.M., 1973,The effect of simple topography on seismic waves: implications for the acceleratíons recorded at Pacoima Dam San Feniando Valley, Califomia: BulL Seism. Soc. Amer.,63,1603-1610.
Bouchon, M.P., 1973, Efifect of topograpl^ on surface motiom BulL Seism. Soc. Amer.,63, 615-637.
Briggs, R. P., 1964, Provisional Geologíc Map of Puerto Rico and Adjacent Areas: U.S. Geological Surv^ Mise. GeoL InvesL Map 1-392.
Budhu, M., Vijayakumar, V., Giese, R. F., and Baumgras, 1990, liquifaction Potentíal for Sites in Manhattan and BufGalo, New York,BulL of the Ass. of Eng. GeoL VoL XXVII, No. 1,61-72.
Byme,D.B.,Suarez G.,and McCann,W.IL,1985,Muertos Trough Subduction-Microplate
Tectonics in the Northem Caribbean, Naturé317,6036^420-42L Capacete,J.L., and A Herrera, 1972,The 1918 Earthquake;An Engineering Studty. QAA. VoL XXn,No.1. p.41-4a Puerto Rica '
«
Chen, A T. F., 1988,PETAIS Program. Ü.S.G.S. Open File Report 88-540. Colón, E., and Quiñones Márquez, F., 1985, A Reconnaissance of the Water Resources of
the Central Guanajibo Valley,P.R.U.S. Geological Surv^,Water Resources Investigations Report 82-4050.
Curet, A F., 1986, Geologic Map of the Mayaguez and Rosario Quadrangiies,Puerto Rico. Department of the Interior, U.S. Geological Survi^, 1:20,000 Map 1-1657.
39
Krushenslgr, R^., 1978, Geologic map oof the Peñuelas and Punta Cuchara quadrangles, Puerto Rico:U.S.Geológica!Survey MisoellaneousInvestigatíoDS Map1-1042,scale 1:20,000.
Krushenslg^, R.D. and Cuiet, A., 1984, Geologic map of the Monte Guilarte quadrangle. Puerto Rico:U.S.Geológica!Suiv^MimllaneousInvestígaticñis Map1-1556,scale 1:20,000.
Kuríbayashi, E., and Tatsuoka,R,1975,Bríef leview of liquefaction duiing earthquakes in Japan: Sofl and Foundations, V. 15, Na 4, p. 81-92
KuiibsQ^ashif^ 1977,IBstoiy of Earthquake-mduced soil liquefaction in Japan: Ministiy of Construction of Japan, Public Works Researc Institute BuUetín, V. 31, 26p.
Mairero, A.,López,R.,and Jiménez, R., 1983, Anq^lifícation Stud^ of the Rio Grande de
Arecíbo Alluvial Deposita. Univ. cfl^rto Rico, Ms^agfiez. Masscn, D. G., and Scanlon, K M., 1991, The Neotectonic Setting of Puerto Rico. GeoL Soc. Ame. BuD. v. 103, p.144.154.
Mattson, P. H., 1960, Geology of the Mi^agüez aiea. Puerto Rico: Geológica! Sodety of América BuDetin, v.71, Na3, p. 319-36L
McCann, W. R. and Sykes, L. R 1984, Subduction of Aseisxnic Ridges Beneath the Caribbean Píate: Implications for the Tectonics and Seismic Potential of the Northeastem Caríbbean. Joumal of Geophysical Researdi, VoL 89, No. B6, pp-4493-4519.
McCann, W. R., 1985, On the Earthquake Hazards of Puerto Rico and the Viigin Islands. BulL Seism. Soc. Am. VoL75, Na 1, pp-251-262.
McCann, W. R., 1987, Historie Earthquakes and the Earthquake Hazard of Puerto Rico. Published in "A Workshop on Asse^ment of Geologic Hazards and Risk in Puerto Rico", Open File Report 87^8.Reston, VA. •
McCann, W.R., Joyce, J.,lithgow, Q,1987, Hie Puerto Rico Platelet at the Northeastem
Edge of The Caribbean Píate, Trans. Ain. Geopfays. U., EOS,68, pl483.
McCann, W.R., 1989, Pieliminaiy Seismic Hazard Map of Puerto Rico. McCann, W. R., Feliciano, J. and Cario ML, 1991, Neotectonics, Seismidty and Seismic Hazard of Westem Puerto Rico. In prep.
McCulloch, D. S., 198S, Evaluatíng Tsunami Potential: Evaluating Hazards in the Los Angeles Regíon-An Earth-Sdence Perspective.,U.S.Geológica!Survey Professional Paper 1360., p. 375-414.
41
McGuiness, C L,1946, Records of Wclls in Pnerto Rica US. Geological Survey. Study prepared for Aqueduct and Sewer Seivice.
Mcintyic, D.
1974, Conoepaon and Palma Escrita Fonnations, Westeni Puerto Rico,
Geological Sinv^ BuL 1394-D.
Molinelli, J, 1985,Earthquake Vulneraliiliiy Stix^ fiar the Metrópolitan Area of San Juan, Puerto Rica Department of Natozal Resources, Puerto Rica
Molinelli,
1988, Earthquake Vulneiability Studjjr for the Areas of Ponce, Aredbo and
Aguadilla, Puerto Rica Department of Natural Resources,Puerto Rico. 82 pp. National Research Council, 1989, Estímating Losses From Future Earthquakes. National Acaden^ Press, pp. 195-215, Washington.
Obermeier,S.F.,1984,Uquefactíon Potentialin the Central Mississippi Vall^.Proceedings of the Symposium on "The New.Madrid Seismic Zone". U. S. Geological Survey, Reston Virginia, 1984.
Reic^ H. and Taber, S., 1919a, TTie Porto Rico Earthquake of 1918, with Descrqjtions of Earlier Earthquakes(Rcport cfthe Earthquake Investígation Cammission), House of Reo Doc. 269, Washington, D.C,74 p.
Reid, H. and Taber, S. 1919b, The Porto Rico Earthquakes of October-November 1918, BulL Seism. Soc. Amer., 9, 95-127.
Richter, C F., 1958, Elementaiy Seismology, WJL Freeman and Co. San Francisco California, 768p.
Rodríguez, C E. and Capacete, J. L, 1988, liquefactíon Potential in P^rto Rico. Dimensión, Año 2, VoL 8.
Seed,R B., 1968,T andsh'des during earthquakes due to soñ liquefactíon: American Sodety of Civil Engineers, Joumal of the Soil Mechanfcs and Foundation División, ASCE, V. 94 SM5,Proa Paper 6110, p. 1053-1122. ^ *
Seed, R B., and Idriss, L M., 1971, Simplifíed Procedure for Evaluating Soü &ction Potential, Joumal of the Soñ Mechanics and Foundations División. ASCE, VoL 97. No.9.
Seiders, V. M.,Briggs, R P., and Glover,Ii, 1972, Geology of Isla Desecheo,Puerto Rico, with notes on the Great Southem Puerto foco FaultZone and Quatemaiy stillstands of the sea: U.S. Geological Surv^ Proffesional Paper 739,22p,
Soto, A E., Garda,C and González,C 1985. liquefaction Potential Map of the San Juan 42
Der Kiureghiafij A.and H.S. Ang,1975,A line souroe model for
rísk anafysis. Ovil
Engíneeiing Studies, SRS #419. Díaz, J. R.and Jordán,D. G., 1987, Water Resouroes of the Río Grande de Añasco-Lower
Valley,Puerto Rico.U.S.GeologicalSurv^ Water ResourcesInvestigations Report85-4237.
Donovan, N. CL, 1973,A statistical evaluation ofstrong motion data induding the Februaiy 9,1971 San Fernando earthquake: World Con£ on Earthquake Engineeiing, 5th, Rome, Ftoc., V. 2, paper 155, 10 p.
Frankel, A., 1982, Hie effect of attenuation and site response of the spectra of microearthquakes in the northeastein Caríbbean, BuE SeismoL Soc. Am., 72,1379-1402. Ganison, L.R, 1969, Structural geology of Muertos inmlar Shelf. Puerto Rico: U.S.
geológica] Survey Open-file Report No, 1270,9 p. •
*
Geomatiiz Consultants, 1988,Earthquake Ground Motíons for the Portugués Dam,Puerto
Rico. Geologícal-Seismologic^ Evaluation to Assess PotentiaL Department of the Arn^, Jacksonville District, Coips of Ezigineeis, Jacksonville, Korída.
Hays,W.W.,1980,Proceduresfor Estimating Earthquake Ground Motíons. U.S. Geological Surv^ Professional paper 1114.
Hickenlooper, LJ, 1968, Floods in the M^ragGez Area of Puerto Rico. U.S. Geological Survey, Hydrologic Investigations Map. Atlas HA-288. Housner,G.W.,1973,"Report on Earthquake Requlrements £or the Buildlng Code of Puerto Rico'. Junta de Planificación.
Jibson, R. W., and Keefer, D. K., 1984, Earthquake-Induoed Landslides in the Central Missi^ippi VaJley, Tennessee and Eentud^. Proceedings of the Symposium on "The New
Madrid ^ismic Zone" U.S. Geological Survey, Reston Virginia, p. 353-390. Jpyce, J., W. McCann, and C lithgow, IW,Onland Active Faulting in the Puerto Rico Platelet, Tnans. Am. Geoplq^ U., EOS,68, pl483.
Kaye,C A., 1959,Shoreline Features and Quaternaiy Shoreline Changes Puerto Rico. U.S. Geological Survey Professional Paper 317-B.
Keefer, D.K., 1984, Landslides caused by earthquakes, GeoL Soc. Amer. BulL,95,406-421. Kiureghian, A D. Der, and Ang, A H-S., 1975, A hne Souroe Model for Seismic Risk Ana^rsis. Grant GK-36378. Natíonal Sdenoe Fóundation. ..
40
Metropolitan Area, Puerto Rico. U.S. Geológica] Survey Contzact No. S. 9910-1190.
Engineering Researdi Genter of the University of Puerto Rico. MayagQez.
Sykes,L. McCaim W.R^ asd Kafka A.L.,198Z Motion of Caríbbean Píate During Last 7MOlion Yeais and Implifí-catíoiisforEarlier Genozoic Movements.Journal ofGeopl^ical Research, VoL 87, Na B13, pp. 10,656-10,676.
Tinslqr. J. C, Youd, T. L, Pcrkiiis, D. M. and CSien AJ., 1985, Earthquake-Triggered Ground Failure, Hvaluating liquefaction Potential: Evaluatíng Eartfaquake Hazards in tfae Los Angeles Region-An Earth-Sdence Perspective., U. S. Geological Survey Proféssional Paper 1360, p. 263-316.
TrumbuU, J.VA.,(compOer) 1981, Oceanographic data ofí Puerto Rico and the Virgin Islands: Lawrence Berkeley Laboiatoiy PubMcatíons 360, Berkel^, Gáltfomia. Vames,D.J.,1978,Slopes Movements and l^pes and processes.Im Landslides:Ana]ysis «nH Control, Tiansportation Res. Boa^ Nat. Ac. ScL Washington Spec. Rep. 176. Volckman, R. P., 1984, Geologic Map of the Puerto Real Quadrangle, Southwest Puerto Rico 1:20,000 Map 1-1559. U.S Geological Survey.
Westem Geoplq^ical Research,1974, Seismidty Investigation, Aguirre Nuclear Plant Site, Puerto Rico Water Resources Authority Amendment#11 to preliminary facilily description and safely anafysis report, Aguiire Plant #1, UA AEC Docket #50-376.
Wilson, R. C, and Keefer, D. K., 1983, Dynamic analysis of a slope failure from the 6
August 1979 Coyote Lake,Califoiiiia earthqiíake:Seismological Sodety ofAmérica BuHetin, V. 73, no. 3, p. 863-877.
Youd, T.L., and Perkms, D. M., J978, *Mappmg liquefaction-Induced Groúnd Failure Potential", Journal of Geotechnical Engineering División.
43
A1 appendix a,
Mayaguez Area 1524-28
Date and Time Unknown
The author states that it.is probable that the house of Ponce de León at Añasco was destroyed by a violent
earthquake between 1524 and 1528. The quake also destroyed other strong buildings. The shock was felt strongest in the north over all the región from Mayaguez to Añasco (12)• 1831
Septexnber 7
0500
60 MT
Aguadilla. Strong shock (V?) lasting 3 seconds (1). 1848
Date and Time Unknown
Mayaguez. ¿everal light sjiocks felt during the month (1)• 1850
Listed as Mayaguez, Puerto Rico (3)•
April 8
0900
60 MT
Mayaguez, where church bells rang. The shock reported from Martinigue on this date must have had a different origin (1)• 1860
October 23
,
Mayaguez. Rather strong shock wxth soroe damage, VIVII (1). 1864
May 30
Light shock, III (1)•
Mayaguez 1866
February 7
0800
60 MT
Mayaguez, TV (shocks at 080t), 1300, 2015, and 2300). The report for January 7 and February 7 may refer to the ssime shock (1). %
1901
June 1
0935
6(X MT
San Germán, III (1)• 1901
November 27
Felt at Las Marias (28)• 1901
Decembér 27
Las Marias, IZI (1)•
Felt ¿t Las Marias.
No damage
(28). 1902
August 29
San Salvador and San Germán,, III (1)• Salvador and San Germán. S]^ght (28) 1902
September 2 San Germán, III-IV (1). Germán (28).
Felt at San
Light earthquake felt at San
A2
1903
February 15
.^
^
Las Marias (1).• Light earthguake felt at Las «arias (28). 1904
June 9
Las Marias# III-IV (1)•
Light earthqua)ce felt at Las
Marias (28). 1906
January 18
0615
60 Mt
San Germán# (1)• ahout 8 seconds (28)• 1912
San Germán*
Light; duration
September 24
^
san Germán and San Salvador (1). Heatter B^eau
reoorted this qua)ce en Decexnber 24# 1912# showing
fel? reports from San Germán and San Salvador (28)*
1913
August 5
2030 • 60 MT
Cabo Rojo (1). Felt at Cabo Roo© (28). 1916
November 18
Marica© (1/ 28). 1917
October (or November) ** • ^ Dates unknown. Mayaguez#: VI; craclced walls in some houses.
1920
Vertical movement (1).
March 7. April 12# June 1# June 29# August 7, Sep tember 9
Las Marias (28). 1921
March 19
18lé
Felt.at Cabo Rojo (28). 1922
Maya^z^reported an earlíhqua)ce January 3 at 9:30 p.L It was felt strongly# and the public was
^ia^med. Another s1»oc)c ^as felt
10-00 p.m. There was no |pamage# but both shocKs
caúsed considerable panicí (22# 28). 1922
May 4
0750
60 MT
^
^
Reoorted felt at «ayaguesí about 5 seconds. duration. direction east-west. Al^ reported from Canovanas at 0737 and from Jayuya (28)?1
1922
November 3
0145
50 MT
,
Mayaguez reported the sho;ck as having a tr^ling •
naLrej intensity II.- duration 5 seconds; direction
east-west (28).
A 3
1922
Deceniber 9
0035
60 MT
Mayaguez reportad seismic tremor of rocking nature; duration 2 seconds; intensity II (28). 1922
December 30
0205
60 MT
.
Felt in Mayaguez; duration about 3 seconds; direction east-west. Aftershock of rocking nat\ire also reported
by Mayaguez with intensity qf III; duration 7 seconds; direction east-west (28)•
1923
February 26
0630
60 MT
Felt at Mayaguez. Three shocks of rocking nature. Onset gradual with diiration pf about 6 seconds; direction east-west; intensity III (28)• 1923
June 10
2130
60 MT
Shock of rocking nature reported by San Juan and Rio Piedras; onset abrupt. Mayaouez reported four shocks
beginning at 2109 of rocking(nature, each shock of about 1 second duration; direction east-west; inten
sity III; onset gradual. Also, Mayaguez reported three shocks of rocking nature at 1700 on June 14;
onset- gradual; direction east-west; duration 2 sec onds each; intensity III (28):. 1923
October 25
0824
60 MT
Felt at Mayaguez. Onset gradual; trembling nature; duration 5 seconds; intensity V; direction east-west (28).
1925
January 25
1305
60 MT
Three modérate shocks were felt at Mayaguez.
Direc
tion east-west; duration about 3 seconds; rocking nature with an intensity of III (28).
1928
April 13"
1920
60 MT •
Two shocks at Mayaguez. ^Rapid onset; trembling nature; felt by many-(28). 1931
September 19
2350
60 MT
Modérate shock at Mayaguez felt as a gently rhythmic motion and in a pronounced north-south direction. Felt at Santurce with less intensity. Recorded at San Juan. Four shoo)cs record on September 19 and 20 (1). Felt in Mayaguez and ;San Juan (31). 1931
September 25
1435
60 MT
Modérate shock at Mayaguez. swaying (1),
.
Bumping and slight
1936
Deceinber 11
2219
60' MT
Mayaguez, IV. Recordad at San Juan (seismograph?) (1).
1937
September 9
2020
60 MT
San Germán. Aftershoc^ at 2400, same date (1). 1937
September II
0638
J60 MT
Slight shock at San Censan. Probably an aftershock of September 9 shock (1). 1937
October 4
0477
60 MT
Tremor at Ponce and San Germán.
Awakened observars
(1).
1939
January 1 0400 60 ;MT Sabana Grande. Slight, but felt by many (33).
1955
October 10
0030-0100
60 MT
A high intensity earthguake vas felt in Mayaguez that caused great concern. • It lasted about 30 seconds,
It started with a high tremor reducing in intensity in its final stages.
Mundo newspaper notes that
the Coast and Geodetic Survey Observatory at Guaynabo said it recorded no earthguake on this date (22).
1958
July 16 Weak.
Felt at Mayaguez (35)•
% T
Contmuatíon of historie catalog of westem Puerto Rico:
listing contains events of all depths of magnitude >«4.0
A 5
^^or the area bounded 15.0-21.0N and 663-68.0W Sic
Date
ISC
07-Apr^
JSC
16JI1ZI-64
ISC ISC ISC ISC ISC ISC ISC ISC ISC
10-Attg44
ISC ISC ISC ISC ISC
06-S^^ 15-N0V-6S 16-Naw4S 21-Nov^
10-Sc|h66 14^-66 31-OC1-66 31-Oct-66
31-OCI-66 03^ov46
3734 3734
53 38
51202 64642
1939 193
3733 3737
58 33
182354 113722
1938 1933 1937 1935
37.75 3737
55 39
53
3732 37.74 3732 3737 3737
22 49
53 43
13 42 37
373 373
10 96
3736 3737
57
ISC ISC ISC
IS-Feb^ 21-FBb-67
125127 41621
me ^c
13-Apr-68 10-May^
ISC ISC ISC
31-Oct-68
2S-Feb-68
OMmi^
_ O2-N0V-68
ISC ISC
' 02-Nov^
ISC
IT-Jim^ 04-Mar-70
ISC
ISC ISC ISC
ISC ISC ISC ISC ISC
(G-Mar-69
09>Nov-70 1S>No¥-70 27'Jud-71 OSJuI-Tl
#mb
19JI» 1936
19 1&6
33149 45613
28-Dec-67 21-Jaii-68
mb
18.6 1&73 193
11014 45942 192205 33200 230313 215849 14928
25^oiMi6 02Jaii«tf7
ISC ISC ISC ISC
Dcp
Lon
3739 36.74 3738 373 373 373 373
17.78 19J6
09-Nov^ 22-Nov^
ISC ISC
Lat
104131 195445
162431 105259 203716 215541 121410
ISC
• - Q3-Nan^46 04-Nov^ 09-Nov-46
Oiigin
220920 14627
1936 193
1938 1934 193 1937 1934
1931 19.03
53 5.7
5 8 23 2
22
4
4
100 21
53 53 43 43
0 3
0
0
6
0
44
0
43 43
0 0
0
712 18 •35
0 0
0
0
0
0
0
43
16
0
0
4
4
0
0 0
4
2
0 0
43 4j9
10 18
0 0
0 0
43 43
4 4
0 0
0 0
0
121700
183
3633 3732 37
33
43
2
0
0
150439 11531
1938 19JX3
37.77 3636
41
43
0
0
33
53
12 29
0
0
72118 72957
19.02 1834
3635 3738
48
4
4
0
0
154
43
7
0
0
143059 124002
1736 1933
3733 3736
45 27
43
10
0
0
4
4
0
0
143105 202439
1939 183
3733 37.7
68
43
8
193
3635
43 43
5 9
0 0
53257 53509 75910
83 40
0 0 0
0
19
363
64
4.1
2
0
0
1938
37.43
39
43
6
0
0
91903
1931
4.7
0
19396 19307 18363
5.1
18 •26
0
83118
36 363 3737 333
0
0
37374
49.6
43
19
0
0
37325
883
43
7
0
0
43
1%.
0
3
0
49
18385
Ol.J11n.74
80343 42317
19366 1839
36303 95 3733 37373 853 36381 433 37383 813
2i.J1m.74 04.Novw74
61048 100701
18376 17.783
37322 36336
i3.J1m.76 i4.J1m.76 16ñlun.76
190627 43707 163526
19371 19346 19322
37314 423 17 37347 3732 49.4
43 5
22704
101
4.4
160059
18.747 18396
37366
ISC
O5.Apr.77 03May.77
37388
50
ISC
03Jan.78
140353
18338
Jgp
154^78
192515
18386
37.748 37.421
p
194ttl-79
142655 4638
19^
i9.Aug.79
37.495 37382
ISC
0
8 1
0
1&477 1837
ISC ISC ISC ISC
0
U
120202 53806
ISC ISC ISC ISC
0
4.7
37.7
l^-Apr'74 i9.May.74
0
0 0
43
473 14
l6.Mar.74
0
0 0 0
37.699
23-May-72
0
0
11 3
37.726
ISC ISC
0 0
13
4
43
0 0
0 0
43
19366 18341
03>Jaii«72
#Ms
121 25 49 33
55414 35537 24749 75432 23516
21oAug-71 26-Aug-7l
Ms
19.197
4.7
4
0
0 0 0
43
8
0
0
43
8
0
0
43 43
5 8
0
0
0
0
4.7 43
15 3
0 0
0 0
5.4
51 3
0 0
0 0
31
0
0
8
0
0
43
13
0
0
39
4.9
5
33
1
373
4.6
6
0
0
563 39
43
4
0
0
43
11
0
0
43.1 0
vO
<
«-•eoooeeeoMeoj;|OMr4MeoMeMeeeo
®^00000000^00^0g^p|00^0l»»0©©0 ojgJrt«oc»»^tNjr»^j5j»^v»g}Wgwj|Wr«eg»i^©*r<M
9993333355-553959959553555'
53an98a«5si5aBg|ggggna|aaRa5 f •? f?
ss&S''saa'<Baa&Basaasa!:ssiaBBB
I ssáia
••
AFIBDIX
Int. PR 114 Mtth PR 2 Maysguez ,Bo.1 The site consists of
2 Isyers m/ depths. saturated and net densities: 1 2.0 (ft) 135.0 (peí) 111.5 (pcf) 2 18.0 <ft> 127.0 (pcf) 127.0 (pcf)
input eq. atag.« 7.50 aiax. acc. ■ 0.16 g correetion factor (te M«7.5) « 1.00
design grotfid water table deptii ■ 0.0 ft. testing ground »íater table depth ■ 5.0 ft. SPT hamner efficiency assigned « 0.A5 Mjnt
deoth
design stress (psf) effective
(ft)
2 3
10.0 4.0 10.0
4
12.0
S
14.0 18.0
1
6
Mjnt
661.9 791.1 920.3 1178.7
1285.9 523.9 1285.9 1539.9 1793.9 2301.9
density
ratio
0.56 0.42 0.56 0.52
0.22 0.22 0.22 0.22 0.22 0.22
14.1
8.1 14.1 12.3 1.9 4.4
0.16 0.29
cffective
total
927.1 477.1 927.1 1056.3 1185.5
1239.1 477.1 1239.1 1493.1 1747.1 2255.1
1443.9
liq.
shear s.
relative
be-N1,60 1
Z
274.3
modified
2 3
6
661.9
testing stress (psf)
total
rcsistancc 0.21 0.12 0.22 0.22 0.02 0.08
factor
safety 0.95 0.55 0.97 0.98 0.11 0.35
SPT blOM
fine/gravel
rcmark
content
count
13.0 8.0 13.0 12.0 2.0 5.0
0.54 0.54 0.57 0.68 0.53 0.68
gravelly gravel ly gravelly gravelly gravelly gravelly
S, vel.
correetion
ratio
strain
applied
•O.OI(HA) •O.OKKA) •O.OUNA) •0.01(KA) -O.OKKA) -0.01(KA)
1.96(HA) 2.88(NA) 1.96(NA) 2.24(NA) &.00(HA)
pore press.
shallow shallow shallow
4.36(NA)
Int. PR-114 Haysguez with PR-2 So.«3 The site consists
2 layers w/ depths, saturated and wet densities: S4.8 (pcf) 1 20.0 (ft) 116.9 (pcf) 107.0 (pcf) 2 22.0 (ft) 107.0 (pcf)
irout es. cag.s 7.50 isax. acc. s 0.18 s correetion factor (to Ms7.5) « 1.00
oesign ground water table depth » 0.0 ft. testing ground water table depth « 2.5 ft. SPT hamner efficiency assigned » 0.A5 count
1 2 3 4
count
depth
design stress (psf)
(ft)
effective
20.0 20.0 . 22.0 22.0
1090.0 1090.0 1179.2 1179.2
relative
bc-il1,60
oensity
ratio
0.24 0.24 0.24 0.24
12.7 20.0 11.3
0.53 0.67 0.50
4
18.3
0.64
1
2338.0 2338.0 2552.0 2552.0
•nodified
2 3
testing strtss (psf)
total
shear s.
effectivt
total
1165.8 1165.8 1254.9 1254.9
2257.8 2257.8
liq. resistanct
0.22 0.22 0.20 0.20
R 1
2471.1b 2471.8
factor
safety 0.94 0.93 0.85 0.84
SPT blow
fine/gravel
count
13.0 20.5 12.0 19.5
pore press. ratio
1.00 1.00 1.00 1.00
rctnark
content
0.91 0.00 O.tI 0.00
Z, vol.
correetion
strain
applied
2.19(HA) 1.19 2.40(NA) 1.42
•
B.
EL NAHt S>5
The site censists of 2 leyers w/ dcochs, saturatcd and wet densities: 1.5 (ft) 40.0 (ft)
161.8 (pef) 125.4 (pcf)
157.8 (pcf) 125.0 (pcf)
inout CQ. nsg.s 7.S0 mx. aee. « 0.18 g correction factor (to Mb7.S) ■ 1.00
design ground water tsble dcpth « 0.0 ft. testing ground tatcr table dcpth « 6.3 ft. SPT hammer efficicncy assigncd ■ 0.45 cotftt
deotn
oestgn stress (psf)
(ft) 1
2 3 4
5 6 7
count
15.5 20.0 26.0 30.0 36.0 40.0 40.0
effective 1031.1 1314.6 1692.6 1944.6 2322.6
2574.6 2574.6
modified
relativo
be-Nl,60
density
8.3 10.2 3.1 2.9
2.7 2.6 2.6
0.43 0.47 0.23 0.22 0.21 0.20 0.20
total
1998.3 2562.6 3315.0 3816.6 4569.0 5070.6 5070.6
shear s. ratio
0.22 0.22 0.21 0.21
0.21 0.20
0.20
testing stress (psf) effective
total
1289.2 1572.7 1950.7 2202.7 2580.7
1991.2 2555.5 3307.9 3809.5
2832.7 2832.7
Uo. resistance 0.09
0.11 0.03 0.03 0.03 0.03 0.05
4561.9 5063.5 5063.5
factor
safety 0.42 0.52 0.14 0.14
0.13 0.13 0.26
B 12
SPT blow
remarle
count
9.0
12.0 4.0 4.0 4.0 4.0 4.0
pore press.
ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00
( content
0.00 0.00 0.00 0.00 0.00 0.00 0.10
Z, vel.
correction
strain
applied
2.84 2.56 5.56 5.95 6.41 6.66 6.66
HOSTOS t LLORENS INT. 80.#6
The site eonsists of 2 Isyers w/ depths« stturated and wet densitics; 1
6.0 <ft)
U0.6 <pcf)
123.9 (pcf)
2
9.0 (ft)
1W.2 (pcf)
1A4.2 (pcf)
input ea. nag.« 7.S0 nax. acc. * 0.18 9 correction factor (to M»7,5) « 1.00
desígn groiaid water table óeptA * 0.0 ft. testing groiaid water table depch « 6.3 ft. SPT hamner efficieney assigned * 0.45 count
deptn
design stress (psf)
(ft)
1 2
effective
6.0 9.0
469.2 714.6
effective
S63.6 1276.2
nodified relativa be*M1,60
1 testing stress (psf)
total
density
shear s. ritió
total
743,4
743.4 1176.0
liq.
fine/gravel
comt
1004.4
factor
resistance
SPT blow
pore press.
safety
ratio
remirt
content
Z, vol. strain
shallow shallow
INDIA Bü.1
The site eonsists of 2 layers v/ deoths, saturated ard wet densities: 1
13.0 (ft)
2 40.0 (ft) inout eq. fflag.s 7.50 inax. acc. • 0.18 g
144.0 (pcf)
143.0 (pcf)
119.0 (pcf)
119.0 (pcf)
correction factor (to Hb7.S) « 1.00
design growd water table deptíi * Q.O ft. testing grotxxj water tapie oeoih « 5.0 ft. SPT haniner efficieney assigned » 0.45 count
deoth
design stress (psf]
(ft) 1
effective
3
12.0 12.D 25.0
4
25.0
1740.0
c
30.0 30.0
2023.0 2023.0
2
6
coiait hc-Mi,60
2 3 I 5
6 ^
979.2 979.2
1740.0
total
1728.0 1728.0 3300.D 3300.0 3895.0 3895.0
relativo
shear s.
densi,ty
ratio
11*1 8*7 8.2
S'ío n'il 0.42
0.21
l'l 8-^
S'ít 0.43
^'V 0.21
testing stress
wt hi»u
SPT blow fine/grave l
effective 1286.2 1286.2 2047.0 2047.0
^ 2330.0 2330.0
liq. resistance
0.15
cstnc
1723.0 1723.0 3295.0 3295.0 3690.0 3890.0
f,ctor safety
12.0 12.0
0.65 0.80
gravelly gravelly gravelly
gravelly
pore press. ratio
0.71
-O-OUNA) -O.OKNA) 1.00
0.84
-O.OKNA) -O.OKNA)
1-°°
0.17
remarle
content
Z, vol.
correction
Strain
applied
2.4KMA) 0.16(NA) 2.86(HA) 2.86(HA) 2.82(NA)
2.82(NA)
MOSTOS l LLORENS TORRES INT. B0«19
The Site coosists of 2 layers y/ deptlis« saturatcd «nd «et denstties; 8.0 (ft) 19.0 (ft)
122.0 (pcf)
94.5 (pcf) 130.1 (pcf)
130.1 (pcf)
CQ* M9>* 7.50 ux. acc."0.18 g correetion factor (to n«7.S) * 1.00
desion ground water table depth ■ A.O ft. testing ground water table deptli « 21.0 ft. SPT haimer efficiency assigned * 0.(5 count
deotn
design stress (psf)
(ft)
effective
10.0 10.0 15.0
751.3 751.8 1090.3 1090.3
15.0
count
1126.2 1126.2 1776.7 1776.7
modified
relativo
bc-N1.60
density
17.7 17.7 36.2 36.2
0.63 0.63 0.86 0.86
testing stress (psf)
total
effective
total
1816.2 1016.2 1666.7 1666.7
1016.2 1016.2 1666.7 1666.7
shear s.
resistanee
0.17 0.17
0.26 0.30
0.18
*
1.99(NA) 1.99(NA)
0.1B
fine/gravel
count
factor
ratio
SPT blow
17.0 17.0 44.0 44.0
pore press.
safety
ratio
0.50 0.65 0.50 0.65
gravelly gravelly gravelly gravelly
S, vol.
correction
strain
applied
1.49
0.02(NA)
1.75
O.OI(NA) O.OO(NA) O.OO(NA)
•0.01(NA) •0.01(NA) 4.99(NA) O.OO(NA) 4.99(KA) O.OO(NA)
remarle
content
snallou shallou
MOSTOS l LLORENS INT. SC4 The site consista of
2 layers w/ depths, saturated and wct densittes: 1 6.0 (ft) 140.6 (pcf) 123.9 (pcf)
2
9.0 (ft)
144.2 (pcf)
144.2 (pcf)
input eq. asag.» 7.50 nax. acc. « 0.18 g correction factor (to M«7.5) « 1.00
design ground water table depth « 0.0 ft. testing ground water taole depth « 3.5 ft. SPT hanmer efficiency assigned • 0.45 count
destn
(ft)
design stress (psf) total effective
1
£.0
2 3
7.0 8.0
632.3.
4
9.0
714.6
count
469.2 551.0
modified
relative
bc^Ñ1,60
density
38.5 20.2 16.0
3.4
0.88 0.67 0.60 0.24
843.6 987.8 1132.0 1276.2
shear s.
ratio
0.21 0.21 0.21 0.21
testing stress (psf) effective
'629.2 711.0 792.8 874.6
liq. resistanee
SPT blew
total
785.2 929.4 1073.6 1217.8
faqtor sarety
38.0 20.0 18.0 4.0
pore press. ratio
1.99(NA)
4.99(nA)
0.23 0.18 0.03
1.09 0.85 0.17
B 4
fine/gravel
0.00 0.58 1.00 1.00
remark
1 content
count
0.00 0.00 0.00
0.00
S, vol.
correction
strain
opplieo
0.00 0.21 1.56 4.97
shallow shallow shallow shallow
EL MANI S-1
the site eensists ef 2 layers u/ deótfts. saturated and wet detistties: 5.0 (ft) ¿0.0 (ft)
153.0 (pef) 135.0 Cpcf)
ICL.O (pef) 135.0 (pef)
input eq. magk» 7.50 mas. ace. « 0.18 9 eorrection factor (to Mb7.S) * 1.00
design ground water tabie dcpth ■ 0.0 ft. testirtg ground water taPle depth » 5.0 ft. SPT haimer efficiency assigned » 0.45 count
design stress (psf)
ceoth
(ft) 1
2 3 ¿
count
6.0 16.0
aodified
relative
oensity
13.3 6.9 2.9 3.7
testing stress (psf)
total
900.0 2250.0 3600.0 4950.0
0C-N1,,60 1
4
525.6 1251.6 1977.6 2703.6
26.0 36.0
2 3
effecrive
0.54 0.39 0.22 0.26
effcctive
total
792.6 1518.6 22U.6 2970.6
855.0 2205.0 3555.0 4905.0
liq.
shear s. ratio
0.20 0.20 0.20 0.19
SPT blow
safety
0.15 . O.OS 0.03
0.74 0.38 0.14 0.20
0.04
remark
content
15.0 8.0 4.0 6.0
factor
rcsistanee
fine/gravel
cotait
0.00 0.00 0.00 0.00
pore press.
ratio 1.00 1.00 1.00 1.00
X. vol. strain
eorrection
applied
2.06 3.17 6.00 4.75
shallow
£L MANI S-2
the site consists sf 4 layers w/ depths, saturated and wet 6.0 (ft) 16.0 (ft)
1
2
26.0 (ft) 40.0 (ft)
3 4
densities: 151.0 (pef) 121.0 (pef)
157.5 (pef) 121.0 (pef) 124.7 (pef) 125.0 (pef)
124.7 (pef)
125.0 (pef)
input ec. mag.s 7.50 max. acc. B 0.18 9 eorrection factor co H«7.5) B 1.00 des1gn ground water table depth « testing ground water taole deoth B
0.0 ft. 5. .0 ft.
SPT hanr^er efficiency assigned ■ 0.45 count
cesth
design stress (psf)
(ft)
effecsive
1
3.5
332.9
2 3
6.0
12.5
A
16.0
5
26.0 36.0 40.0
570.6 951.5 1156.6 1779.6 2405.6
6 7
count
1
2 3 4
5 6 7
.
2656.0
modified
relative
bc-N1,60
oensity
11.1 16.3 33.2 11.5 3.0
3.3 2.5
0.49 0.60 0.83
0.50 0.22 0.24 0.20
testing stress (psf)
total
551.3 945.0 1731.5 2155.0
:^02.0 4652.0 5152.0
shear s. ratio
effeetive
total
528.5 850.1 1231.0 1436.1 2059.1 2685.1 2935.5
S28.5 912.5 1699.0
2122.5 . 3369.5 4619.'S 5119.5
Uq.
factor
resistanee
0.19
0.12
0.19
0.18
0.21 0.21 0.21
0.20 0.20
safety
SPT blow
11.0
19.0 35.0 13.0
. 0.64 0.93
1.99(HA)
4.99(NA) 0.61 0.14 0.17
0.02
0.12
0.00 0.00 0.00 0.00 0.00
5.0 4.0
0.00 0.00
1.00 1.00 0.00 1.00 1.00 1.00 1.00
rcmark
content
4.0
pore press. ratio
0.13 0.03 0.03
B 5
fine/gravel
COtfIt
X, vol.
eorrection
strain
applied
2.39 1.32 0.00 2.35 5.73 5.08
6.76
shallow shallow
X
EL MANI S-3
The site consists of
3 layers w/ depths, sanratcd and wet densities: 1 3.0 (ft) 160.0 (pef) 155.0 (pcf) 2 30.0 (ft) 127.0 <pcf> 127.0 (pcf) 3 40.0 (ft) 111.7 <pcf) 111.7 (pcf)
input cq. Mg.s 7.50
maIX. acc. «
0.18 g
design greund water table dcpth ■
0.0 ft. 5.0 ft.
testing ground water table deoth «
SPT hanner efficiency assigned « 0.45 count
depth
oesign stress (psf)
(ft) 1
2 3 4
5 6
coint
1
2 3 4
5 6
effective
6.0 15.0 25.0 30.0 35.0 40.0
486.6 1068.0
1714.0 2037.0 2283.6 2530.1
«odified
relative
bc-N1,60
density
14.3 2B.0 3.0 3.5 2.7 1.9
0.56 0.78 0.22 0.25 0.21 0.16
testing strci
total
861.0 2004.0 3274.0 3909.0 4467.5 5026.1
total
783.6 1365.0 2011.0 2336.0 2580.6 2827.1
846.0 1989.0
32S9.0 3894.0 4452.5 5011.1
liq.
shear s. ratio
(psf)
effective
factor
resistance
0.20 0.21 0.21 0.21 0.21 0.20
safety
0.16
0.77 1.70 0.15 0.17 0.13 0.09
0.36 0.03 0.04
0.03 0.02
SPT blow
fine/gravel
comt
16.0
0.00
31.0
0.00
6.0 5.0
0.00 0.00
4.0 3.0
0.00 0.00
pere press.
ratio 1.00 0.01 1.00 1.00 1.00
remark
ccntent
Z« vol.
eorrection
strain
appUcd
1.89 0.01
shallow
5.65 4.69 6.41 8.04
1.00
EL MAWI S-4
The site consists of
2 layers w/ depths. saturates and wet densities: 1
3.5 (ft)
149.0 (pcf)
2
40.0 (ft)
120.0 (pcf)
137.6 (pcf) 120.8 (pcf)
tnput ea. mag.s 7.50 max. acc. « 0.18 g
"•"^esTicn factor (to Ma7.5) « 1.00 eesign ground water table deoth * 0.0 ft. testing ground water taole deoth « 5.0 ft.
SPT hanner efficiency assigned « 0.45 COtfIt
depth design stress (psf) (ft) 3.5 6.5 8.5 16.0 20.0 26.0 34.0 34.0
count
effective '• 303.1 475.9
591.1 1023.1 1253.5 1599.1 2059.9 2059.9
relative
bc-N1,60
density
ratio
0.42
0.20 0.21
1.6
3.5 3.5
0.67 0.63 0.59 0.55 0.14 0.25 0.25
shear s.
0.22 0.22 0.22 0.22 0.22 0.22
Cosf)
effective
521.5 881.5 1121.5 2021.5 2501.5 3221.5 4181.5 4181.5
nodified
8.1 20.2 17.8 15.7 13.8
testing stress
total
SPT blow
481.7
8.0
749.3 864.5 1296.5 1526.9 1872.5 2333.3 2333.3
. 842.9 1082.91 =1982.9 2462.9 3182.9 6142.9 4142.9
20.0 21.0 17.0 16.0 2.0 5.0 5.0
liq.
0.09 0.23 0.20: 0.17 0.15 0.01
0.04 0.06
féetor pere press. *• safety ratio 0.45 1.05 0.90 0.77 0.68 0.06 0.17 0.29
» I
fine/gravel
eofiait
481.7
resistance
•
total
remark
eontent
0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.10
Z. vol.
eorrection
strain
applied
1.00 0.68 1.00 1.00 1.00 1.00
0.37 1.33 1.71 2.01 8.82
1.00 1.00
4.89 4.89
2.87
shallow shallow Shallow
I
EL MANI S-3
The site eonsists of 3 teirers u/ dcptfis, seturated and net densities: 1 2 3
3.0 (ft) 30.0 Cft) 40.0 (ft)
160.0 (pcf) 127.0 (pef) 111.7 (pcf)
155.0 <pcf) 127.0 (pcf) 111.7 (pcf)
tnput eq. mag.a 7.50 nax. «cc. « 0.18 g correetion factor (to N«7.S> «1.00 design ground water tatole depth « 0.0 ft.
testing groind water tatole oeoth «
S.O ft.
SPT hanmer efficiency assigned « 0.45
count depth aesign stress (psf) (ft)
erfecrive
total
1
6.0
486.6
861.0
2 3 ^ 5 6
15.0 25.0 30.0 35.0 40.0
1068.0 1714.0 2037.0 2283.6 2530.1
2004.0 3274.0 3909.0 4467.5 5026.1
cotxit
medified
relative
bc-«l,60
density
1
14.3
2 3
28.0 3.2
4
3.5
5 6
2.7 1.9
0.56 0.78 0.22 0.25 0.21 0.16
testing stress (psf) SPT btow fine/gravel remark effective effective 783.6 1365.0 2011.0 2334.0 2580.6 2827.1
shear s. ratio
846.0 1989.0 3259.0 3894.0
U52.5 5011.1
liq.
factor
rcsistance
0.20 0.21 0.21 0.21 0.21 0.20
0.16 0.36 0.03 0.04 0.03 0.02
rorai
total
0.09
1 ontení c
16.0 31.0
0.00 0.00 0.00 0.00 0.00 0.00
4.0
5.0 4.0 3.0
pore press.
safety 0.77 1.70 0.15 0.17 0.13
count
ratio 1.00 0.01 1.00 1.00 1.00 1.00
X. vol.
correetion applied
strain
1.89 0.01 5.65 4.89 6.41 8.04
shallow
EL MANI S-4
The site ccnsists cf 2 layers w/ deoths. saturatcd and wet densities: ] .l'l "'-0 137.6 (pcf) (pcf) 2 40.0 (ft) 120.0 (pcf) 120.a inout eq. itiag.s 7.50 max. acc. ■ 0.18 g corr-cticn factor (:s Ms7.5) = «.gg
cesign grouno water tatole deptn » 0.0 ft. testing grouno water tatole eeath ■ 5.0 ft. SPT haoner efficiency assigned * 0.45 depth design stress (psf) (ft)
l J
3 6 5 6 7 8
3.5 6.5
effective
303.1 475.9
8.5 . 591.1 16.0 1023.1 20.0 1253.5 26.0 1599.1 34.0 2059.9 34.0 2059.9
««odified relativa bc-N1,60 ocnsity 1 2 3
8.1 20.2 17.8
4
15.7 13.8
5 6 7 8
0.42 0.67 0.63 0.59 0.55
testing stress (psf)
•• total
effective
521.5 881.5
481.7
749.3 864.5 1296.5 1526.9 1872.5 2333.3 2333.3
1121.5 2021.5 2501.5 3221.5 4181.5 4181.5
shear s. ratio 0.20 0.21
1.6
0.14
3.5 3.5
0.25
0.22 0.22 0.22 0.22 0.22
0.25
0.22
líq. resistance 0.09 0.2S
0.20 .
•
0.17 0.1S 0.01 O.OL 0.06
B7
total
481.7 842.9
1082.9s 1982.9 2462.9
3182.9 4142.9 4142.9
fatotor
•safety 0.45 1.05 0.90 0.77 0.68 0.06 0.17 0.29
SPT tolow
fine/gravel
8.0
20.0 21.0 17.0 16.0 2.0 5.0 5.0
pore press.
ratio
1.00 0.68 1.00 1.00 1.00 1.00 1.00 1.00
remark
contení
count
0.00 0.00
0.00 0.00
'0.00 0.00 0.00 0.10
S. vol. strain
2.87 0.37 • 1.33 1.71 2.01 8.82 4.89 4.89
cerrectjon applied shallow shallcw shallow
I
EL MANI S-5
The site eensists oí 2 layers w/ depths, saturatcd and wet dcnsitits: 1.5 cft)
161.a (pef)
*0.0 (ft)
12S.4 (pef)
157.8 (pef) 12S.0 (pef)
mag.a 7.50 «ex. ace. « 0.18 g corrección factor (to N«7.S) « 1.00 design gromd ««ater cable depth « 0.0 ft. cesting ground Macer taole depth ■ 6.3 ft.
SPT hainner efficiency assigned > 0.6S covnt
deoth
design stress (psf>
(ft)
ceunt
effcctive
total
tcsting stress effcctive
SPT blow total
fine/gravel
eount
15.5
1031.1
1998.3
1289.2
1991.2
20.0
9.0
0.00
1314.6
2562.6
1572.7
2555.5
12.0 4.0 4.0 6.0 4.0
0.00 0.00 0.00 0.00 0.00
4.0
0.10
26.0
1692.6
3315.0
1950.7
3307.9
30.0
1966.6 2322.6
3816.6 4569.0
2202.7 2580.7
3809.5 6561.9
2832.7 2832.7
5063.5 5063.5
36.0 40.0
2574.6
5070.6
60.0
2574.6
5070.6
medified
relative
be>N1,60
density
8.3 10.2 3.1 2.9 2.7 2.6 2.6
0.63 0.67
0.23 0.22 0.21 0.20 0.20
shear s.
racio 0.22 0.22 0.21 0.21
0.21 0.20
0.20
lid. resistanec
0.09 0.11 0.03
0.03 0.03 0.03 0.05
faeter
safety 0.42 0.52 0.16
0.16 0.13 0.13
0.26
B8
pore prMS.
ratie 1.00 1.00 1.00 1.00 1.00 1.00 1.00
reaark
content
S, vol.
eerreetion
strain
applicd
2.84 2.56 5.56 5.95 6.41 6.66 6.66
NOSTOS t LÍ.OREMS IHT. B0.«6
The site conststs of
2 leyers w/ depths, ssturated and wet densities: 1
6.0 (ft)
U0.6 (pcf)
1Z3.9 (pcf)
2
9.0 (ft)
iU.2 (pcf)
1A¿.2 (pcf)
input ea. siag.s 7.S0 atax. acc, * 0.18 g correetion factor (to M«7.S) « 1.00
design gro«xtd water table dcpth ■
0.0 ft.
testing greund water table deptb »
6.3 ft.
SPT hanmer efficiency assigned « C.¿S ceunt
count
depth design stress (psf) (ft) effective total ¿69.2
843.6
7U.Ó
1276.2
t i esting stress
«odífied
relative
shear s.
bc-N1,60
density
ratio
(psf)
effective
total
743.i 10O4.4
743.4 1176.0
liq.
factor
resistance
safety
SPT blow
fine/gravel
count
pere press. ratio
remart
eoncent
X, vol. strain shalloy shallow
INDIA B0.1
The site eonsists of 2 layers *#/ depths, saturated and wet densities: 1 2
inout eq. mag.* 7.50
13.0 (ft) 40.0 (ft)
1U.0 (pcf) 119.0 (pcf)
U3.0 (pcf) 119.0 (pcf)
max. acc. « 0.18 g
correetion factor (to M«7.5) « 1.00
design grocnd water table depth «
Q.O ft.
testing grouna water table aeoth »
S.O ft.
SPT hairmer efficiency assigned » 0.45
ceunt
deoth
design stress (psf)
(ft)
1
1
2
2 3 4
5 6
ount
ü
l
12.0
12.0 12.0 25.0 25.0 30.0 30.0
12.0
effective effective
979.2 979.2
979.2
979.2 1740.0 1740.0 2023.0 2023.0
1728.0
1728.0 1728.0
relative
density
ratio 0.20 0.20 0.21 0.21 0.21 0.21
i 1.1
0.49
2 3
11.1
0.49
4
8.2 8.2
0.42 0.42
5
8.4
6
8.4
0.43 0.43
•
3895.0
bc-N1.60
total total
1236.2
1723.0 1723.0 1723.0 3295.0 3295.0 3890.0 3890.0
1286.2
3300.0 3300.0 3895.0
effective effective 1236.2 1286.2 2047.0 2047.0
1728.0
nodified
1
testing stress (psf)
total total
shear s.
2330.0 2330.0
liq. resistance 0.19
0.23" o.is 0.16 0.15 0.17
1723.0
factor
safety
^.94 1.13 0.71 0.79 0.70 0.84
SPT blow fine/gravel renark csuit esi.nt
12.0
12.0 12.0
12.0
31.0
11.0 12.0 12.0
pore press. ratio
•O.OUKA) •O.OI(NA) 1.00 1.00 •O.OKMA) •O.OKHA)
content
0,65
gravelly
O.SO
gravelly
0.65 0.80 0.20 0.35 0.65 0.80
gravelly gravelly
X, vol.
correetion
strain
applied
2.4Í(HA) 0.16(NA) 2.86(NA)
2.86(NA) 2.82(NA) 2.a2(NA}
MOSTOS ¿ LLOAENS TOARES INT. S0«19
The Site consists of 2 leyers «/ dcpths, seturatcd enj Met dcnsitics: 6.0 Cft) 19.0 (ft)
122.0 (pef> 130.1 (pef)
94.5 (pcf)
130.1 (pcf)
inpot cq. «ag.* 7.50 ux. acc. « 0.18 g correetion factor (to H«7.5> « 1.00
design gromd water tablc deptti « 4.0 ft. testing gromd water table dcpth « 21.0 ft. SPT haiRner efficiency assigncd ■ 0.45 count
a
depth
design stress (psf)
(ft) 1 2
3
1
4
effeetive
10.0 10.0 15.0 15.0
testing stress (psf) effeetive total
total
751.8 751.8 1090.3 1090.3
1126.2 1126.2 1776.7 1776.7
eount
1C*i6.2 1016.2 16¿6.7 1666.7
1016.2 1016.2 1666.7 1666.7
SPT blow
fine/gravel
count
17.0 17.0
4:4.0 44.0
remarle
centent
0.50 0.65 0.50 0.65
gravelty gravelly gravel ly
X, vol.
correetion
strain
applied
gravelty
*•
oc MI,60 17.7 17.7 36.2
36.2
denslty 0.63 0.63 0.86 0.86
ratio
resistanee
0.17 0.17 0.18 0.18
0.26 0.30
safety
ratib
1.49
•0.01(NA) •0.01(NA) 4.99(KA) O.OO(NA) 4.99(IIA) C.OO(NA) 1.75
1.99<NA} 1.99(KA)
0.02(NA) 0.01(NA) O.OO(NA) O.OO(NA).
shallou shallow
MOSTOS l LLOAENS iNT. BOA The site consists of
2 layers w/ depths, saturated and wet densities: 6.0 (ft) 9.0 (ft)
140.6 (pcf) 144.2 (pcf)
123.9 (pcf) 144.2 (pcf)
input eq. mag.» 7.50 mmx. acc. « 0.18 g correetion factor (to M«7.5) « 1.00
design ground water table depth « 0.0 ft. testing gromt water table depth « 3.5 ft. SPT hamner efficiency assigned « 0,45 cowic
I
(ft) 1
•
depth design stress (psf)
2 3
i
4
!
count
1 1
2 3 4
6.0 7.0 8.0 9.0
effeetive 469.2 551.0 632.8
714.6'
total 843.6 987.8
1132.0 1276.2
nodified
relativo*
be^R1,60
densíty
ratio
0.88 0.67 0.60
0.21 0.21 0.21 0.21
38.5 20.2 16.0 3.4
0.24
shear s.
testing stress (psf) effeetive '629,2 711.0 792.8 874.6
liq.
SPT blow
total 785.2
38.0 20.0 18.0 4.0
929.4 1073.6
1217.8
:
resisttnce
factor
safety
pore press. ratio
1.99(na)
4.99(NA)
0.23 0.18 0.03
1.09
0.85 0.17
fine/gravel
count
0.00 0.58 1.00 1.00
remark
content
0.00 0.00 0.00 0.00
X, vol.
correetion
strain
applied
0.00 0.21 1.56 4.97
shallow shallow shallow
shallow
\ B 1 O
Capacete.s Oata. So.4 (Pueblo Nuevo)
The site consists of 2 leyers u/ depths. saturated and wet dcnsities: 12.0 (ft) 52.0 (#t)
1
2
input eq. Mg.« .« 7.50
106.9 (pcf) 112.4 (pcf)
71.3 (pcf) 112.4 (pcf)
mMx. mmx. mee. » 0.18 g
correction factor (to M«7.5) « 1.00
design grotnd uatcr table depth » 3.5 ft. testing ground water table depth * 10.0 ft. SPT hanner efficiency assigned ■ 0.45 count
deoth
eesign stress (psf)
(ft)
effective
total
5.0 5.0 12.0
316.3 316.3 627.9
409.9 409.9
1158.3
12.0
627.9 1527.9 1527.9 1527.9 1527.9
1158.3 3181.5 3181.5 3181.5 3181.5
30.0 30.0 30.0 30.0
count
moaified
relativo
bc-Nl,60
density
17.2 17.2 9.4 9.4
0.62 0.62 0.45 0.45
0.0 0.0
0.00 0.00
6.1 6.1
0.36 0.36
testing stress (psf) effective
shear s.
17.0 17.0 8.0
0.20 0.35 0.20
802.0 1702.0 1702.0
926.8 2950.0
8.0 0.0 0.0
0.35
2950.0
1702.0 1702.0
2950.0 29S0.0
7.5 7.5
0.00
factor
0.2S 0.30 0.16 0.18 0.07 0.07 0.07 0.14
i, vol.
correction
strain
applied
O.OO(KA) o.oo(ka: 2.67(KA) 2.67(KA) lO.OO(NA)
0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.32 0.32 0.30 0.61
•i
tilty ctay 4 clayey silt
1.00
ratio
1.84 1.98 0.77 0.85
silty sard
1.00 1.C0
poro press.
safety
renart
ccftsent
356.5 356.5 926.8
resistance
0.15 0.15 0.21 0.21 0.23 0.23 0.23 0.23
cotfit
356.5 356.5 802.0
liq.
ratio
SPT blow fine/gravei
total
shallow snallow
lO.OO(KA)
3.52 3.S2(KA)
Caaacete's Oata.So.5 (UORA)
The site scnsists cf 2 layers w/ depths. saturated and wet densities: S.O (ft) 44.0 (ft)
112.5 (pcf)
81.5 (pcf)
111.5 (pcf)
111.5 (pcf)
inout eo. rag.s 7.50 i&ax. acc. « 0.18 g correction factor (to Ms7.5) « 1.00
design ground water table depth « 0.0 ft. testing greuno water table depth * 2.0 ft. SPT hanmer efficiency assigned « 0.45 count
cepth oesion stress (nsf) (ft) effective total
testing stress (psf) effective
total
SPT blow
fine/grave i
coiait
rctaark
centcnt
\
1
2 3 4
5 6
7 otatt
11.0 11.0 15.0 20.0 25.0 33.0 40.0
1234.5 1234.5 1680.5 2238.0 2795.5
3687.5 4468.0
«lodif ied
relativa
shear •
bc-N1,60
density
ratio
1
0.0
2 3
10.1 8.8
4
7.7
5
6.9 6.1 5.6
6 7
548.1 548.1 744.5 990.0 1235.5 1628.3 1972.0
0.00 0.47 0.44 0.41 0.39 0.36 0.34
0.26 0.26 0.26 0.25 0.25 0.24 0.23
610
610, 807, 1052, 1298. 1691. 2034.
Hq.
*
0.0 7.5 7.5 7.5 7.5 7.5
4406.0
7.5
factor
resistance 0.07 0.11 0.10 0.09 0.08 0.07 0.06
1172.5 1172.5 1618.5 2176.0 2733.5 3625.5
safety 0.28 0.44 0.39
0.34 0.31 0.28 0.27
B11
pore press.
ratio
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 .00 .00 .00
silt
.00 .00 .00
X, vel.
cerrÍKtien
strain
applied
lO.OO(NA) 2.58 2.78 2.94
3.17 3.51 3.73
PR'>102, Puente prop. Rio Cuanajíbo Mayagtiez. Bo.1
The site consists of 2 layers m/ deotfis, saturactd and ect dcnsitics: B.O (ft) 25.0 (ft)
113.4 (pcf)
133.0 Cpef) 110.7 Cocf)
110.7 (ocf)
input eq. nag.° 7.50 max. «ec. « 0.10 g eerreetion factor (to H«7.S) « 1.00 Pesign gromd water table deptti ■ 0.0 ft. testing ground water table dcpth « 0.0 ft.
SPT haaner efficlency assigned « 0.4S
count
depth
design stress (psf)
(ft) 1
2 3
12.0 15.0
6 7
16.0 18.0
count
1
2 3 4
5 6 7
a»dified bc-M1,60 4.0 4.0 4.0
6.9 2.8 7.2 3.5
0.40
963.3
liq.
shear s.
ratio
COtftt
factor
resistanee
0.22 0.22 0.22 0.22 0.22 0.22 0.22
total
1025.7 1025.7 1025.7 1301.0 1737.9 1056.6 2094.0
963.3 963.3 1132.2 1901.2 . 1301.1 2019.9 • 1357.4 2257.3 1470.0
density
0.25
effective
1189.0 1109.0 1109.0 1545.1
relativo
0.27 0.27 0.27 0.39 0.21
testing stress (psf)
total
627.4 627.4 627.4 796.3 965.2 1021.5 1134.1
9.0 9.0 9.0
5
4
effective
safety
0.07 0.10 0.11 0.15 0.07 0.12
0.32 0.47 0.49 0.66 0.30 0.54
0.11
0.49
1 content
5.0
0.10
5.0 5.0 7.0 3.0
0.20 0.22 0.70 0.13
0.0 4.0
0.14 0.27
pore prcss. ratio 1.00 1.00 1.00 1.00 1.00 1.00
Z, vol.
correetion
strain
applied
4.60
snallow snallow snallcw
4.60(NA) 4.60(NA)
3.15(NA) 6.21 3.02
PR-102 P:e. prep. Rio Cuanajíbo, Mayaguez So.P2
The site consists of 2 layers w/ depths, saturated ano wet densities: 1 9.0 (ft) 129.1 (pcf) 105.9 (pcf) 2
121.9 (pcf)
25.0 (ft)
121.9 (pcf)
inout eq. ir.as.s 7.50 nax. acc. « 0.10; correetion factor (to Ms7.5) « 1.00 design ground water table depth « 0.0 ft. testing ground water table depth « 0.0 ft.
SPT hanmer efficiency assigned « 0.45 count
1
2 3 4
5 6 7 8 coiatt
deoth design-stress (P«f) total (ft) effective 10.0 10.0
15.0 15.0 19.0
19.0 20.0 20.0 podlfied
relativo
bc-m.60
density
1
4.2
2
4.2 1.9 1.9 0.9 0.9 0.0 0.0
3 4
5 6 7 0
659.8.. 659.8 957.3 957.3 1195.3 1195.3 1254.8 1254.8
1283.0 1283.0 1093.3 1893.3 2380.9
2300.9 2502.0 2502.0 shear s. ratio
testing stress (psf) total
973.0 973.0 1271.1 1271.3 1509.3 1509.3 1560.8 1560.0
1090.6 3098.6
4.0 4.0
^700.1 1700.1
2.0 2.0
2195.7 2195.7 2317.6 2317.6
1.0 1.0 1.0 1.0
liq. / resistanee
0.28 0.28
0.22 0.22
0.06 0.06
0.16
0.22 0.22 0.22 0.22 0.22 0.22
. 0.02
0.16 0.09 0.09 0.00 0.00
SPT blow
effective
0.02 0.01 0.01 0.01 0.01
B12
factor
eomt
fine/gravel
renark
content
0.50 0.35 0.50 0.35 0.50
gravelly gravelly gravelly gravelly gravelly gravelly gravelly gravelly
0.35 0.50
0.35
X, vol.
correetion
ratio
strain
applied
0.26
•O.OI(NA) •O.OKNA)
0.10 0.10 0.03 0.03 0.03 0.03
•O.O.KNA) •O.OUNA) *0.01(NA) •O.OKHA) •O.OKNA) •0.01(NA)
4.46(NA) 4.46(NA) 8.16(I1A) 8.16(NA)
safety 0.25
pore presa.
lO.OO(NA) lO.OO(NA) lO.OO(NA) lO.OO(MA)
snallow snallow
0
PRETREATMENT PLAMT AT IKOIA 80.#4
The site eonsists of
2 layers m/ depths, saturated and wet densities: 1
18.5 (ft)
2
30.0 (ft)
94.2 (pcf) 110.7 (pcf)
123.0 (pcf) 110.7 (pcf)
input eq. ma9.= 7.50 ras. acc. « 0.18 g correction factor (to Ms7.S) « 1.00
f¡
design ground water table depth » testing ground water table deptb »
2.0 it. 20.0 ft.
SPT hamner efficiency assigned « 0.45 count
cepth
4
24.0 24.0 26.0 26.0
5 6
30.0 30.0
1
2 3
sunt
effective
relativo
density
ratio
0.32 0.32 0.32 0.32
0.21
5.2 5.2 5.0 5.0 4.S 4.3
5 6
2826.7 2826.7 3048.1 3048.1 3491.0 3491.0
bc-Nl,60
2 3 4
1453.9 1453.9 1550.5 1550.5 1743.8 1743.8
total
modified
9
testing stress (psf)
design stress (psf)
íft)
0.31 0.31
shear s.
effective
total
2102.9 2102.9 2199.5 2199.5 2392.8 2392.8
2352.5 2352.5 2573.9 2S73.9 3016.a 3016.8
lio. resistance
0.21 0.22
0.22 0.22 C.22
factor
safety 0.54
0.12 0.13
0.60
0.11
0.53
0.13 0.11 0.13
0.59 0.52
0.58
SPT blow
fine/gravel
count
rcmark
content
7.0
0.20 0.35 0.20 0.35 0.20 0.35
7.0 7.0 7.0 7.0 7.0
pore press.
ratio
Z, vol.
correction
strain
applied
3.94(NA) 3.94(NA) 3.99(NA) 3.99(NA)
1.00 1.00 1.00 1.00 1.00 1.00
4.10(NA) 4.10(KA)
PñETREATKsNT PLANT AT IKOIA B0.5
The site csnsists cf 2 layers w/ desths, saturated and wet eensities: 24.0 (ft) 33.0 (ft)
146.6 (pcf) 136.5 (pcf)
101.1 (pcf) 136.5 (pcf)
:rc«t es. nsag.» 7.50 max. acc. * 0.18 g ccrrectisn factcr <to Ms7.5) « *.C0 cesicn uater table eesth * 1.0 ít.
testing ground water taole deptn «
15.C ft.
SPT hairner efficiency assigned * 0.45. count
depth (ft)
1
2 3 4
count
design stress (psf) effedtive
33.0 30.0 33.0 33.0
2482.4 2482.4« 2704.7 2704.7
total
effective
4292.0
2719.0
4292.0
2719.0 2941.3 2941.«
4701.5 4701.5
modified
relativo
bc-N1,60
density
ratio
0.53 0.53 0.52 0.52
0.19 0.19 0.19 0.19
13.0 13.0 12.5 12.5
testing stress
shear s.
liq. resistance
SPT blow total
3655.0 3655.0 >•4064.5 4064.5
factor
safety
0.21 0.23'
1.13 1.22
0.20 0.22
1.10
B
13
1.19
count
2w.C 20.0 20.0 20.0
pore press. ratio
0.45 0.22 0.54 0.27
fine/gravel
remarle
( content
C.2w 0.35 0.20
0.35
m, vol. strain 0.16(NA) O.IO(liA) 0.20(NA) O.II(HA)
correction applied
f>
%
t
PRE7SEATMENT PLANT AT INOIA 80.6
2 layers m/ depths, sacurated and ««et
The site eonsists ef
ities:
1
23.0 (ft)
120.2 Cpef}
2
33.0 (ft)
127.8 (pcf)
90.0 (pcf) 127.8 (pcf)
input cq. nag.s 7.20 aMx. aec. » 0..18 g correction factor (to ms7.S) s i.qs
design grotaid water tsble depth « tcsting ground water table depth ■
0.0 ft. 1S.0 ft.
SPT haoner efficicncy assigncd « 0.45 COtfIt
deotn
design stress (psf)
(ft) •
2 3 4
ccvnt
1
2 3 -
effective
30.0 30.0 33.0 33.0
1787.7 1787.7 1984.0 1984.0
nodified
relative
bc-N1,60
density
3.6 3.6 3.4 3.4
0.25 0.25 0.24 0.24
tesxing stress (psf) effective
total
3659.7 3659.7 4043.2 4043.2
2270.6 2270.6 2466.9 2466.9
0.22 0.22 0.22 0.22
0.10 0.12
0.46
0.10
S, vol.
correction
strain
applied
4.86(NA) 4.86(IIA) 4.94(NA) 4.94(NA)
1.00 1.00 1.00 1.00
0.53 0.47 0.53
0.11
0.20 0.35 0.20 0.35
pore press. ratio
safety
remark
content
5.0 5.0 5.0 5.0
factor
resistance
•
counc
3206.6 3206.6 3590.1 3590.1
liq.
shear s. ratio
fine/gravel
SPT btow
total
Ca=acete*s Data. Bo.d2 COarlington)
T.*ie site esnsists of 3 layers w/ eepths, saturated and wet densities: 1 2 3
9.0 (ft) 30.0 (ft) 43.3 (ft)
111.5 (pcf) 98.1 (pcf) 127.0 (pcf)
75.6 (pcf) 97.3 (pcf) 127.0 (pcf)
irsut eq. oag.s 7.50 nax. ace. « 0.18 g csrrection factor (to M«7.5) « 1.00
cesign grctxid water taPle depth « tssting grouna water table depth »
2.0 ft. 8.0 ft.
SPT haxrner sfficiency assigned « 0.45 csunt
eesth
1 2 3
5 count
15.0 15.0 15.0 32.0 42.0
nodified
effective
709.2 709^2 709.2 1374.0
2020.0 , relative
bc-MI,60' density 1
2 3 4
5
1.1 1.1 9.6 52.4 36.8
testing stress (psf)
design stress (psf)
(ft)
0.11 0.11 0.46 0.99
0.88
total
1520.4 1520.4 1520.4 3246.0 4516.0
total
868.2 868.2 868.2 1533.0
1305.0 1305.0 1305.0 3030.6 4300.6
2179.0
shear s. ratio 0.24 0.24 0.24 0.25 0.22
effective
liq. resistaince 0.07 0.08
fíctor safety
SPT blow
1.0 1.0 8.5 61.0 53.0
pore press. ratio
0.30 0.35
1.00
0.11
0.44
1.99(NA)
4.99(NA)
1.00 0.00
1.99()iA)
4.99(NA)
0.00
B 14
fine/gravel
1.30
restark
content
count
0.20 silty clay 0.35 0.00 0.00
m
N
coarse sand
0.00
m
S, vol.
correction
strain
applied
9.76(NA) 9.76(NA) 2.66 0.00 0.00
u Capacete*s Data Bo.#6 (Marina Septentrional)
The site consists of 3 (aycrs «/ depths, saturated and wet densities 1 1 2 3
C A 5 .0 (ft) 16.0 (ft) 52.0 (ft)
M ...... 121.0 (pef) 107.5 (pef) 107.5 (pef)
tnput eq. nag.s 7.50 aax. aee. s 0.18 g
93.0 (pef) 107.5 (pef) 107.5 (pef)
correetion factor (to Ms7.5) « 1.00
design ground water table depth « O.O ft. testing ground water table depth « 1.0 ft SPT haonier effietcncy assigned « 0.65 count
depth
design stress (psf)
(ft) d
2
3 6
6 7
10.0 10.0 16.0 16.0
8 9
33.0 33.0
5
1
count
i
1
2 3 í
a
3
6.5 5.0 10.0
5 ó 7 8 9
effeetive 263.7 293.0
518.5 518.5 518.5 789.1 789.1 1556.5 1556.5
modified
relativo
bc-Nl,60
density
12.1 12.1 0.0 1.3 1.3 0.0 0.0 0.0
6.3
0.52 0.52 0.00 0.12 0.12 0.00 0.00 0.00 0.37
total 566.5 605.0 1162.5 1162.5 1162.5
1787.5 1787.5 3615.7 3615.7 shear s.
ratio 0.26 0.26
0.25 0.25 0.25 0.26 0.26 0.25
0.25
testing stress (psf) effeetive total 296.1
327.6 552.9 552.9 552.9 823.5 823.5 1590.9 1590.9
liq. resistance 0.13 0.13 0.06 0.07 0.09 0.06 0.07 0.07 0.16
516.5 577.0 11U.S 11U.5 11U.5 1759.5 1759.5 3587.7 3587.7 factor
safety 0.56
0.56 0.23 0.29 0.36 0.23 0.28 0.29 0.57
SPT blow
fine/gravel
count
12.0 12.0 0.0 1.0 1.0 0.0 0.0 0.0
7.5 pore press. ratio
remarle
content o.co 0.00
coarse to fine silty sar^
0.20 0.20 0.35 0.20 0.35
M
M M M M
1.00
1.00 vol strain
2.27 2.27
1.00 1.00 1.00 1.00 1.00
lO.OO(NA) 9.28(NA) 9.28(NA)
1.00 1.00 1.00
lO.OO(NA) lO.OO(NA) lO.OO(NA)
1.00
3.63(NA}
correetion
applied shallew snallow snallow snallow shallow
I I
¡ I
% X
B15
13 Capacete*s Daca Bo.91 (Faro)
The site consists of
2 layers w/ depths, sacurated and wet densities:
1
10.0 (ft)
121.0 (pcf)
93.0 (pcf)
2
30.0 (ft)
113.4 (pcf)
113.4 (pcf)
input cq. mag.» 7.50 nax. acc. » 0.1B g eorrecticn factor (to Nb7.5) « 1.00 design grouxt water table depth ■ 0.0 ft.
testing ground water table deptfi ■
3.0 ft.
SPT haomer efficiency assigned « 0.45 count
ceotli
design stress (psf)
(ft) 1
2 3 4
5 6
7 a 9
count
1
5.0 10.0 12.0
12.0 20.0 20.0 20.0 30.0 30.0
modified
relative
density
4
s 6
0.0 0.0
3
293.0 586.0 688.0 688.0 1096.0 1096.0 1096.0 1606.0 1606.0
bc-íl1,60 27.3 16.2 3.6 3.6
2
effective
7
7.2
6 9
0.8 0.8
0.77 0.60
0.25 0.25 0.00 0.00 0.40 0.08 0.08
total
605.0 1210.0 1436.8 1436.8
2344.0 2344.0
2344.0 3478.0 3478.0
shear s.
ratie 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.23
testing stress (psf) effective
396.2 689.2 791.2
521.0 1126.0
1352.8
791.2 1199.2 1199.2 1199.2 1709.2 1709.2
1352.8 2260.0 2260.0
2260.0 3394.0 3394.0
liq.
factor
resistance 0.34 0.18 0.10 0.11 0.06 0.07 0.08 0.07 0.08
B
total
safety 1.43 0.75 0.41
0.47 0.25 0.30 0.34 9.29 0.35
16
SPT blow
fine/gravel
count
27.0 12.0 3.0 3.0 0.0 0.0
7.5 1.0 1.0
pore press.
ratio
0.05 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
rccurK
content
0.00
0.00
silty clavev sana
0.20 0.35
0.20 0.35 0.00 0.20 0.35
m m m
m m
m m
X, vol.
cerrection
strain
Boplted
0.03 1.69
4.86(KA) 4.86(KA} lO.OO(KA) lO.OO(NA) 3.03
lO.OO(NA) lO.OO(NA)
shallow shallow
Capacete*s Data. Bo.^O (Urb. San Josa)
The site consists of 3 layers m/ deoths. saturated and wet densities-
1 I 3
13.0 <ft) 33.0 (ft)
nO.O (peí) ^^^.0 (pcf) 107.5
*75.6 (pcf) U3.0 (pcf) 107.5
input eq. mag.« 7.50 nax. acc. > 0.18 g correction factor (to H»7.5) « 1.00
design ground water table depth *
cesting grouv] water table depth «
0.0 ft.
2.0 ft.
SPT hawmer efficiency assigned = 0.65
«nü. 780.0
1716.0 1716.0 1716.0 2631.0 2631.0 3003.0
1239.0 1239.0 1561.6
1505.6
3003.0
1561.6
1505.6 1821.1 1821.1 1821.1
3003.0 3755.5
780.0 780.0
1163.0 1183.0 1505.6
couni
bc-N1,60
relativa censity
3755,5 3755.5
836.0 836.0 836.0
1667.2 1667.2 1667.2
sanoy silt
2362.2
sand, silt traces sanoy silt
1561.6-
2362.2 2936.2 2936.2 2936.2
1877.1 1877.1 1877.1
3686.7 3686.7
3686.7
shear s. liq. f.ctor pora press. ratio rasistance safaty ratio
1
2.3
0.19
0.25
2 3
2.3
0.19
0.69 0.63
0.25 0.25 0.23
0.12
0.69
0.20
0.86
0.63
0.23
0.23
1.00
0.12 0.12 0.12 0.08
6
5 6 7 6 9
10.9 18.0 18.0
6.3
0.28
0.22
6.3
0.28
0.22
10.6
0.68 0.08 0.08 0.3S
0.22 0.22 0.22 0.22
10
O.S 0.8
11
6.6
0.10 0.10
0.39 0.39
0.56 0.56
0.56
0.08
0.36 0.36
0.07
0.33
1.00
S. vpl.
correction
strain
applied
7.21(NA) 7.2UNA)
1.00 1.00
2.66
1.00 1.00
1.60 0.71
1.00 1.00
6.65(NA) 6.6S(NA)
1.00 1.00
2.69 lO.OOfKA)
1.00 1.00
10.00(NA} 3.29
PR'IOZ Pte. prep. Rio Cuanajibo, Mayiguez Bo.iG
The site consists of
2 layers w/ deptiis, saturaced and wet densities: 8.0 (ft)
121.5 (pef)
30.0 (ft}
116.2 (pef)
96.1 (pef) 116.2 (pef)
input eq. «ag.» 7.50 nax. aee. ■ 0.18 g correction factor (to M«7.5) « 1.00
design ground water table depth ■ testing growid water table depth ■
0.0 ft. B.O ft.
SPT hanraer efficiency assigncd « 0.45 eount
depth
design stress (psf)
(ft)
effectíve
testing stress (psf)
total
effcetive
total
822.3 822.3 929.9 929.9 1145.1
884.7 884.7 1117.1 1117.1 1581.9 1581.9
2 3
9.0 9.0 11.0
4
11.0
5
15.0 15.0
526.7 526.7 634.3 634.3 849.5 849.5
modificd
relative
bc-N1,60
densi ty
ratio
resistance
safety
0.24 0.24 0.24 0.24 0.24
■
0.41 0.44 0.14 0.15 0.34
1
6
ount
1 2 3 4
5 6
8.7
0.44
8.7 3.2
0.44
0.24
3.2 2.0 2.0
0.24 0.16 0.16
1088.3 1088.3 1320.7 1320.7 1785.5 1785-5
1145.1
liq.
shear s.
0.24
0.10
0.10 0.03 0.04
0.08 0.09
factor
0.40
Bis
SPT blow
fine/gravel
eount
10.0 10.0 3.0
3.0 2.0 2.0
pore press. ratio
•0.01(NA) •0.01(NA) •O.OI(NA) •O.OKNA) 1.00 1.00
remarle
content
0.00 0.10 0.00 0.10 0.20 0.35
grave!ly gravelly gravelly gravelly
S. vol.
correction
strain
applied
2.79(NA) 2.79(NA) 5.15(NA) 5.15(NA) 7.93(NA) 7.93(NA)
shallow shallew
•ccleration dependent i^on aagnitude and distance as per OONOIMN
^-B-ofKmTv
•ssuanedMafln 5 assuaned Hagn 5.5 asaunoed Nagn ¿ «ssuaed Hagi 6.5
APPENDIX C,
(c/sXkn)
(c/sXka)
®CC. DIST.
M1836 180
O 5
^.1392 136 0.1101 0.0899 0.0751 0.0640 0.0554
0.0485 0.0430 0.0384 0.0346 0.0313 0.0286 0.0262 0.0241 0.0223 0.0207 0.0193 0.0181 0.0169 0.0159 0.0150 0.0141 0.0134 0.0127
108 88 74 63 54
10 15 20 25 30
48 35 42 40 38 45 34 50 31 55 28 60 26 65 24 70 22 75 20 80 19 65 18 90 17 95 16 100 15 105 14 110 13 115 12 120
"^21 12 125 ■■5 11 130
0^09 11 135
Xg
<e/sXtai)
acc. OIST.
Xg
<c/sXlw)
«ce. OIST.
Xg
acc OIST
0.245« 240 O 0.1860 182 5
0.3280 321 O 0.4383 430 O* 0.2486 ZU 5 0.3322 326 5
0.1472 0.1201 0.1004 0.0856 0.0740
0.1967 0.1605 0.1342 0.1144 0.0989
ia 118 98 84 73
10 15 20 25 30
193 157 132 112 97
10 15 20 25 30
0.2628 0.2145 0.1794 0.1528 0.1322
258 210 176 150 130
0.0649 64 35 0.0574 56 40 0.0513 50 45 0.0462 45 50 0.0419 41 55 0.0382 37 60 0.0350 34 65 0.0323 32 70 0.0298 29 75 0.0277 27 80 0.0258 25 85 0.0241 24 90 0.0226 22 95 0.0213 21 100 0.0200 20 105 0.0189 19 110 0.0179 18 115 0.0170 17 120
0.0867 85 35 0.0767 75 40 0.0686 67 45 0.0617 61 50 0.0560 55 55 0.0510 50 60 0.0468 46 65 0.0431 42 70 0.0399 39 75 0.0370 36 80 0.0345 34 85 0.0322 32 90 0.0302 30 95 0.0284 28 100 0.0268 26 105 0.0253 25 110 0.0239 23 115 0.0227 22 120
0.1158 114 35 0.1026 101 40 0.0916 90 45 0.0825 81 50 0.0748 73 55 0.0682 67 60 0.0625 61 65 0.0576 56 70 0.0533 52 75 0.0495 48 80 0.0461 45 85 0.0431 42 90 0.0404 40 95 0.0380 37 100 0.0358 35 105 0.0338 33 110 0.0320 31 115 0.0303 30 120
0.0161 16 125 0.0153 15 130
0.0215 21 125 0.0205 20 130
0.0288 28 125 0.0274 27 130
0.0146 14 135
0.0195 19 135 0.0261 26 135
0.0104 0.0100 0.0095
10 140 10 145 9 150
0.0139 14 140 0.0133 13 145 0.0127 12 150
0.0186 18 140 0.0178 17 145 0.0170 17 150
0.0249 24 140 0.0238 23 145 0.0228 22 150
0.0088
9 ,«0
0.0,17 „ ,60
0.0,57 ,5 ,60
0.0209 2, ,60
0.0081 0.0078 0.0075
8I 170 8 ,75 7 ,80
0.0108 11 170. 0.0,0« ,0 ,75 0.0,00 ,0 ,80
0.0144 14 170 0.0B9 ,6 ,75 0.0,36 ,3 ,80
®-®201 20 165 0.0193 19 170 O.OIM ,8 ,« 0.0,79 ,8 ,«
0.009,
10 15 20 25 30
9 ,55 0.0,a ,2 ,55 0.0,« ,6 ,55 0.02W « ,5^
C 1
^
•eeleration dependent upon nsnitude and distmee as per
assuined NagnS.ZS aasumed HagnS.TS assuned lta9*6.2S imwirfí Napió.TS (c/sXka) (c/s)(km> <c/a>(te> (e/»}(taO Xg acc- OIST. Xg aec. OIST. Xg acc. OIST. Xa «ce. OIST 0.2123 208 O 0.2837 278 O 0.3791 372 O 0.5087 897 O
0.1609 158 5 0.1273 125 10 0.1039 102 15 0.0869 85 20 0.0740 73 25 0.0640 63 30 0.0561 55 35 0.0497 49 40 0.0444 43 45 0.0400 39 50 0.0362 36 55 0.0330 32 60 0.0303 30 65 0.0279 27 70 0.0258 25 75 0.0240 23 80 0.0223 22 85 0.0209 20 90 0.0196 19 95 0.0184 18 100 0.0173 17 105 0.0164 16 110 0.0155 15 115 0.0147 14 120 0.0139 U 125
0.2150 211 5 0.1701 167 10 0.1389 136 15 0.1161 114 20 0.0989 97 25 0.0856 84 30 0.0750 73 35 0.0664 65 40 0.0593 58 45 0.0534 52 50 0.0484 47 55 0.0442 43 60 0.0405 40 65 0.0373 37 70 0.0345 34 75 0.0320 31 80 0.0298 29 85 0.0279 27 90 0.0261 26 95 0.0246 24 100 0.0231 23 105 0.0219 21 no 0.0207 20 115 0.0196 19 120 0.0186 18 125
0.0133 0.0126 0.0121 0.0115 0.0110 0.0106 0.0101
13 12 12 11 11 10 10
0.0177 0.0169 0.0161 0.0154 0.0147 0.0141 0.0135
0.0094 0.0090 0.0087
9 170 9 175 8 180
130 135 140 145 150 155 160
17 17 16 15 14 14 13
0.2874 282 5 0.2273 223 10 0.1856 182 15 0.1552 152 20 0.1322 130 25 0.1144 112 30 0.1002 98 35 0.0887 87 40 0.0793 78 45 0.0714 70 50 0.0647 63 55 0.0590 58 60 0.0541 53 65 0.0498 49 70 0.0461 45 75 0.0428 42 80 0.0399 39 85 0.0373 37 90 0.0349 34 95 0.0328 32 100 0.0309 30 105 0.0292 29 110 0.0276 27 115 0.0262 26 120 0.0249 24 125
130 0.0237 135 0.0226 140 0.0215 14§ 0.0206 150 0.0197 155 0.0189 160 ^0.0181
0.0125 12 170 0.0120 12 175 0.0116 11 180
23 22 21 20 19 18 18
O.3840 376 5 O.30S8 298 10 0.2480 243 15 0.2074 203 20 0.1767 173 25 0.1528 150 30 0-1339 131 35 0.1l86 116 40 0.1059 104 45 0.0954 93 50 0.0865 85 55 0.0789 77 60 0.0723 71 65 0.0666 65 70 0.0616 60 75 0.0572 56 80 0.0533 52 85 0.0498 49 90 0.0467 46 95 0.0439 43 100 0.0413 41 105 0.0390 38 110 0.0369 36 115 0.0350 34 120 0.0333 33 125
130 0.0316 ,135 0.0302 140 0.0288 145 0.0275 150 0.0263 155 0.0252 160 0.0242
0.0167 16 170 0.0161 16 175 0.0155 15 180
C2
31 30 28 27 26 25 24
130 135 140 145 150 155 160
0.0223 22 170 0.0215 21 175 0.0207 20 180
dependent upon swgnitude and distanee as per OOKOVAN
assumed Hagn 7 assumed Hagn 7.5 assunaed Na^) 8 attiinKü Hayt 8.5 Ce/s)Ckn)
(c/s)Claa}
Xg «ce. OIST. 0.5858 574 O 0.4440 435 5 0.3512 344 10 0.2867 281 15 0.2307 235 20 0.2042 200 25 0.1767 173 30 0.1548 152 35 0.1371 134 40
0.1225 0.1103 0.1000 0.0912 0.0836 0.0770 0.0712 0.0661 0.0616 0.0576
120 108 98 89 82 75 70 65 60 56
Xg «ce. OIST. 1.0462 1025 O 0.7030 777 5 0.6273 615 10 0.5121 502 15 0.4281 420 20 0.3648 357 25 0.3156 300 30 0.2765 271 35 0.2448 240 40
45 0.1637 160 45 0.2187 214 45 50 0.1474 144 50 0.1970 IOS 50 55 0.1336 131 55 0.1786 175 55 60 0.1218 119 60 0.1628 160 60 65 0.1117 109 65 0.1493 146 65 70 0.1029 101 70 0.1375 135 70 75 0.0952 93 75 0.1272 125 75 80 0.0884 87 80 0.1181 116 80 85 0.0823 81 85 0.1100 108 85 90 0.0770 75 90 0.1029 t01 90
0.0^0 53 95 ^07 |07
<c/s>Cloa>
Xg acc. OIST. 0.7828 767 O 0.5033 581 5 0.4604 460 10 0.3832 376 15 0.3204 314 20 0.2730 267 25 0.2361 231 30 0.2060 203 35 0.1832 180 40
0.0721 71 95
0.0964 94 95
Cc/s)€taB) Xg «ce OIST 1.3081 1370 o' 1.0507 lOSO 5 0.8384 822 10 0.68U 671 15 0.5722 561 20 0.4875 478 25 0.4218 413 30 0.3605 362 35 0.3272 321 40
0.2923 286 0.2632 258 0.2386 234 0.2176 213 0.1995 196 0.1838 18Q 0.1700 167 0.1578 155 0.1471 144 0.1375 135
45 50 55 60 65 70 75 80 85 90
0.1288 126 95
8 0.0451 0.0427 0.0405 0.0385 0.0366 0.0349 0.0333
50 47 44 42 40 38 36 34 33
100 0.0678 105 0.0639 110 0.0603 115 0.0571 120 0.0541 125 0.0514 130 0.0489 135 0.0466 140 0.0445
66 63 59 56 53 50 48 46 44
100 0.0906 89 100 0.1211 119 100 105 0.0854 84 105 0.1141 112 105 110 0.0806 79 110 0.1077 106 110 115 0.0763 75 115 0.1019 100 115 120 0.0723 71 120 0.0966 95 120 125 0.0687 67 125 0.0918 90 125 130 0.0653 64 130 0.0873 86 130 135 0.0623 61 135 0.0832 82 135 140 0.0594 58 140 0.0794 78 140
0.0318 0.0304 0.0291 0.0280 0.0268 0.0258 0.0248
31 30 29 27 26 25 24
145 150 155 160 165 170 175
42 40 38 37 35 34 33
145 0.0568 56 145 0.0759 150 0.0543 53 150 0.0726 155 0.0521 51 155 0.0696 160 * 0.0499 49 160 0.0667 165 0.0479 47 165 0.0641 170 0.0461 45 170 0.0616 175 0.0444 43 175 0.0593
0.0239 23 180
0.0425 0.0407 0.0390 0.0^74 0.0359 0.0345 0.0332
0.0320 31 180
0.0427 42 180
C
3
74 71 68 65 63 60 58
145 150 155 160 165 170 175
0.057.1 56 180
accleratíon clepeodent ipon ougnitude and distance as per OONOVAN
assunned Nagn7.2S assumed Nagn7.7S assunaed Nagn8.2S irniTiaiJ Hiprrt.TS {c/s)CkB)
Cc/a){iai}
Xg aec. OIST. Xg aec. OIST. Xg aee. OIST. Xg (c/s)(kii> .... 0.6772 664 O 0.9050 887 O 1.2094 1185 O 0.1588 156 oisr. O 0.5133 503 5 0.6859 672 5 0.9167 898 5 0.1204 118 5 0.4060 398 10 0.5426 532 10 0.7252 711 10 0.0952 93 10
0.3315 0.2771 0.2361 0.2043 0.1790 0.1585 0.1416 0.1275 0.1156 0.1054 0.0966
325 272 231 200 175 155 139 125 113 103 95
15 20 25 30 35 40 45 50 55 60 65
0.4430 434 0.3704 363 0.3155 309 0.2730 268 0.2392 234 0.2118 208 0.1892 185 0.1704 167 0.1545 151 0.1409 138 0.1291 127
15 20 25 30 35 40 45 50 55 60 65
0.5920 580 0.4950 485 0.4217 413 0.3648 358 0.3196 313 0.2830 277 0.2529 248 0.2277 223 0.2064 202 0.1882 184 0.1726 169
15 20 25 30 35 40 45 50 55 60 65
0.0777 76 0.0650 64 0.0554 54 0.0479 47 0.0420 41 0.0372 36 0.0332 33 0.0299 29 0.0271 '27 0.0247 24 0.0227 22
15 20 25 30 35 40 45 50 55 60 65
0.0890 87 70
0.1189 117 70
0.1590 156 70
0.0209 20 70
0.0712 70 85
0.0952 93 85
0.1272 125 85
0-01^ 16 1® «O 0.0167 85
0.0624 0.0586 0.0553 0.0522 0.W94 0.0468 0.0445 0.0423 0.0403
61 57 54 51 48 46 44 41 39
95 100 105 110 115 120 125 130 135
0.0834 0.0784 0.0738 0.0697 0.0660 0.0625 0.0594 0.0565 0.0539
82 95 0.1115 109 95 77 100 0.1047 103 100 72 105 0.0987 97 105 68 110 0.0932 91 110 65 115 0.0882 86 115 61 120 0.0836 82 120 58 125 0.0794 78 125 55 130 0.0755 74 130 53 135 0.0720 71 135
0.0368 ^ 36 145 0.0352 34 150
0.0491 48 145 0.0470 46 150
1®® 0.0310 ?! 30 165
®*®?'^ 41 165 199 '0.0577 57 165 160 0.0415 0.0554 54
0.0146 0.0138 0.0130 0.0122 0.0116 0.0110 0.0104 0.0099 0.0095
14 13 13 12 11 11 10 10 9
95 100 105 110 115 120 125 130 135
0.0090 89 145 140 0.0656 64 "9 145 0.0086 0.0628 62 150 0.0082 8 150
0.0337 ^ ,55 0.0450 44 155 0.0602 59 155 0.2^ 8 1«
0.0076 7 160 Q.0073 * 7 165
d'I^ Z ^ «•«9^ 7 1^ ^0^ ^ 0.0370 ^ ®® 180 0.0065 9.0067 67 180 175 0.0276 ^ 27 180 36 180 0.0494 48
C
4
LAW ENVIRONMENTAL CARIBE EDIFICIO CASO. SUITE 603 1225 PONCE DE LEON AVE. SANTURCE. PUERTO RICO 00907
TEL. 1809) 722-7740. FAX (809) 722-7796
12 de octubre de 1992
James F. Peedin Sénior Vice-Presidente
C06ENTR1X de Mayaguez, Inc. Metro Office Park 14 Street 2 Suite 340
Guaynabo, P. R. 00968-1739
Estimado Señor Peedin;
Asunto:
Informe de ingreso Estudio de Altura de Ole^e (Wave Helght) Area de la Facilidad de Cogeueracióu de la COGENTRIX Barrio Algarrobos, Mayaguez PR Proyecto de Law Euviroumeutal-Caribe Núm. 54-2574
Law Environmental-Caribe (LE-Caríbe) se complace en presentar este informe de progreso para documentar el estado de situación del estudio de altura de oleaje que se lleva a cabo para el área de la CXJGENTRIX en Mayaguez,Puerto Rico.También,este informe presenta un desglose por tarea del trabajo analítico a ser realizado para la evaluación de altura de oleaje (wave height). Entendemos que los objetivos de esta evaluación son los siguientes: •
Estimar el potencial riesgo de inundación del evento de marejada de huracán de 100 años de frecuencia en el área de
la facilidad de cogeneradón bajo condidones existentes y propuestas.
•
#
Estimar el impacto esperado del proyecto propuesto en las elevadones de la altura de oleaje en los alrededores del área del proyecto.
Cogentríx de Mayagüez Proyecto Núm. 54-2574 Página Núm.2
Proveer datos de altura de oleaje producidas por marejadas de huracán (storm surge)a ser usados en el diseño de medidas de protección de costas en el área del proyecto.
Información General
COGENTRIX propone desarrollar una facilidad de producción de vapor y energía en el Barrio Algarrobos en Mayagüez, Puerto Rico. Este desarrollo consistirá de una planta cogeneradora de 2x150 MW. El proyecto está localizado al oeste de la avenida José González Qemente y está dentro del
área inundable de la bahía de Mayagüez. El área del proyecto está limitada por el este por la Avenida González Clemente, en el sur por la Federación Pecuaria de Puerto Rico, en el norte por el Caño El Maní y en el oeste por
la bahía de Mayagüez. El proyecto propuesto cubrirá aproximadamente 30 acres.
Basado en los Mapas Regulatorios de Inundación de la Jimta de Planificación de Puerto Rico para el área de estudio, el área del proyecto está localizada en zonas IM y 2. Basado en el Estudio de Seguro Contra Inundaciones(FIS, por sus siglas en Inglés) de la Agencia Federal Para Manejo de Emergencia (FEMA,por sus siglas en Inglés) para la Cuenca del Río de Añasco, el área del Proyecto está localizada dentro de las zonas de inundaciones V7 y A8.
El alcance de trabajo para este proyecto está diseñado para estimar alturas de oleaje asociadas con la elevación de marejada (stillwater elevation) regulatoria de 100 años incluyendo cómputos de "wave runup**. Se están realizando cómputos de alturas de oleaje usando el modelo de FEMA, versión de 1988, de Análisis de Altura de Oleaje para Estudios de Seguros Contra Inundaciones (WHAFIS, por sus siglas en Inglés). Este modelo está basado en la metodología recomendada por la Academia Nacional de Ciencia (ÑAS,por sus siglas en Inglés) para estudios de seguros contra inundaciones. La evaluación de Vave runup** se está realizando usando el modelo de FEMA (Wave Runup Model) versión 2.0 y las guías y procedimientos presentados en el Manual de Protección de Costas(Shore Protection Manual)
desarrollado por el Cuerpo de Ingeniero de los Estados Unidos(USACE,por sus siglas en Inglés).
Cogentrix de Mayagüez Proyecto Núhl 54-2574 Página Núm.3
El alcance de trabajo para este estudio se está llevando a cabo a travéz de las siguientes tareas: Tarea 1.0
Determinación de la Elevación de Marejada para la Tormenta de 100 años
Basado en los datos publicados por el FIS para el área bajo estudio, la elevación de la superficie de agua para la marejada con frecuencia de 100 años en el área del proyecto es 1.6 m-msl(5.25 ft-msl). Sin embargo,FEMA está en el proceso de revisar los niveles de marejada de 100 años para Puerto Rico. FEMA contrató al Departamento de Recursos Naturales(DRN) y DNR contrató al Recinto de Mayaguez de la Universidad de Puerto Rico (UPR) para recomputar las elevaciones de la superficie de agua para la marejada de 100 años para las costas de Puerto Rico. Entendemos que el
estudio del DNR-UPR ha sido completado y sometido a FEMA para su evaluación.
Nos comunicamos con el Sr. Aurelio Mercado de la UPR quien fue la
persona encargada del análisis de marejada y nos indicó que sus cómputos
de elevación de superficie de agua (stíUwater) para la marejada de 100 años para el área donde se propone la Planta COGENTRIX es de 1.68 m-msl (5.51 ft.-msl). Sin embargo, éste nos indicó que FEMA todavía no ha adoptado los resultados de su estudio.
Para propósito de nuestro estudio asumiremos la elevación de la superficie de agua para los 100 años como 1.68 m-msl lo cual es un poco más álto que el valor regulatorio de FEMA al presente. Tarea 2.0
Cálculos de Alturas de 01eq|e(Wave Heights) y"Wave Runup" -Condiciones E3dstentes
Este análisis se está llevando a cabo para determinar las alturas de oleaje asociadas con la marejada regulatoria de 100 años y las elevaciones de "wave
runup" esperadas bajo condiciones topográficas existentes. Transectos perpendiculares a la línea de la playa están siendo desarrollados para producir los parámetros de insumo de los Modelos de FEMA Dichos parámetros son representativos de características topográficas y estructuras
Cogentrix de Mayagüez Proyecto Núm.54-2574 Página Núm.4
hechas por el hombre que podrían afectar la disipación de energía de las olas y los efectos del Vave nmup". Al presente se están desarrollando tres transectos a lo largo del área del proyecto y dos fueras de los límites del proyecto.
El propósito de esta evaluación es determinar el potencial de inundación existente en el área del proyecto producido por olas como resultado de marejadas huracanadas sin incluir el desarrollo del proyecto. Esta evaluación proveerá una línea base para comparar el impacto esperado del proyecto propuesto en las elevaciones de alturas de oleaje para la marejada de 100 años.
Cálculos preliminares usando datos disponibles en nuestra ofídna indican que las elevaciones de alturas de oleaje esperadas para los 100 años en el área del proyecto están entre 7 y 9 ft-msi. Cálculos preliminares de "wave nmup" indican que el "nmup" de las olas por encima del nivel de marejada oscilan entre 2 y 4 ft. Hacemos notar que estos valores están en proceso de revisión basado en datos específícos del área que no estaban disponibles, pero en proceso, al momento de este informe de progreso.
Tarea 3.0
Cálculos de Alturas de Ole^e(Wave Heights)y"Wave Runup"Condiciones Propuestas
En esta tarea los datos de los transectos generados durante la Tarea 2.0 serán modificados para representar las condiciones de desarrollo propuestas. Los modelos de WHAFIS y WAVE RUNUP serán modificados y ejecutados para determinar las elevaciones de inundación esperadas incluyendo el desarrollo propuesto. El análisis de condiciones propuestas será realizado para la tormenta de marejada regulatoria de 1(X) años. Como parte de la evaluación de las condiciones propuestas, LE-Caribe determinará la altura de oleaje esperada y la elevación de "wave nmup" en el lugar donde la pared de
protección de la costa se está proponiendo.
Cogentrix de Mayagüez Proyecto Núm.54-2574 Página Núm.5
Tarea 4.0 Preparación de Informe Un informe técnico
incluyendo los resultados y conclusiones de LE-
Caríbe será preparado. El informe incluirá un resumen de los datos obtenidos, los resultados de las simulaciones de computadora, y nuestra recomendaciones. Incluiremos en este informe mapas, dibujos conceptuales,
y los impresos de las simulaciones de computadoras, si es necesario. Los resultados del informe final serán incluidos en los criterios de diseños para
el projecto el cual será sometido a ARPE para su revisión y aprobación. LE-Caribe agradece la oportunidad de trabajar con la COGENTRIX en este importante proyecto. De tener cualquier comentario con reladón a la información que le estamos proveyendo,por favor comimíquese con nosotros a su mejor conveniencia. Cordialmente,
INVIRONMENTALrCARIBE
Laúl Colón, P.E. Hidrólogo Principal
IPT/RC/csl
Exhibit VIII
Documentos de referencia de terceras personas o entidades no
afiliadas con Cogentrix-Endesa sobre la necesidad de incrementar la capacidad generatriz y/o apoyando el carbón como una fuente de energía, siempre y cuando el proyecto cumpla con las leyes y
reglamentos federales y locales que protegen el ambiente y la salud:
(a)
Resolución Número 2 adoptada en la Convención Anual de la Asociación de Industriales de Puerto Rico en agosto de 1992.
Esta entidad sometió un Memorando a la Junta de
fecha 9 de septiembre de 1992 apoyando el proyecto.
(b)
Comunicado de Prensa de la Cámara de Comercio de Puerto Rico de julio de 1992.
(c)
Artículo de la Cámara de Comercio de Puerto Rico en el Caribbean Business de fecha 17 de septiembre de 1992, "Cogentrix Supported -If".
(d)
Comunicado de Prensa de la Asociación de Constructores de
Hogares de Puerto Rico de fecha 8 de septiembre de 1992. (e)
Artículo en el Business Puerto Rico, "Mayaguez Electric and Steam Power Plant Seen as Major Infrastructure for
Región"
escrito
por
Tom
Russell
en
la
edición
de
diciembre de 1990 y enero de 1991.
(f)
Artículo en el Caribbean Business del 4 de junio de 1992,
"Let There be Light - Can Puerto Rico Meet its Energy Needs?"
(g)
Editorial del Caribbean Business del 4 de junio de 1992, "The Wonders of Politics"»
-2-
(h)
Articulo en La Estrella de Frank Gaud, "Pide Atuneras se Alejen de Marcha" del 30 de julio al 5 de agosto de 1992.
(i)
Editorial del San Juan Star del 4 de septiembre de 1992, "Coal's Future".
(j)
Articulo en el San Juan Star del 28 de agosto de 1992, "Lebrรณn Says P.R. Needs Power to Grow".
X
Resolución
Número 2
FUENTES DE ENERGIA
POR CUANTO;
0 abastecimiento de enecgía eléctrica confiable a un precio estable
es indispensable para el desarrollo económico y la calidad de vida de Puerto Rico;
POR CUANTO;
La Autoridad de Energía Eléctrica ("AEE") tiene actualmente una
capacidad eléctrica instalada de 4,200 megavatios y una capacidad eléctrica disponible de aproximadamente 2.800 megavatios para servir a aproximadamente 1.2 millones de abonados residenciales, comerciales e industriales;
POR CUANTO;
La AEE requiere una reserva de 65% para poder dar mantenimiento programado y reparaciones no programadas;
POR CUANTO;
La AEE ha proyectado un incremento en la demanda de energía eléctrica de entre 2.4% y 3.5% anual hasta el aho 2000, y para cubrir esta demanda ha determinado que se requerirá aftadir capacidad generatriz de 1,000 megavatios:
POR CUANTO;
El 99% de la electricidad producida en Puerto Rico proviene del petróleo importado;
POR CUANTO;
La variación constante en el precio internacional del petróleo coloca a Puerto Rico en una^rosidón vulnerable dada a su alta dependencia
en el mismo, según demostrado durante el conflicto en el Golfo Pérsico, durante la primera mitad del aho 91, presenciando una alza en el precio del barril de combustible quemado por la Autoridad de Energía Eléctrica de $23 a $36 el combustible Núm. 2 y de $12 a $22 el combustible Núm. 6; POR CUANTO;
Las facturas enviadas al consumidor puertorriqueño en dicho periodo reflejaron un aumento de 35% como ajuste debido al incremento en el precio del barril de petróleo;
POR CUANTO;
Puerto Rico compara desfavorablemente con los Estados Unidos y Europa que han reducido dramáticamente su dependencia en el
petróleo que hoy en día constituye menos del 10% de la fuente de energía eléctrica en estos países siendo las fuentes principales el carbón y la energía nuclear;
POR CUANTO:
En los Estados Unidos y Europa el carbón sirve como fuente energética principal constituyendo el 57% de la fuente para ios E.U. y 32.4% para Europa;
POR CUANTO;
El precio del carbón ha sido estable, y debido a su abasto amplio, se espera que dicha estat)üidad continúe en el futuro;
POR CUANTO;
La energía nuclear conlleva otros riesgos, además de requerir un proceso de permisos de gran complejidad y de muchos ahos;
POR CUANTO;
Estudios confiables concluyen que con los avances tecnológicos el carbón puede utilizarse como fuente de energía sin menoscabar el ambiente y la salud;
POR TANTO,RESUELVASE POR LA ASOCIACION DE INDUSTRIALES DE PUERTO RICO:
Apoyar el uso del carbón como fuente de energía para Puerto Rico siempre y cuando las plantas cumplan con todas las leyes y reglamentos federales y locales aplicables relacionados con la proteodón del ambiente y la salud.
X
Bm I t. h —Mun i z
8097204^TSS
P.02
^n\cC(Oo PI=¿eosa S^ffTQ
ADVIERTE PELIGRO CRISIS ENERGÉTICA ente de la Cámara de Comercio de Puerto Rico, Edgardo Rubén Martínez, reveló en
ia de prensa que en Puerto Rico existe el peligro de una crisis energética por la dependencia del petróleo. L.
¿nte de la CCPR, acompañado por sus asesores, el Sr. Lewis Smith (Presidente del
5 Ener^ de la CCPR) y el Dr. Juan A. Bonet (Presidente íící Comité de Asuntos les),: divulgó un informe preparado por el Comité de Energía de la CCPR. Este ñala los peligros que plantea para ia isla su excesiva dependencia en el petróleo para
:ión de electricidad. £1 Presidente de la CCPR también señaló la necesidad que tiene ico para ampliar su capacidad efectiva para generar energía eléctrica, si se quiere ia competitividad de la economía puertorriqueña;
3 líBlcado por la CCPR sobre producción y consumo de energía eléctñca llega a la n de que si no se adoptan las medidas necesarias para expandir la capacidad de n y utilizar fuentes alternas, antes de ñnes de siglo se socavarán las bases competitivas lomía del país. La situación se considera tan grave que podiiá provocar un retroceso eles.de vida en Puerto Rico, segün apunta el mencionado informe.
)también señala que ios problemas energéticos de la isla se han complicado por la falta inimiento preventivo y de mantenimiento operarinnal rutinatio de. las principales de producción. Al momento, la capacidad generatriz disponible de energía eléctrica
3 es de 2,930 megavatios, la cual disminuye a 2,040 MV cuando dejan de operar dos principales. En tales casos, ocurre un déñdt de 260 MV entre el nivel de energía 3 y el consumo, ocasionando los "famosos" apagones selectivos.
Iver esta situación es necesario recurrir ai uso de fuentes alternas ai petróleo para la n de energía y aumentar ei rendimiento energético, mediante cambios en los sistemas
;ión y mantenimiento, así como mediante cambios en los patrones de uso de energía, medidas específicas que se proponen en el informe de la CCPR, se encuentran las
Poner al día el plan de expansión de la AEE, con óptima participación del sector privado. Al respecto es necesario tomar una decisión rápida con respecto al
j^royecto Congentrix. No cabe duda que Puerto Rico necesita una mayor capacidad generatriz y que la requiere en la región Oeste.
Smiih—Muniz
2.
909T204T3S
P.03
Adoptar como meta de planificación paia la AEE, la provisión de dos unidades de 450 MV en caliente, en vea de una como ocune acniaimente. Ello es
necesario para evitar ios apagones frecuentes.
3.
Aumentar la disponibilidad promedio de las unidades generatrices a un 80%.
4.
Transformar plantas generatrices existentes para la quema de orimulsión de Venezuela.
5.
Emprender en la AEE un programar de economías compartidas, donde la AEE reembolse paite del costo de medidas de eficiencia energética que instalen empresas privadas.
6.
Establecer un programa de asistencia técnica a abonados comerciales e
industriales de la AEE para la utilización eficiente de energía. 7.
Promover el uso masivo de calentadores solares. Para fínanciarios se podrían garantizar pxéstamos a esos fines con el Fondo Rotativo de la Antigua Oficina de Energía.
8.
Mejorar la efícienciá en la AEE.
9.
Hacer obligatorio el diseño y ejecución de un plan de conservación y mejora en la productividad energética en toda organización privada que reciba ayuda gubernamental significativa, así como en toda agencia pública.
10.
Permitir, para prepósitos contributivos, la depreciación acelerada a tres años de las inversiones de equipo para fuentes alternas de energía y para incrementos en la productividad energética.
11.
Sustituir, en forma paulatina pero consistente, el uso del petróleo en la generación de electricidad por otras fuentes, como el carbón y ci uso de fuentes renovables de energía.
£1 estudio de la CCPR también refleja que las tendencias a largo plazo están en contra de los países importadores de petróleo. Por lo que urge establecer una política pública que promueva, en todos ios sectores de nuestra economía, la sustitución del petróleo importado por fuentes alternas de energía que sean competitivas, con los controles ambientales adecuados, así como la promoción de la productividad energética en todas sus formas.
cnergia.cp
v.uiorauu b^iu iie i» aaniiiy laiaiiu louwi
ana manuraauring organizations to look :nto the effect of the agreement on
Trade Representative Carla Hills to retaín the Puerto Rico tariff on coffee.
^^essed tuna tariffe are to be phased olBIver 15 years. reduced 1/15 every year. and rum duties wouid be phased out over a lO-year period, he said. "1 am concemed that these are two
important industries to us and not other
aiiu wicoica oii
Sept 10 to Congress.
Tuna ts particularly sensitive. he toid -Hills in a July ZQ-letter. statingjhat "above and beyond what might occur in
u.vjmv
jobs on Che island. in aúdition to prov ing federal liquor excise tax rebat which are a maior part of tCommonwealth's revenues. Puer
trade negotiations (the most significant
Rico's share of the Ü.S. rum market *
concern for Puerto Rico) is relief from
from 85% in 1987 to 80% in 1989 anc
the C1.S. govemment's overly broad secondary errbargo on raw físh designed to retaliate against dolphin-unsafe fishing
threatened by increased federal a
practices."
"The embargo ís choking off the sup-
state liquor taxes. he said. stating th Mexico has the resources and rum p ductíon capacity to be a major threat the islaiKi iitdustiy.
DISCOVER YOL with Infor
MINOUA Man;
CONGENTRK SUPPORTED-"IP. The Chamber of Commeice endorses the use of coal as an altérnate souice of
energy - as long as thelequiied environmentaisafeguaidsare met. Thus the Congentrix operation in Mayagüez is favored if the health and safety requirements are guaranteed and the health of both employees and neaiby residems is not in peril.
images. not paper, is i and cost effective do<
ELECTRICAL BLACKOUTS HARM BUSINESS
Tne cost of doing business in Pueno Rico, the Development of enterprises and the general economic environment are greatly hanned by the numeróos blackouts. The Chamber recommends:
• the operational efficiency of the Electrical Power Authority (EPA) be augmenied together with its generating capacity. • that EPA complete its expansión programs with the máximum paiticipation of private
We all agree that paper has bec and file, easy to lose or misflie.s impossible to secare against dis. ing. Stop overburdening.your s
industry.
that EPA expand its capacity and increase other sources in orderto reduce the island's f5% dependabilitv on petroleum. CARS,CARS EVERYWHERE - NO PLACE TO PARK
The Highway and Public Works Depanment has been requested to consider the deregulation of paiking fees and that these prices respond to the markeL The Chamber also recommended meihods to encourage the building of numerous parking lots. as well
PROUDLY BROL
ncc
as the tlnancine of the constniction.
'FEDERAL AGENCIES TOPROVIDE DATA Representatives of the major Federal agencies with local offices met last week with
WHEN THERE'S I
officials tfom the Chamber for the puipose of establishing procedures for the.exchange
THIRl ARI THE PITNEY BO^
úf infomiauon. The aim is that our membeis have available the data toease the creation
Your business cannot wait. TI
and development of business and other economic advantages. Mr. Rafael Cebollero,as chainnan oí the Federal Relations Committee. will meet on Sept 12 with Federal Govemment representauves. One topic is the San Juan Bay improvements as recom mended bv Mr. Israel Rodríeuez Soto. US Coips of Eneineers.
systems from Pimey Bowes i fastest and most effective wa^
NOiv IS THE TIME - TO INVEST The economy should grow by a 2to 3% rate during this fiscal year that just staned. The mierest rates should stay stable during the rest of 1992 and have a modérate increase in 1993. The differem faciors indícate that the time to invest is now and the Chamber is coniident that the economv will recover noticeablv in 1993.
LOÑG RANGE NEEDS ÓF ENERGY The Energy Comminee has revealed a deiailed snidy on the energy siiuaiion in Pueno Rico. Additional capacity.other sources.enviromental safeguards and conservation are
communicate with your clien and suppiiers. PITNEY BOWES 9500 • 6-second transmission
• More economical láser plaii • Dual paper dispenser • Standard memory(512K,3' • Remote control service
pans OI this srudv. Kiir furlhiT inlnrmation on lliuahiuf. Cali 72l-6(ií>l) • Puerto Kico ("hainhcr ol'l'oiiimcrce'
^ischer 6 ...maklnfi conune
1 DICE.WI)ACnoS Oí- l'HIVATi: L\ÍEHI'RISE. AVINtDa PONCI DI U6N. NUM. 3*2, MI»
LA ASOCIACION DE CONSTRUCTORES DE HOGARES DE PUERTO
RICO QUE PRESIDE EL ING. FEDERICO STUBBE, APOYA LA BUSQUEDA DE NUEVAS FUENTES ENERGETICAS PARA NUESTRO PUEBLO.
"HA LLEGADO EL MOMENTO DE CONSTRUIR, BIEN SEA NUEVAS PLANTAS TERMOELECTRICAS, PLANTAS DE CARBONO O AQUELLAS
FUENTES QUE NO PERJUDIQUEN NI EL AMBIENTE NI LA SALUD DE NUESTRA GENTE Y TENGA EL ENDOSO ABSOLUTO DE LAS AGENCIAS FEDERALES Y ESTATALES", EXPRESO EL PRESIDENTE DE ESTA ASOCIACION.
PARA MAS INFORMACION, LLAMAR AL 751-IA71.
WANDA DIREC
8 de septiembre de 1992
AVAJAS
RA EJECUTIVA
highway and aiiport expansions, especially Rafael Hernández Airport in AguadiUa, with 11,000 foot mnways capable of handling the largestjet
Electric and Steam
aircrafL The former Strategic Air
PoWER Plant Seen as
Command bomber base, now a hub operation for several local and interAmerícan cargo cairiers,is expected to begin acommodating scheduled passenger airline traffic in the next few
Major Infrastructure
years.
In fact,once the huge $1.2 biliion Costa Isabela lourism mega-resort gets
FOR Región
underway in late 1992,the demand for
non-stop jet passenger service in and out of Aguadilla will be extremely compelling as the super project gradually expands its acommodaiions and services. What's more,the resort's
By Tom Russell
The cogeneration business took off after the energy crisis of the 1970's when not only the price of petroleum went sky high, but the uncertain availability of fuel oil became common. Additionally, the high cost of building power plants weakened prospects for
the oil-powered industry. A big U.S. prívate power plant expecis to readily satisfy all local and federal govemment safety and environmental
thousand direct jobs in the tuna can neries.
In addition, the coal-fired plant would be a giant step in the Commonwealth's efforts to reduce Puerto Rico's dependence on petroleum-produced energy.
The urgency of this strategy was underscored last August when an intema-
tional crisis erupted in the Middle East that put a strain on oil supplies and príces.
Other specific benefits include saving the Puerto Rico Electric Power Author-
ity(PREPA)some $275 million that it would otherwise allocate to construc-
tion of its own plant to meet the expanding energy demands of the westem
standards and siart producing boih electric energy and steam for the May-
región. Cogentríx would supply
aguez region's residential areas and in
PREPA with approximately 295,000
dustrial customers as early as the
KW of electricity. The power project will also generate more than 1,000 construction jobs over the two-year building períod. Permanent employment at the plant itself should exceed 100 persons. And Cogentríx will also provide from two to three years intensive on-the-job training for qualified local engineers and
summer of 1993.
Buming low-sulfur "clean" coal, the
$450 million Cogentríx cogeneration plant will not only deliver 300,000 kilowatts of additional electricily to the area, but it will also sharply reduce operating costs of tuna canneries ihere
by providing them with 100,000 pounds of low-pressure steam per hour for use in iheir manufacturing processes. The piped-in Cogentríx steam would cosí the canneries 50 percent less than ihey now spend to produce it themselves. Moreover,Fomento officials underscore that the new source of steam
will go a long way toward siabilizing the industry and securing several
satellite operations plus the general
business and industry development in the westem región will increase the pressure on both the govemment and the major airlines for operational and facilities expansión at Puerto Rico's
second intemational airport In an extensive interview with James
Peedin, a Cogentríx sénior vice presiden!. Business Puerto Rico leamed
that Cogentríx is a privately held
corporation with headquariers in Char lotte, Nonh Carolina, and was formed
in Apríl 1983 by former power plant utiliiy archiiects, engineers and executives. It develops, owns and operates standardized coal-fíred cogeneration plants selling electricity to public utilities and steam to industrial users.
Cogentríx operates eight pwwer plants in the continental U.S. and another one
in the developing stages. The company's total revenues were
technicians.
Overall, the plant is regarded by professional economic development promoters as a major stimulant lo the growth of new industrial and business
enterpríses in the Mayaguez región.
The development potential of Puerto Rico's westem región has already been boosted by expectations of major Puerto Rico
James Peedin, Cogentríx Sénior VP
production provides opportuniües for such manufacturers to make significant
a diversiiy of commercial and industrial
million the previous year,and 1989 revenues were over over $194 million.
savings in their plant and equipment
likely to compel directjet passenger
costs as well as operational expenses.
intemational service at Rafael Heman
"By constmcting asteam pipe from our facility to a cannery or pharmaceutical, we can control the temperature and
dez on a scale second only to Luis Muñoz Marin Intemational Airport.
$130 million in 1988, up from $51
During ihe 1930's and for decades later, ocal buming plañís were aulomatically associated with extreme air polludon,
including acid rain. However,coal companies are back in business today because they are mining low-polluling
pressure of the steam as desired by the user," Peedin pointed ouL
trade. The Costa Isabela resoa itself is
To finance the proposed $350 million power facility, the Cogentrix creditwoithiness record is Grade-A. The
low-sulfur coal and using
advanced polluüon control
HH
devices. One major belt of low-
sulfur reserves stretches through Ub|j| Kenlucky, Wesi Virginia and
Virginia, the región known as Appalachia. More low-ash coal conceniiations are found in
Montana and Wyoming. Colombia and Venezuela are
also good sources. Peedin insisied that the company uses only this high-grade,lowsulfur coal. Moreover, because
of the advanced technology used by Cogentrix and other modem coal-power plants the buming process cleans the product even
further. "In fact," Peedin said, HH "ic is four times cleaner than the
standard sel for the year 2000 in the Bush Adminisiradon's Olean Air
Bill, now awaiting Congressional
Four of the company's plants now serve U.S. texdle producers, lwo plants serve chemical companies and another two serve pharmaceuücal fírms. The
Futura Economie Growth
Noneiheless, the cogeneration projeci faces a dozen major approvals by Commouwealth and Federal Govem-
menl agencies, including an environmentaí impact smdy. Some 30-odd goveramental permits,including routíne approvals, niust be obtained. "We are
pharmaceudcals had leamed that the Cogentrix steam is purer than what they
company's earliest experience was with General Electric, which lent the firm sufficient funds to purchase ten turbines. This gave Cogentrix founder George T. Lewis Jr. a key link to high finance (G.E. capital resources) and led
were producing themselves.
to some $220 million in G.E. loans over
The greater certainty of available electric power for new industries is expected to encourage the development
the pasi five years. Other blue-chip lenders to Cogentrix include the CIT Group(a subsidiary of Manufacturers Hanover); Prudential Capital, The Fuji
of feeder industries and businesses, i.e.
small suppiier and service operations. Development expens also note that the
Bank,and a consortium of European Banks headed by Compangie Financiere
confident," he added,"that our modem
Costa Isabela megaresort could speed
de Paribas.
plant faciliiy will readily meel all of the
up operational functions of its numerous hotel facilities if the increased power production from the Mayaguez power plant is available. The coinbined economie impact of these major tourisin, power, and
"Cogentrix has been able to borrow large sums because it doesn't boiTow on
The proposed power plant is expected eventually to help Fomento aitraci more industrial projects to the Mayaguez región, especially particular pharmaceutical, chemical and texdle operations
transporiaüon projects on the westem región could set off aii extended business development boom ihere, as
industrial customers."
that require sieam in tlieir manufactur-
example, by greatly expanding its cargo and passenger services would stimulate
required siandards and regulations." Tlie coal-fired facility will be built on a 28-acre PRIDCO owned plot cióse to tiie tuna canneries, henee convenient for pipiiig síeam to ihern.
ing processes. Cogentrix sieam
well as benefit the rest of Puerto Rico.
The Rafael Hemandez aviation hub,for
Business IM Puerto Rico
its balanc.e sheet," Inc, Magazine reported,"but its steady cash flow guaranteed by the lO-to-20 year contracts it writes with utilities and
Now in his early 60's, Lewis had a 34-
year executive career in engineering and the utility induslry before launching his cogeneration firm over seven years ago.
Buuti5iB3Lliie4yiaiilIDfivantay^A amcLapatesliai^rfr"»M':r'.Jitnking:taitiuy
1993 CASUMO coaasj
l
OL YMPIC MILLS
• -'^■Page 4
I! '].] 3 V
1
":2aB
9HI[
} X pustamvcBaitt.25
Let there be light
mOED
Can Puerto Rico meet its energy needs? Chef's Table PigM-SIMI
New editor named to BuenaSaíud Pagas?
inaustfv Profilas:
Poultry & Meat
i ., i M .| tj J
'
■ i-'.iU.A'H f'.USiril SS AssDCkiT j r; :i)t
r
«■ VWiiM.a:. V
^ « M'
Kicü's fiítuie econt)mic qrowih is hntu] tonipronused by ttií» Puerto líico i.leclric
i'ijAiT /\iillic)ntv s (l'fepdl conlinued depentJcnre íhi imported oil to produce noariy 99"-. ol the nectricilv consunied bv ils more Ihan l. l ÜV.(/JÜ industrial, conintercial. residential ano mstitiitiuiui ciistomers.
' • tm* tnediUimr- bureaucrouc red l.ioe .mu w.eiMiiifndfd bul nnsmtormed atid misguided .iitriiipis to proiccl thc environmenl are bdrtiliemxt «•iioris bv private-s«'tlor inveslors lodev. iiip r it-an coa! terbnoioqv as a iiieat»er ano inniv emifonnnmtaliv sound bource oi energy. iCcnlinut-a on
í)
Processors Pagaa3S-39
Packagíng Pa9B«4(M1
nrr^oas 720
^iSEEDRY I Plaza Las Americas
'
reorganizas management
Special Facturas:
Travel
paga# 23-24
Grand Regatta Columbus P.g.23
'^ging \
PagBa2S-29
{■a» boca powot pum
ThH*er.
laea
FROMTPAGB SrOHY Tne owBitataxv ci reiiaoie eteanacv n compeuwe
I Fomento i.'As an oiand. oui energy oaae caitnoc oe tot>
rates a essenosi u ensure me comocamcnessof locattv
ally deocnocm on od Vbe nave to meet tne enveonmeraai
manuBCiureo ormucb ai «ona manca ana to mumu
cosca and chaHenges tor Andaig I sowces IX cneigy'
toreign ancaonent EJecmcaw a abo ouaat lo conunued commeroa ano feaumoa graaan. mam and otner dewcpmcnB ma Biamcour ef Me
Pueno Rico)
ingalaontcdiii ing ai dv bend inartnt tor k' vtdnanbto lo oM ailly cnd pitee t
^rhemaiMiiaiuiciii—<<ourmDdnaoaaya cafletf akcBrtüMT aaíd «liiajci Madmo Jt CerameVivBi. an cnaauwntnm c—■■■ lo CogenMi Inca
ing ■> Moody* tovaim Sevica Rating Mewa d Maren
prepoaed coa flunanq co-ynaaiwn («kuiiüiy and
stesmi aant tor Mnyaquei "SvWiu IL tfcret no new-
16.1992. For Aacai toar 1991. the grasa pubic dcPt d the Cmiuiiuiiaeatth. rraicn d d financeo thmugn oono
soaper. no reon no tütwon, no lecunrailaigiama.
tssuea. «ns > IZ8 bdilon «nth Plepas ouistamg deoiat >Z7 UMon or 21X d the putiic debt
no surgeiy no wacr pumoa—nodifei^'
-«
útsmbuoon ailiaojucfuíe OKcnoatca on anpoaad oU
ChaddfcftC tiaacÉ riijcclai .andiodvtMihrl lyondcUS enBfcddiiwanadinora di >399.1 RdMcn
as tne peneranng aouree. ancaa* n pcofcoed demand.
in 1991. micaraenaciiiaihiBTig [mana pfinii •
Pueito Rico'a ccuiml cnci^y ptpftÉpm w csMno* aliy ones oí lúyii face an a^ng poaca genaoong aid
on dw US. tmddand capaUe d pcodiicbig
and enwuanaaa ctaioam
tlhapUd dacdtdylaaddeo
The base átftMnnure lor goanaig and dlNriMl*
ing etecmcay ai Acre Rico ■ aeouiJSyeanoldwldi^ lilln eangraqrcnnand! dtddondpPMrp
Cunendy Piaoa has a >1.4 bMian ewiiear eapim eipeiaUure program deagned lo up^ada dB Wand'a An to dadoo cnocai reaeive cauauw nceded to prewm
Dowcr ouiagea as a resuR of Bfcaadcaac and acheduÉed mancfianca.aaal.loanA.delVble.PnpaicccuBwidP'» ecior. Picoa ano puna to ouad an >60 miMcn ocK
'And de capacay a now ñas anaaed ■ not adcva avaiiable becauae d pfeanflowna. lepaae rnaamnance or
labor proPicfm.'
Pan d the leascn for the higher etectncnv retes m Pueno Rico ta Plepas deoenoence on oii Ior oeneiaong ciectncalpoMC Pilis me muatcjiptitraa lucí ior gcner* aong tlauiluu tolkiaed bv necurai gas. nuclear oraver and cod (the toara cosdy). accordmg to eraeita. Ptepa oonaumas apptunaraiy 26 nuiiaii tiaiieii d
>lJ900p«rli1i i Tha 2S d (hadcMqíb
iho ioduin mopán
fuetcdaycaciepiasenongSOX of theubtitvsoperaidig (uchaaboiamondoeadnamauniddmaand
eapenaao aaaooaiad «rtth conadicdon d da
|iiwic)lai«i ncemiiimniailiiiiiiaÉa a Cbgcarti iacAdy M 19 iiaaaha. Apgmcaaly 30X dapraíacüicenaPiioOancUBbudgBiad lar cnMraranan
CogcMdpoaar I
pitee d ttnwidance
The isiandt depcndenoe on od lo iji iwim neaity F99% ditteleqncKy—comparad to43X fardieUS.
momtand—puta de Pueno Rico ceanomy at the mercy of fluctuanig «and o4 pnces as a raadi d pottlcal un-
awmgeeiia6Ítt*yd97X.¥Hhelndu*iyiiaac>* aga d flZX. D» team pndand fejr CogcddRladidaB can alao ba laad bi a Hdy d maní* factiatng up andona. Indudlng prodieOon d
rest. war and the cancXonDoAed piediiCDon d «ofld oil producen.
coras, or sbout >481 miüion duráiq Aacai vear 1991. VtnciuelB aupplies Pieos «nth about 30X d the tuei n consumes «nth the lemamder purcnased on «and ori
menrats Hydroeleccnc gcneistion accounta tor a fattie moraihan IX d the clectncav produccd.
Piepaa ilavarad elcctncity tatas are atao a resud d highesman araraga labor ct«a per nctctecuiuaypiodticdoa The ubidy produces 1 JO müüon küowrat haws (KwHrs) a ytar per «ortcr. compared to 434 mdfaon KwHn for the towera ond 6.40 miiim KwHrs for tne
higheai esidnrae for a uüidy on the US. masiiana. Plepa emptoys alxxit 10.600«artraiB. didüdaig aome 770 tomporary empdriwes. Appraxenateiy 8.000 of
On the (iS. meaitand. ooM accouna tor aPout 53.9X
mamlanda electnoty pioducDoa
Enargy conanuoa en paga I0
'We inust seefc atemaiiva aouraei d enetgy for Rueño Rica" laid Manuel Oubon pmdm d San Jase
ta19 Mforyonofg»
1
1
38% 20yeanaoai1uciearanoiMiioalaeuepu«)ei.nat' uralgaa.8ndothersaurceaaccaunttoraPaui46X dthe
DevewpmentCtt ana tamierauiiMicuaMi dthe Pueno Rico Economtc Ocvaiopincm Admmntfation
ibgS vmh
ot the eiectncRv preduccd tooavi comparad to about
i
'Prepa ior wnamer reaaone naa not aicicaacü tts
poHcr genetataig capaciy ai 20 vean.' aatd ene aource.
raeraga. wtato leratrniid retes «ore 112% d the US.
\
oumaigpoiwrpianiaiArecBODy 1994capada «d producing 200 megaiMCis d «ccBon Tha udd la aiao ai« stottaig a piiot 20-meaBMa Oaoov aaxage fKdby lo lltl me gap duraig uneaxciBd losa d genemong eapaatyt
oirac consudant lo Fbniia Becauie d the pooocoed usera Local bidualnd ratea mere 183% d the maaiiand
ad^f lo pmduBi2200 Cujjcaila Mipitpiy bi CadMy lar laaa di >li>00 paa
majof pmnf ptans. lo DetCf aa daliÉiuPon aynwiL and
eieetnetMdily mees él Ptieno Rico «ere 1S2X dthe US. maniandaratage.upiram 119X bi 1988.acconBngn aiacanilycomplciBdatudyonthewiandiscictjuit.praaf infiaaonxa preparad byJohn R. StevmnJr. an cceneiMBoanera di «Mch Prepa niiiaaii ra pdcnoal «cctncdy raras are subsidtied ai the erawnae d eiduaoiai
last poMcr ptanc. Aguan ai Salrae hanig bean ESTin 1972.
-
m^ncv nm
EJecPicdy coats In Pueno Rioo are mucn higher man thearafagetorUS.mBmlandanKasndnsiiiain 1991.
* Totat numoar d oagn m tras «sue; 56 The Mioei d Companea leteiTea to m tns issue a on paga 53
CONTENTS SUBJECT veiuiMai.No.22 Ttwraoiv. «na 4.1192
••9CM0I
> wv MI ««/yus
abOienow» fr>
S36 00 OMf
«' - :
$^oud>Of*> .
31 MA Juan P0 0093c «'osimoaii MflO ■wm cnaFott * = 3oi :2'34 • taia » ya*:* : ^a- «o An9u.9^.
AdvaraMi» Cilandir
Pagt 5i
AdvaraangdddiiralMig ...... 36 BadongiPinanBa 7 CaigpShds 52
EdAocill
Enargy FinaneraEoanomy inihaNaws
Manutacdmng
13 37 lO 47
RatoAfCommarcB
OataBood
SecuRty
Tounran
20
wastraigii Ddtoiine
33
WhSfeNaws
42
48
34-35 14-15
21
SPEOAL FEATURES: Chafd Tabla
30-31
Grand Ragua
4.6
Madia Madtoara NatnmlOuttodt
Chamas 42 Ctaarafedd 54.55 CofflOUMIl 16 ConaaucuonBida 32 ConsaucoaraFadEstita . i2 CruMShtoS 52 51
46
2.17.19 9
Cotumous
HNANCUL DATA BmimioiCMS
SO
MonayRatos Mortgagas NmvCocoaratxins
50 50 51
StOCÉC • TaxExamcibans
50 SO
22
Indusuy PidHes; RouRry&Mest Ptocdiaors
38-39
Padtagdtg Pacliagaig& Comoanems
40-4i
TraMBi
25-29
NERCY
ThtaM*v.>une4.iBoa
CtMHM
a
m
Máximum
Electrícity
5Í^-
_ 2«
ss :!
Demand Htnone ana orepcMfl n mw x tOOO
CZ
HISTOfBC PMUECTED
sS§ÍsSisÍsi§§§$§i§slÍÍÍi FISCAL VEAR
I IgDlTORl^
Ttmnday. JtBe«. iBoa
Thm woondmrm of poUHem Pueno Rico is headed for onotticr serfous probtem ff the CommonweoRh yovtnuiiua and the local potticiani don't
Economics may be cataiyst leading toward *one world*
stait acnng responsibly soon.
^^Imost lOOK of the istand's dectridty needi are now genby buming imponed oiL According to this week's
^^Pt page sioiy. cur presem peak generatlng capacity — after subtracting downttme for maintenance. icpain and
In the iSdi anasy. the bumwuh for toterpia-
latwr disoutes—is87% of total capodty.Major breakdowns affect that pcrcentage. and demand incteases at a pro» jected late of about 5% annuaiiyL Sbiee we aie nal poit of
ing Amencam wete: 'Go wcst young nun.* In
Now a m^or cffoit to undcr woy to make tiny. poktlcaBy bcbagucred toreci en cvcn biggcr lecpr
the doUng dm of the 20lh ccntisy. tMs b ctroig-
cfs O*
ancJecblLBlgridayitan suchas the one that odMon the
Ing tK *Ge nonh, aouth. csst end west — end
mabiland. we cannet buy rrcrti cfciUitüty hom ncighbopíng states.Our"newest" powcr piantIs20 yeais eid. It doesn't take an cneigy cxpcft to figiae out that we are
dont «op «the boTOer.* Mere «Id more, Amcrien butanos b diMsvcr-
headed for a scnous protiem; we need to stait developing futme genendng capatíty noK Twemy yeais ago,38% cf the ekctitdty gotereted tai the States was taom coaL Today coal ocoounts for atanost 54%. an inoease of 42%.Theie is good leason for this. Coa!can be at least 80% deonesbuming than oü and Is at leas!50% cheaper to use tai pnxludng vkUiiüly. it would seem that we should be teilbig-ata ovcr ouiselves building a coal source powcr piant for the futura. Viet we aie not. What we are doing is bulldtng another olMiuming F>ower piant tai Aiecibo at a pipfected cost to the govemment of at least S80 mittaon.
Why Gil and not coal? Because although coal Is 60% cleaner than oU. it is not 100% enviionnientally deán. Iñ
other words. we ate gotng ahead with an oil piúit that wili De ñve bmes dirtier than a coal plant because coal is not completeiy ciean. This doesn't make sense to us — but
apparentJy it does to the poiitidans who would rather not taae on tne environmentaiists fespectally tn an dection year).
ceuiNiba with (LS. Investí ncnt Amencan ftrms
already acoNail for 61% of all fondgn kivuuneiu
Ing that ene wq p to deel wlth a hoMsn ecanemy st home b to tIMc—«nd proflt giabaly.
there'—and bradto hopo that the end cf the Cold War wb be o key new atknulUB.
Soma cf the Uggot cocpondeib tal the comuy are setdng tht paos. Oenerd Motan savwt tas
Theaaoduaef thotnandaef esBovietedctStoa.
(vbyl) lidn by meidng a muHtaMBaiHloIbr ptdta bi Eurepe «Mb boppeig mere than a bOlgn dol beat-aelling aoft drink in the U.S.. laat year recorded a mere 2iX of íta woikMde-openong
enginaan. mathematicbiu and techniciaiu to lateeL they bebeve. could be the canot that tures iTtany other Mgheedi Amencen cumparer § toMlow on the hccto of auch gbntt as IBM. Digital Equipment. Hewtett-Packord. and Texaa
iiicome tticrc.
Inatiwnenta.
Wtti the eoNapae of oomnwnian boMnd Iha oíd Iron Cunain. compeniea like General ElecUfc. Prodei & Gambb, Ford and QM heve been luaM
The tn^ottay of axbtbig Ametinn kwcaanenu in toreel are ki MgtXoch. cxportoneised compa-
ían taithe doisotic maifcct. CocwCota. atili the
ing to mvcst hcavily In Potand. Hungaiy and Czcchostovbda. McOoneld's and IbpaiCO hsve
nica — and Mdr Buiier.- tored'B New York-beaed trade conantoabner to the ílSu eatsnetea ttiet aa
made waSpi tatactaed hrerMioJa in Meeccw with
much aa a quaiter of iaraei'a work forcé is engeged ki aociSific. ecedemic or tcchnicai pro
their BIg Mae and Pizxa Hut oparetiena. Juat
h
recentiy. Colgate-Palmolive and Kmait havc entered the Eastem European maMcL
But wMb the» vcreum naiurtaly capturad the hcadbiea. thev leai aignAcanee b o pan of wliat
haa bacema an authcntbBHy pbnctréide aeaieh fornonosdllianta matkctpÉaoea.
Apparently it's aiso easier for the enviionmentaiists to accept an environmentally diitier oil-buming plant tfian something new. Right now theie is a company. Cogentifx. that has put up
n no BnMie
Atthaugh bisci ranIcB enly 42nd on the Mst of
Mott (iSb bmatmcm overean ho gene about whcre you wottaf espocL The No. 1 fortagn taigct haa been Cañada, with S6M büiian bivcated there
'EIghty-eight of every 10.000 workers ore empaiycd in reaearcti. compared with 56 in the U.S and 49 ki Japan,* Bubcr toid me. 'What the gcnoal pubiic and even the butaness worid don't rcalixa to that bttaci today hu beeome a MgiMechRology powethouse — In the fint renk when It comnto acbnoabaaed taduaoba auch aa com
putan and cemponcntt. labcommuiiicatkxia. tmaging. medical equipment. Moeechnalogy and gcnetac engkbefkig. aobr and hybothciraal cnej^
glea.*
installing a cooi plant tai the westem pan of our island. But
by AmeiKan ampaniea In 1990: folloarad by Brtttin. with S6» bOHon: Gennaiiy. $27.7 bibon; SwNsarland. S23.7 bSiioii; and (paihapa auptisingiy. for tiioae who thought all tha doon there
all of a sudden our poiitidans got scaied and stopped all
wcre doaed) Japan. with S2I bWon.
eMluatociy on domeatic maifcab — and domeadc
Buliatefy there ho been a growing tandeney to look beyond auch coloaaL and aven paat aiich bendy bceba et Eaatam Eurepe end the fbdfic Riffl. to hclp boitaer the proAt pfGbsa. Indb. for esatnpb. b abandordng itsich ef taa oíd aodblb dogne ki an cftott lo attrsGl graso
European kiveiatimita hete helped oca» |oba bi the paat decade. ao Amettcan bivcatment ewer-
nine coai-tiuming power plants in the States. Cogentiix luis already invested SO miliion of its own money to prepare for
tapprovais.lfCoyeiSite'splai»weieappfovcdby the iment agencies, the company would be gcing aheod
i the construction of a S500 rntaBon coal plant using its own money.and we would have a privatdy buüt piant simi lar to the ones si the States.
However. our poiitidans aie all afmld to ghre tMs proven type of preiect a goehead that would save the industrial, commeiciai and lesidemial communities of our island luuv
dreds of mitttons of dotlars a year — and save our bloated □ectric Eneigy Authoiity 300 miUion a yesr. The wonders of petty poütlcsl ■
a& jnvntmwu PepalCo hn fetvnted S17 mMon tn foodproceaabg and aohdrink ptantt there.
Yankec dolían are pouiing into ahoeroaking
In ahort thén. poUtlcal effeita concentnted pfoductlon are beuuu'aiig more remoto fiuiii reaby cach year. Jub as Japaniae. Canadian and seaa to eontiibuting to the peaaibbty of a more
pruapiariuaandalabbeerldbttf»21tafceisuty. EootsimicB. ta fuma out. to tfw cataiyat that may
tndy bad US traanl'OI» woild.* Meenwhde. aspó ing busiiMaa atudcnta would be welKadvtoed to
fadilin ki Bfaot «Mb the Ametlcan ahare of for-
make aura that aiong with the accounting and
eign inveatmant in long-ignored Poitugai roae
managcnnem coursoa. ihey taka a coupb cf for-
fran 7.7% ki 1965 te I2X ki 199a
eign bnguagea. aa weta. s
VolunretaaNai.23
Thuradsy. duna 4,1992
(IBM ac. II» • os» tu • ne. ais M «res OM UBA MI t M re CMoaEMi auaaoss r a sb nmiMs tare aarei. a«
cnvw»mawCMsaasNauBMEniT»NmnrereossnareM ootoaMi»a
CASIANO COMAAUNKATtONS
1
Pide atuneros se alejen de marcha Por Frank Gaud
Ma^agüez:Ralph A. Ward, vicepresidente de Operaciones
de Star Kis! Seafood Company en Long Beach, California,
'Fi MaygüezanosprlaS udyelAmbient,conelapoyde
expresó su preocupación por la marcha planificada por por ambientalistas y pofiticos en contra de la planta de carbón *n y y exhortó a la fuerza trabajadora no participar de actívidexl. lod.
En declaraciones escritas distribuidas por la agencia de Publicidad üranus,en Mayagüez, Ward señala que el opo-
nerse a los planes de la Cogentríx"es oponerse al desarrollo
de Mayagüez y poner en riesgo los miles de empleos que no podrán ser garantizados por ninguna otra industria en el área o en ninguna otra parte de Puerto Rico.
"Pedimos a ios residentes de Mayagüez y a nuestros
empleados que conaderen las consecuencias económicas
.
que traerá el obstaculizar este proyecto y que se abstengan de participar en esta nnarcha",dijo Ward.
los tres aspirantes a la alcaldía y otros líderes políticos, celebrarán una marcha este sábado para oponerse a los flanes de la firma norteamericana. De acuerdo a Ward la"supervivencia" a brgo plazo de la
te
industria en la Isla depende sobre cuan competitiva se pueda mantener en el mercado versus las industrias similares, en
otras partesdel mundo."Estacupervivencia,recalcó jiffito la seguridad de empleoen Mayagüez,estáIntimamente atada a v--'_ <
proyectos como los de b Cogentríx. £1 vapor que le com praremos (a Cogentríx) reducirá nuestra dependencia en
combustible más costosos", dijo el industrial:
La gerencia a nivel local de la Star Kist se ha negado ñjar una posición"oficial"sobre el controversial proyecto a pesar
de que bajo la ley federal PURPA esa lixlustría y la firma Cogentríx firmaron un acuerdo para esta última vender vapor a b pbnta local.
Ward explicó que el gobierno locaJ desea que la Star Kist se mantenga en Mayagüez por que es una firma que genera
muchos empleos"pero se rvccesita un servicio de enerva eléctrica confiable a un costo razonable v estable".
Las dos pbntas que operan desde esta ciudad generan sobre 4 mil emplees y han estado luchando durante los útbinosafioscontraindustrias similares enTaibndiaJndom-
sia ^ plises de b Costa del Padfico, segúr^xplicó el alto
^cutivo de b Star Kist a nivel de Caliíorr^^
A saga of carnage
California drama ^Caliíoniú'5 DMwW'Uza gofenior compromised Ust yetr Ad closed a $14 bilUoo tndfei gap with Ux increases and ¡^eoding cuu. Tbe lormer broogu io 17 billioo — bot abo a
ROCKVILLE. Md.
speaJa írom notes bul does noi reíd at aa audleace.
bail d pobUe dintauaia, ao(bá ycw Gov. Peta WUsoa kaki tbe
* aign, ap araribe auge tn tbe ampÉÉtbe-
Une. Aiter a SVk-ooatb ataadefi «tth tbe Des»arat>Ktant8itad
attr. raadi "StiQa.'tBVtttng Boinoaarai^
evc>^«baBciB| laxt. Tbe icpratad Dtiuüuatic nw aaga ■ bealtb caía, adacetloa. tbe oew mxuuuij —
en bet atUl pbetenapÉna
tn coturast 10 Prcaidcnt Boib. «bo ti rftiinrrt to iiii
legelttB» miw pi¿ed lÉmili a bedid tkai makes ip aa It bilUa ibertfaU Ib ivfMMa bfotttit—er lorteiBf imrtb la — pebUe iBTiea. AOHg athar Ibiaci, tt boida per popü t i—iMH* {g eiCBnnfy
deayinf tben tbe
$teoodMty ■*■*>««'**■
$¡ taue» tacnaMc raim im at
tbe UníTenlty d CalUonta 4b per cent and redacea hadiag fer tbe SO-campoi nata eoUcfe iyeai. exriadea numeakleata írom pnbUe bealtb eorerafe aad radacaa rcimbanenHata fer aame piouaüBW; aid trina wetfara aad payiueuU to tbe bUnd and diaabled bJ poeeoL Oa tap d laat Tcar^ esta, tbeae wül be fclt.
Voten anartiag fm tbe ieaa ara kaning tbe ■»*—"♦■g d reeeaaiaiL Tbey ara Tktma Bot jas d macnacoBontie fottca,
howmr. bot alio d tbeir owa policke cool to hciinaai, Erea befara PeataioB proenaoB waa alarind, Uka liorbbwri, Hrficaaeü Doaglai and Ifinbaa Almft wera QMTiDg iwimia» oQ d tbo BatL Calífonila'B carpanta taxca ara amoag tbe fira dgbaat la tbe *—"*117. ""«t Ua
penooal tncoinB aad aalea taxea place tt ta Iba top d^ atatca
Aott-grovib eoeang, cBoPaneon grata rafiiatteea aad bocM
piicaa twiea tha aattaaal a ra age belp
vby Callíerda
is bemorrbagtBg Joba Tbe problcn b ecavcaadid bjr a aarglng pepalattoa.
Migratioo from ueaiby atata aod legal and ill^al inmigra» Uoo trom
and Aaia nw tbe pópala tloti awall 35 pcreeat
in tbe inoa to 31
Tbe aatm graw 10 percaot.
CaUlaraia ta a umiiioam d tba natlae ta Ita aobtraleDca
aboot gnearu— la paepia
M
axeeüt auta aatfieaa —
and io« taxea. Tbalr dlrtdad ntada prodMa dvidad goeera»
meot, witb a ftcpebücaa eaeudjre wndUBg • Dcnocndc legialatara. in Sierimwan as in Wa^lacba. One dUfereoea befeeB tbe two eapttals ta tbe gorenior'a obligatlco to
tbe badgeL Tbe altlmate dodga d
bornnring to «■■«m»»' tTp"ilng eonaempboe ta loraclaaed.
Coal's futuro ^Coal endcr ptanna batanea diKHinwda Tba Anariean eoal
Btotry, arpMind bp ^rttadlp poUtieal forcea, bu Ukearlae
Ifown hard and ratnabia. la fact U.S. coal minee expect to prodoca a recoid btUloB tn tUe paar. madi d tt gotag to etecthc-power planta. A aupiiúg U pseeat d tba pUda bon caal eren tboogb noeteena Oean Air Acta biaa atttiBpud to wnte tba maenl's obttnary. If bad poblie rrtahnna kad final aay. Slng Coel troald bata
long atoee becn depaaed. Polla Indícate tbat M perceat d tbe
pntiUe oppoeM greetar coai ne. aad no «eedn. Caverna Slag beapa. Acid rain. Blacfc long. Sooty efcieL Garbea dladde. Labor TioiaBee. Mdhaae aptoeiena. tadi are tbe reapeM la aap anadattea taat d tba «ard "caaL'
Y7 coal rmaina tba moti reilabla caergr aooree — "^aabodcaad," notaa Tbe Waü Straat Jonaal, "wtth aplara* tico eeata. pimifal ta loag-mn eoamctt at atabla prteaa," Tha DipailMiaai d Faargy praMM tbat eeal prtcaa Bill rtaa jad aa «gbtb aa BBCÉ aa ail aad gen príeaa. BiaktBg eoal tha "eeoaooiÉcal fint fiei cbeiea" d tba SIB *—■«■■r
The San Juan Star Give üght and The Peopla WM Find Their Own Way PuMMd a»áf iFf tw Smt Jum 3t» Co.. 9«i aan. PA. 704200 Aira— WpMl EOKI
i
Thf Ham Juam atar — hmay. Au«im
ixt.
Lebrón Ffom PS9« 81 ¿aooted a Dusmasa orxioaoDny for
aeaiing wTtn tna "grean'taauaa. Tne inauatnal «actor tn Puarto Rico
cnanging tna wty rt tooks at
' ^^^■onmeni. we nava gona Irom
:.^9E-ac(iva to baing pro-active. It is
no tonger anougn lor us to «tay abraaat ol reguUtiona on tt>« Moka. «<• nava to
go a ateo turtner and itay aoratn et reguiations wa «aa contaig n Bm lutura."
wnat ta tnts? A coioofua taaúar
iLeDronia praskiamartaganaralmark-
ager of Saana & Co.) promoortg tna lOes ot votuntary comokanea wim ragulations tnat aran t aven on tna oooke
/eti in mesa tigm timas, wny on aarm snouid a ousinasa pul na «Horts nto
somatnmgit s notavan raoutrao to do? Simt><a." said LaOrOn. "it makaa
good ouairtass sansa." Many industries nava discovarao tna nard way tnai it is ctieapar run a cwan
ooaration nowtnan it is to pay naavy
linas ana expansiva cieanup costa iárer. But. It goas turtnar tnao tnat according to Labren. Look. as a busmess. wa ara oapanaent on tna community. As long as we orova oursalvas to t>a good corDorata
ciiizens. me community wiM bhow ue lo ooarato unnamparad. ano nopatutty maKe profits ... "Atnr sil. wtien we taik about tna an-
vironment. we ara talking atwut quaiity
ot lite .. . ana orotactmg axisongtobs. creating naw roos ara proviOiitg gooas
ana sarvicas ara pan ol imorowig tna
PRMA Exmeutnm VIe»
ouaiity of illa," saiO Labren.
OanM Lmbrvn giv» • ü
r Maeaúr ffL a Tfwnótr to temm et i
Pumta fuem tuudurtm
wMT M
The island't anvirontnant woud ba in
cenar shapa if aii oozans ralviaao ib sny away Irom ttiair responsibitity.
Ona ol ttia mosi axtraoromary and oroauciive mactinas is tna Ituman body — me numan macnma, il yoo wrfl — ana aven tnat maotina oroducas waata.
Jjsi tninK olaiitna toiic wastawa pro duce in our nomas. aucn as ovan daatv ers. usad oil Irom our cars. total cieanars...
^^^wouid ñopa that ttta aama prasñas coma to baar on mOuairy tna anvifonmam wM Miar
dov^mto Our oaMy iwas ano bacoma pan ol our rtousanolda."
Let>rDn cnad tna growmg naad tor Pueno Ricans to bacoma mora mvotvad
>n racycimg programe. Aitnougn Laoron día not say it. it s obvious mat tna itiand wouio do weii 10 aooot tne PRMa at-
iiuoa Ol staymg abraasi ot "graan" issuas and atan racycimg on a votuntary Qasis Datora wa ara raqurad tt oo so by law. "Wa naad mora aOucatien. mora
irust in tna ayaiam. mora Oiatogua.. . ano as wa coma to a bañar undarstsno-
ing ol tna comptauoas ol amoronmamal (ssues. wa H raaua tnat wa ara aii
woniing lor ma sama ming.' said Lebrón.
Juarbe From Paga 81
juaroa waa panicuianv aatrsfiad wrm mis yaar 8 mama ot ttta anvsonmant. he exoiastad now ttte Aasoostion a sl-
íiiiation vnrn tna cteanup ol Laka Cidra wouid Da usad aa a oackdroo lor a re
pon dunng tna convamton. Ttta oaanup
Lebrón says P.R. needs power togrow wnen Oaniai Laoron. pratidant el tna Puano Rico MarH/facturara Assooation.
spaalia ol how amobona can gat m tna way ol ludgmam whan makmg anvirorv mentai dacisions. ona recaní controvar-
sy comea to mmd tmmaOMtaly.
Cogantru. Wrtnout a Ooubt. Puarto Rico naada
mora atacutuiy. Evaryotta m tnduairy knows maL"
indaad. dunng powar outagaa. many crtizana taca tna irtconvanmoea ot hav-
Ttia moat acMva CBwma i
m ttw PRMA ia Bia Cnvlranmam Comwutlaa. H has tiad
tts Iwnda tul Ma yaar anatyiino naw taguattena and tagialaUon and eounaalng «wNiaafB. It haa aiao tMM aanUnara. not lual
f or mambara, but lar tna camnwnMy at larga.
Mawbara ara urgad to aaa b>a Envlronmei* Commdwa'a sebaMe
lor moat ndustrtal naada.
"At PRMA. wa auppon raaaarcning altamatnra aourcaa. Out wa alac aupport coal." ratarnng to coai-tirad powar piants.
"TDa moat common ganaraisig sourca ot alaculcjiy a coal. and ovar ttta
pasi taw yaara. tna Mctmology lor ussig coal naa snprovad oramaocaily." But wtiat about tna propoaad locaiton
ot tna Cogantnx lacaity si >4ayagua2? "Aa lar ss tna lecabon. itus is a vary
ing no taiavtsion or air conditiontng tor a law rwurt. No big Oaai. wa say. wtiat is
asparbaa. Uto aarvieba provldad ara |ual anodiar asbwpla af PRMA
not baan trssiae or nava tna aoucaoon-
lew nours witnout TV?
nabúng buM a baitar Puarto Rico
al background to wargn aucn daosiona
ttvougn bottor corgorata
objactivaiy.
But conakMf ttw lossas lo a tactory wnan tna povmr goaa oui. A taw nours
ol lost proúucbon sma aOds up qiackiy
cttmnaNp.
Rican aMuatry musí maka uaa ot avary' producwn nour.
"Wa nava lo nava mora aiaeinc ganeratsig cipibaatas si oroar tor Puarto Rwotogmv. ' saysLabrtn. "Puano Rico la ospandsnt on oS. and trorn a
er and tind naw waya to tolva problama. And fuat wnan you tnsik Juarba'a aniira yaar is probably takan ib> piannstg ma cortvarmon. somabcOy nartda you PHMA's Annuai Repon for 1992. Not
cias sncuM waign ota scianüite avt-
otnar altamauvaa.
dance avsHabla wttan meking tnas
" I n tna oest Puerto Rico eonewred
nuetaar anargy. but tnat didn't work out. Wa cwi cortaidar iRhd and aolar (lowar
aa Bourcaa tor arwrgy. but untortunataly. tnay ara not aconomeasy taasttla
• Tnara'wara 27 taatsnoraaa givan batora tna Sanata. 45 balora tria Houaa
and 6 batora otnar aganoaa. • inara wart 142casatinBtraousad asttatanca on tna Asaooaoon'a nottma.
oniy oo you gat an rougn idea et now raaNybuay Juarba m. youaaa fuat now many aarvicai PRMA prowdaa its mamaoarsnip.
presa confarancaa. and 9 radio or taiavision programa,
• Titara «vara 92S cociaunatMina: 86 aooui anvsorwnaniai mattara; 567 about
now comitwty. govanwnam and Du8«-
labor: 112 about aattty: 160 about lag-
ness Dbopia can put tneir naada togattv-
isianon or ganan matiars.
mat ara assady si piaea. inaM agarv
straiag« poatt ot viaw. wa muM looli «t
wim a wttoppSig 62% ot ma caaaa ba
waa conskSarad a succasa m anowstg
"Wa hava totrusttttegovammant Instrumams — or ragwatocy aganoas —
into tnousanos ol doiars. In toO^s lr>crassatgty compatRna morksts. Puarto
racnrMca/daoskwiandmostot us nava
ing raaolvad.
• Thara «vara 37 praas raleases, fiva
• Thara «vas • atudy on aaianaa St wtiicti nOcompaniaa oarmoatad. • Thara waa a atudy on Dana»^
dacrtnna." «aid Lebrón.
And wnct it tnay maka an unpopmar dactaion?
"Wa snouKt tnist m tt>a coun aya iam." na asid.
whicn 120 compartías parttctpatad.
• Thara wara 41 regional maaartga
and 79 aub-ragiortal maatstgs to ba organizad. • Thara «vara numarous aaminara. aa-
hlbmona and aalaty programa to t>a organizad. • Thara «vara ISScompaniaa to par ticípala m tna Aoopt A Scnool PrtK—
Tha Itst goaa on. So. It dunnn»"Cerro-"*
Importación de Cenizas para Hormigonera Local
La ceniza del carbón es ingrediente requerido para el hormigón a usarse en fines
específicos. Una hormigonera local (Mayagüez)tiene que importar cenizas fY/y ash") para satisfacer los requisitos del hormigón a usarse en obras de alcantarillado. Se acompañan documentos al respecto.
X
DATE
TRANSMITTAL OF SHOP DRAWINGS,EQUIPMENT DATA,MATERIAL SAMPLES,OR
Qnewsubmittal'
Aprtl 5,1988
MANUFACTURER'S CERTIFICATES OF COMPLIANCE
□ RESUBMITTÁL
(R««d Inttructlon» on th> fVfit «Ida prior to loltlitlno thit form) REQUEST FOR APPROVAL OF THE FOLLOWING ITEMS (Thit loction wHI be initiated by the contractor)
Saction I
CONTRACT NO.
FROM:
TO;
U.S.ARMY CORPS OF EN6INEERS 400 FERNANDEZ JUNCOS AVENUE
73-2 PREVIOUS TRANS. NO.
G.P.O.BOX 4185_.,™,.,
(if any)
San Juan. PÜerto'^Rico 00936
<;an .inan. Puerto Rico 00901
PROJECTTITLEANOLOCATION PRj|f710 B6. Las Mareas fi llAYAMA UASTFMiTFR'TRFa-rMFNT'pi'ViNT Guávama'.-Püertó Rico 00654
SPECIFiCATION SEC. NO. (Cover oníy one saction with each
transnnittal)
TRANSMITTAL NO.
86-FBD-0135
REDONDO CONSTRUCTION CORPORATION
03300
w
m ^i1| C7 '•oi'H
ni .indmu"'
" oK i8tji*T?íf r T"
l.í'í.ivon:
ro ..■'od sfoiiaoic* it ad) dieín jlaij- 1 íIu, "*. "«o i¡isil=''i'!u.' v/sr
»fí) f>i
IrJxmcJui flots
DESCRIPTION OF ITEM SUBMin^D. ir.„:,row v-.-r -h, „ ijaw
noh^
(Type, size, modal number, etc.) "C v'»'"'"
1-
Report of Fly Ash Analyses
a)-Noven]ber
8"''CAT.VcüRVe"U"
ohO p t.
lollliw OOCUMENT
im-¿;ín*
iBjnl .r'RMimdij-
T^ciDRAWlNG OR" BROCHURL NO.
,
. ..
1987- •.u'r, - »nc'ic3il¡í!'qí bn* f.nc
IKCONTRACT REFERENCE
c.
f'r.; s mn'.';..-.i t jon ii Jsiti'noj: e
«Ir* 'M.-i!».'' ■
PARA; NO'."'
5 fe
SHEET NO.
5.5
d.
e.
f.
■mulo? "noiinhaV" oti-
b)-Bin of lading (March 22, 1988) ni
DRAWING
z
SPEC.
C E USE
CODE h.
i'ujn* ipr'iwr. 0 00.'I8 lo) b9»'j 9d U'EA mol Ir.' taU'ieií r»í6"5'j* '
'
j
FOR
SI 5 =
O
íc FFCI» mnoT í>/iD to balLOir (Sea instructioh Noi 8) •1 'Olí»»'
b.
a.
o ^
v'M'FG^tiR'tbWTh':"' 9 üiartc
i"
sd lililí >baf!a /
1»» is;
5 ftirt
"alqrnif' ' fos-an, b9V'»n/.-ms »i gnnaiin'Tiü'J to gtKil) mO i'ia'urjstüoaM te
'.'■«aTfrp
o»» si
« *. I M't'r.- '*. '
*•
.8
CO jZJl
■mi?
- a—■'
M'
"J Zt
n alqmM a '•• •IV
V"
"•-B'jc. ri*". ogtfc'jilidi uh; '.fiuso aiii
:iiv, yarh
-tr>-
nj .bs. irndur niHii ro I JO
k
o
3V|;'i rlfiA C300:. -.dC;» b'.<voio,.*i 'i
•ja;
REMARKS
lO'X»*'
uMvomiA
basiupí
ion n-.i
'ítmdi'jaR
.Ipiiwaat "*0 boten .üoiiupoi nui»i:i>dur9s iso
APR 2 8 1988 ír'..iii; :i - I M..
i.inswFib no barón <
• > •..
'ai"!
/
^ I cártifyll^at*the abpve sub^atlted lyfnsK^e been ra-
:¿jida«tf«5Tírdetall'tod_a¿£;EM#6ít^lícr in^ri^Tconlorm^,¿D«awith thejg^^n^rScj^d^^ifigt ^od loecUlcoStixM
f.t. v i.r.'V ?(T-ü: me»') ■o'amino.'? oit- -vo"'
structlon C( rp OF CONTRACTOR
Saction II
INCLOSURES RETURN^ (Liit by Item No.)
Cjoy97/y?eA)'Á ENG FORri/^25, Jul 81 4is.í.io)
APPROVAL ACTION
ÑAME , TJJL&AND SIGNAXURE OF APpA6vING AUTHORITY ^ I Re$ldert(s fiQgInpp/ EDITION OF 1 JAN fg |S 0BSOLETE.
DATE
(Proponent: DAEN.MPC)
I 4-/ SllEET
I
OF
\
l
3VIEW
Con tract No-
- 'COMMEN
86—FBD-0135
|Project Title: GUAYAMA WASTEWATER TREA.TMENT PLANT Guayama, Puerto Bico Transmittal No.
DATÉ: V1V88 Action Coda:
73-2
SHEET
1
of
B
1 1
'
C 0 M M E N T
CmtNo.
1
Approved provided recent quarterly test results are submltted CLnd they conply vith the speclflcation requirements.
• -
*
.9
1
>
-
-
í
\>
cable AOORESS
OFFICE
SUPPLIERS OF
BECHARA.MA> ACUEZ
empresas SECHARA 8UILDINC
READYMtX CONCRETE
TELEPHONE IS09I 834-6666
637 SOUTH POST STREET
Hormigonera Mayaguezana, Inc. P. o. BOX 1194
MAYAGUEZ.PUERTO RICO 00709
March 28, 1988
Eng- Raúl Bras Project Manager REDON CONSTRUCTION CORP. G.P.O. Box 4185
San Juan, PR 00936
RE:
WWTP - Guayama, PR
Dear Eng. Bras:
In compliance with project specifications 2.01-C-2, page 03006, we are herewith, enclosing the manufacturer*s Report of Flyash Analysis pertaining to the load of flyash which was shipped on March 4, 1988. I am also enclosing a copy of the Bill of Lading for your reference. I trust this information is satisfactory.
Sincerely,
HORMIGONERA MAYAGÜEZANA, INC. i
•
iC w Jbse A. Carreras General Manager
/dr Encls.
"Oü P O. BOX 305
227 PEARL STREET
MONIER
AUBURNDALE. FLORIDA 33823
RESOURCES, iik.
\\ f'
TELEPHONE. (813) 967-6626 TWX; 810/873-0401
1
March 11, 1988
Mr. Tony Loveall Á.L.O. Corp. Box 726
Waterloo, lowa
5070A
Dear Mr. Loveall:
Below listad are the test results for the most recent
load/s of fly ash shipped frora our Auburndale facility. Delivery Docket#:
2780
Fineness;
23.66
LOl (Loss On Ignition):
(3-3-88)
3.2
% Moisture:
Slncerely,
Richard J. Drdelot
R.egicnaJ Manager Southeastern Región
RJD:jao
A MONIER COMPANY
\
eportof
Consuiiing Geoiecnnicai,
ís-*-
Geoiogisis. Scseniists ano C.-'e'- srs
flyAsh Analysis :
y * :si I
fiflte-Kistncr
í
J J ^"SSl ilsjr
Consultanis.Inc P o. Box 690287. San Antonio. TX 78269-0287
Monier Resources, Inc.
fyz i563
12821 W. Goldan tana. San Amonto. TX 782a9 •(512) 699-S090
iviríl A*L)#^»LE
Project No
1/4/88
Date:
Assignaent tío:
Froject;
SAnRB4-103?
8-9906
Crvftal Riygr Plant ünit 5 Fly Ash OA
Samóle
December 7, 1987
Reesived
l'lonth of
Novpfubgr
HONTHLY COMPOSITE
1987 Raeulta
Spac*
Resulta
Spec*
ClaM F/C 9
Dioxide (Si02'•^
54.4 1
Aluminum Oxide (AI2O3).
27.8
Po/¿olanic Activity Index witn Dortiand cement
Iron Oxide (Pe203).% Sum of S¡02. AI2O3. Pe203'^
5.0 87.2
Calciüfn Oxide (CaO). %
70.0/50.0 nnin. >
•Vlagnesium Oxide (MgO). H
Sulfur Tfioxide (SO3).
0.4
5.0 max.
l.'oisiure Conient.%
0.5
3.0 ma*.
2.6
6.0 max.
.Loss on Ignition. ^ Af-nount fletained on 45uS.ieve. H Sceci'ic Gí^avity
21.7
at 28 davs.% of control
75 min
with lime at 7 davi. osi
eco—r- / —
Water Reouired. H of Control
tcs-ax
Autoclave Soundncu,
0.3-3x
3A max.
2.19
•-^l/ASTM C818-80 Above (1)
dgr 1/4 Rab«-K¡nn«r Comulttnts. Inc.
Ky
P. David P. Oarnell
Medidas de Construcción para Proteger las Estructuras de Toma y Descarga Durante Tormentas
La estructura de toma estará a una profundidad de 9 metros(30 pies), donde no debe ser afectada por tormenta alguna. La tormenta tiene su mayor efecto sobre la superficie, generando mar brava, y surte su mayor efecto cuando el oleaje impacta contra alguna superficie. El efecto del oleaje se atenúa exponencialmente con ia
profundidad. La troncal de la toma estará bajo el lecho marino protegida por una capa de piedras.
La estructura de descarga —el difusor— estará a una profundidad mayor aún, y la troncal de descarga también estará enterrada bajo el lecho marino y también estará cubierta por piedras.
Diagramas de los diseños de ambos aparecen en los documentos ya radicados.
X
RESPUESTA A LAS PREGUNTAS DE
LA VISTA DE LA JUNTA DE PLANIFICACIÓN
Ruego acepte estas respuestas a las preguntas que se hicieron durante las vistas del proyecto de Cogentrix de Mayagüez en Mayagüez, Puerto Rico- El formato acpií es de repetir la pregunta y luego proveer la respuesta. Pregunta No. 1: Avisar el tiempo de retención en la charca de aereación para el lavador de gases de agua de mar. También suministre la cantidad de 802 entrando a la charca.
Para estas dos respuestas, véase el diagrama N39744, revisión 1, titulado Flakt Hydro FGD balance de azufre.
Pregunta No. 2; Explique el aumento en la concentración de azufre en los sedimentos del informe Flakt 7/1991 acerca de la refinería Mongstad.
Véase la carta del 30/9/92 de Arne Ellestad a Bill Campbell dando
una explicación completa para el aumento en la concentración de azufre en los sedimentos.. Nótese que en ésta carta se llega a la conclusión de que la concentración de azufre tiene que ver con un
cambio en el tamaño del grano de la partícula del sedimento, resultando en la presencia de agua de mar adicional en los poros de el sedimento. Nótese también que la concentración de azufre tendría que aumentar aproximadamente 30 veces más para poder
precipitar el sulfato de calcio. Por lo tanto, este precipitado no ocurriría en Mayagüez.
Pregunta No. 3;
Discuta el uso de cloro como un macrobiocida.
El cloro será utlizado para tratar el agua
según sea necesario.
en el tubo de entrada
Se anticipa que inicialmente, el alimentador
de cloro sería utilizado cuatro veces al día, en aplicaciones de 30 minutos. Cada aplicación consistiría de aproximadamente 250 libras de cloro. El cloro será descargado por la toma y no será utilizado
en la tubería de descarga. Como oxidante, el cloro será consumido por el crecimiento biológico dentro de la tubería y del sistema de enfriamiento.
El
cloro
resultante
que
todavía
esté
libre
y
disponible después de haber pasado por el sistema de enfriamiento por agua y el condensador se combinará con el sulfato del lavador o será volatilizado en el estanque de aereación. No se anticipa la presencia de cloro residual en el efluente de descarga a la Bahía de Mayagüez.
Pregunta No. 4: ¿Cuantas veces ha tenido la empresa Cogentrix una
multa por violación de leyes ambientales y cuántos avisos de violación ha recibido la Cogentrix que no acarreaba una multa ?
-2-
Cualquier momento en que haya una desviación a las estrictas condiciones de un permiso ortogado a Cogentrix, el estado emitirá un Aviso de Violación. Si la violación se considera significativa y tiene la posibilidad de causar daño al ambiente, el estado seguirá el Aviso de Violación con una multa civil. Aunque Cogentrix inició sus operaciones en 1985, con tres instalaciones y luego con la instalación y operación de siete facilidades más, la empresa ha pagado soló una multa civil de $150. Esta multa fue pagada al estado de Carolina del Norte por no haber sometido a tiempo un informe NPDES mensual de muestreo. Este informe fue enviado al estado por correo normal cuando fue distribuido a ótras facilidades de Cogentrix. Después de ésta multa, Cogentrix inició
el procedimiento de enviar los informes por correo certificado. Además de ésta multa, Cogentrix también ha recibido otro 13 Avisos de Violación durante toda su historia de operaciones. La gran
mayoría de los avisos eran por cosas como excediendo el límite de zinc, y excediendo el límite máximo de flujo de la instalación. La excedencia de zinc fue por causa de químicos adicionales que se le añadieron al sistema de agua de la ciudad en Lumberton, Carolina del Norte, por la Autoridad de Acueductos de allí, los cuales luego se concentraron en la torre de enfriamiento de Cogentrix. Estas violaciones fueron corregidas por Cogentrix mediante acuerdo con la ciudad de Lumberton de cambiaran su inyección química al sistema de agua potable. El exceso de flujo ocurrió durante una lluvia fuerte que causó que la escorrentía de una tormenta aumentara fuera de los límites proyectados. Cogentrix nunca ha recibido un Aviso de Violación para ninguna de nuestras emisiones de aire y nunca ha causado daño al ambiente por emisiones de nuestras facilidades bajo nuestros permisos de NPDES.
Pregunta No. 5; Cuántas yardas cúbicas de material de relleno irán al predio?
El volumen de material de relleno será aproximadamente 101,400 yardas cúbicas. Aproximadamente 63,000 yardas cúbicas serán reubicadas de excavaciones del lugar, y 38,400 yardas cúbicas provendrán de fuera del lugar.
Pregunta No. 6!
Avisar las condiciones que causarán la licuación
de tierra en el sitio.
Como resultado de la investigación del subsuelo hecho por GeoCim, se determinó que: 1) materiales del subsuelo consisten de una capa superior de material arenoso.
2)
Hay condiciones de nivel friático alto.
Material granular suelto combinadp con un alto nivel de agua subterránea son los factores necéssfcrios para licuación durante un movimiento vibratorio fuerte de la tieíra.
-3-
Para analizar la posibilidad de la ocurrencia de licuación, GeoCim hizo un análisis de licuación de conformidad con Navfac DM-7.3;
Seed et. al. 1983; y Seed et. al. 1985. Además, se utilizó una aceleración de superficie máxima de 0.18 g en el análisis de
licuación según recomendado por Rodriguez y Capacete en su informe "La posibilidad de licuación en Puerto Rico." Para la aceleración máxima de 0.18 g, el análisis de licuación se llevó a cabo varios sitios y profundidades, usando los datos de
perforación del predio.
En cada lugar, la proporción de tensión
cíclica (T/Sv') fue calculada basada en el diseño de la aceleración de superficie máxima y las tensiones efectivas y totales a la profundidad analizada. Esto se hizo mediante correlaciones establecidas para la norma mínima de resistencia de penetración, NI (el valor normal de
penetración
para
que
NO
ocurriera
licuación).
Distintas
correlaciones fueron usadas para calcular NI para explicar la cantidad de finos pasando por colador #200 encontradas en los distintos sitios de perforación. El valor NI luego fue comparado con los valores N de corrección (N field) para determinar si
licuación ocurriera; ej. si el campo N es menos que NI, licuación
puede ocurrir. Estos resultados indican que la capa superficial de arena que existe, presente por todo el sitio, se puede licuar. Para
evitar
los
daños
de
licuación
durante
el
evento
de
un
movimiento fuerte, se deberían usar a) columnas de piedra para el sostén de estructuras críticas b) pilotes fundación. Pregunta No. 7 Discuta los VOC's y los metales pesados que el lavador de gases extraerá.
Las siguientes emisiones serán removidas por el lavador de gases: Las Emisiones
Acido Sulfúrico Bióxido de Azufre PM-lü
Porcentaje de Eliminación
30% 93% 0%
Mercurio
20%
Arsénico Inorgánico
50%
Berilio
50%
Metales en dé Traf2as fiénceno
50^% 9^
VOC's
0^%
-4-
Precfunta No. 8 Verifique las libras/hora de S02 emitida por Cogentrix contra la industria de atún como presentada,en la gráfica durante las vistas públicas.
La proyección de la emisión de 343 libras por hora de S02 para Cogentrix fueron derivadas calculando el Índice de la emisión de S02 de Cogentrix en plena carga usando carbón de 12,100 BTU por libra y 1% de azufre. Se asume que el lavador de gases de agua de
mar opera a una eficiencia de eliminación de 93% y la operación total tendrá un factor de capacidad de 90%.
La emisión de 483
libras/hora de la industria de atún fue calculada combinando las emisiones de las calderas de Star Kist # 3, 4, and 5, y también las dos de Bumble Bee, operando a toda capacidad . De las conversaciones con Star Kist, Cogentrix entiende que las calderas
#3 y #4 están operando con un combustible de petróleo (fuel oil) #6 con un contenido de azufre de 2.5%. En la primera etapa de nuestra evaluación, Cogentrix obtuvo números de la JCA acerca de los índices de emisión para ..las calderas de la industria de atún. El
índice de emisiones dada a Cogentrix era de 700 libras por hora,
que pareció ser alto basado en la información disponible a Cogentrix. Como resultado, Cogentrix se puso en contacto con Starkist para verificar sus índices de emisión. La verificación resultó en el índice de emisión de 483 libras/hora usada en la
comparación de Cogentrix.
Como enfatizado en las vistas públicas, el número de libras de las emisiones es variable, basado en el tiempo de operación, el contendido de azufre del combustible, el valor calorífico del
combustible, etc. Sin embargo, los cómputos de emisión que pueden ser importantes son las concentraciones desarrolladas al nivel de tierra. De ésta manera, a pesar del número de tonelaje emitido, el
número de emisión más importante relacionado con la salud ^ es la concentración al nivel de tierra, que es lo que la población de Mayagüez respira.
Pregunta 9: ¿Cuál fue el pH más bajo obtenido en el estudio de Metcalf & Eddy?
El muestreo del pH en la Bahía de Mayagüez se llevó a cabo entre
enero y mayo de 1985. El promedio de pH más bajo obtenido fue de 7.0 durante la mañana del 15 de mayo, el la estación 1. Los valores fluctuaron entre 6.5 en la superficie y 7.4 en el fondo. Durante la
tarde de ese día, en esa misma estación, se obtuvieron valores consistentes de 7,9 desde la superficie hasta el fondo. En las
estaciones 2,3, y 5 se obtuvieron valores de 8.0 a 8.1 en la misma mañana del 15 de mayo. En todas las estaciones días flutuaciones durante los treinta eventos de muestreo de enero fueron entre 8.1
y 8.3
-5-
Las variaciones en pH a corto plazo quizás fueron provocadas por
descargas de los ríos durante lluvias copiosas. Estas variaciones fueron más notables en la superficie y se disiparon rápidamente durante el día.
El diseño del lavador de gases con aguas de mar está basado en el
pH normal de 8.1 de la bahía. El diseño es conservador y toma en cuenta posibles variaciones en el pH del agua en la toma. Se pueden
hacer ajustes si fuere necesario para compensar esas variaciones sin tener que añadir reactivos químicos. Cogentrix no anticipa problemas ni a corto ni a largo plazo en su lavador de gases como consecuencia de las fluctuaciones de pH en el agua de mar.
Uy:
c.
\
HOT AIR
TEMP = 49'C
FROM
.ABSORBER 'UNIT 2
-/ TEMP = 35"C
FLOW = 660500 Nm'/h SO2 = 79 kg/h 305= 17 kg/h HCl - O
* TEMP = 34.4'C
SEAWATER
SEñWATER
FLOW = 5500 m^/h pH = 8. 1
so]' = 2- 81x10"^ mol/I FLUE GñS
FLOW = 58600 m'/h
EFFLUENT FROM ABSORBER 2
HSO¡ -0
TEMP = 55. 6'C
FLOW = 5500 m'/h
FLOW = 69600 mVh
TEMP = U9*C
SO2 = I. 0x10"'° mol/I HSOj = 2. 0x10~5 mol/I
FLOW = 671500 NmVh 502 = 1819 kg/h 305 = 2k kg/h
SEAWATER TREATMENT
TEMP = 40. I*C
HCl = 63 kg/h
SO
PLANT
3
FLOW = 5500 mVh
- 4, 5x 1 O ^ mol/l
2-
2- 89x 10^ mo 1 /
SO
pH = 2. 9
RESIDENCE TIME
SO2 = 2.9x10"* mol/l HSOj =4.6x10"^ mol/1
AREA = 2600m2
HSO¡ - O
DEPTH = 5m
COD = 1
-
1 1min
mg/l
SO3' = 9. 0x10"^ mol/1
30^' = 2. 74x10"^ mol/1 NOTE
A Iftii
HSO^ = 9. 8x10"* mol/l
I
^MPI» AfEA EROWN «OVeRI
COD = 78 mg/1 IN THE LIQUID SIDE
ABB Environmental Divblon for Flakl - Hydro
This iravlns Is seni yu In coníidence and wsi noi be cvled or disclosed lo t^Td nrile$ ultlmti HTliien perilsslon.
CALCULATIONS. THE SO5 ANO HCl ABSORBED IN THE
COGENTRIX.
LIQUID IS REPRESENTED AS
EOUIVALENT AMOUNT OF SÜ2.
F-No.
A
1
1 Rev.
9¿. O?. o9 0*(«
ISSUED FO^NFORMATION
VM Dreun
CHecked
Approved
2x150 MW
FLAKT HYDRO FGD SULFUR BALANCE
Raason for
U
C-No.
2IOi C«d Fi le
Date
#/. ¿>9 o9
Drewn
V
Res. No.
Aaseoblu No.
Orawln9 No.
Re\
I O Scel e
N59^44 ! 1
#\IPIP ASEA BROWN BOVERI
Cogentrix Inc 9405 Arrowpoint Boulevard Charlotte, NC 28217 USA
Yourref.: Bill Campbell
Ourref,: Ame Ellestad
Dale: 92.09 30
FLAKT-HYDRO / MAYAGUEZ
Dear Bi11,
Some comments with respect to sulfate 1n sediment are given 1n the following. INCREASED SULFATE CONCENTRATION IN SEDIMENT
The recipient follow-up study carried out at the Mongstad refinery in March 1990 showed a slight increase 1n sulfate content in the sediment.
The reason for the increase has been discussed with the marine biologists both at the Unlversity in Bergen and NIVA (Norwegian Institute for Hater Research). Their common explanation '1s as follows:
As documentad in the report (Report 7/1991) there is a difference in sediment arain size analyses in 1989 and 1990. The 1990 sediment was coarser and less homogenous than the 1989 sediment. This can be explained either by small deviations in position in 1990 or strong currents in the sampling area caused
by the outlet which would tend to remove the fine partid es from the sediment. The sulfate in the sediment is basically derivad from sulfate in seawater which
forms part of the sediment. Since the partidas are coarser, the sediment will contain a relatively larger portion of seawater and accordingly the sulfate content increases.
This is of no concern to the marine biologists and this is confirmad by the follow-up studies ene year after in March 1991:
"No harmful impact and the content of within the natural the area were very after 18 months of
on the benthos was observad after the outlet was deployed, organic material and heavy metรกis, except for lead, remains ranga of marine sediment. The environmental conditions in good before the outlet was deployed and continua to be so continuous use".
ABB Environmental Divisiรณn for Flakt-Hydro
Allll BKOWN BOVEDi
PRECIPITATION OF CALCIUM SULFATE
When concentrations of calcium and/or sulfate are increased 1n a solution, calcium sulfate will eventually precipítate out of the solution. Solubility is
defined through the solubility product K = concentration.
' ^50-2" where C rneans ^
Seawater is far from saturated with respect to calcium sulfate.
Keeping a
fixed calcium concentration, one would have to increase the sulfate
concentration approx. 30 times to be able to precipítate calcium sulfate. This means that the sulfate concentration must increase from 2700 mg/1 to 81000 mg/1. The sulfate concentration through the seawater FGD plant only increases to 2780 mg/1, thus precipitation will not occur.
Yours faithfully ABB Environmental
División for Flakt-Hydro
Ame El 1 estad
ABB Environmental División for Flakt-Hydro
JUNTA DE PLANIFICACION
Oficina del Gobernador
Estado Libre Asociado de Puerto Rico
Sobre:
Vista Pública
IN RE:
Art. 27 de la Ley 75 del
COGENTRIX (PLANTA DE COGENERACION DE 300 MV, BARRIO ALGARROBO MAYAGUEZ, PUERTO RICO
enmendada y de la Ley 170 del 12 de agosto de 1988,
24 de junio de 1975, según según enmendada
COMPAÑIA DE FOMENTO INDUSTRIAL
Consulta de Ubicación y
Posibles Enmiendas al Mapa de Zonificación de Mayaguez
Parte Proponente
92-29-0877-JGU
MOCION INFORMATIVA
A LA HONORABLE JUNTA DE PLANIFICACION:
COMPARECE la parte proponente a través de la representación
legal que suscribe y respetuosamente expone y solicita: 1.
De conformidad con la Orden de la Examinadora en la
consulta de epígrafe, Hon. Nydia Rodríguez, incluimos con esta
moción la información adicional de la parte proponente, según detallada en el Anejo A.
Respetuosamente sometido.
En San Juan, Puerto Rico, hoy 14 de octubre de 1992.
CERTIFICO haber notificado personalmente en el día de hoy copia
fiel
y
exacta
de
esta
moción
informativa
con
los
documentos señalados en la misma a las siguientes personas:
1.
Servicios Legales de P.R-r Inc.
P/^
Elmer l. cuerda Acevedo y
Apartado 839
Cardona Acaba
Mayagüez, p.r. Q^eso 2.
(Representantes de la comunidad El Maní) Claribel pabón Durant Servicios Legales de Puerto Rico Apartado 839
Mayagüea, Puerto Rico
3.
00680
Prof. Lilliam Ponce Navarro Urb. Río Cristal
Cluster 8 T, Apt, 1 B 00680
Mayaguez)
®
"o organizado de ciudadanos de
4
-2-
Mayaguezanos por la
,
--/artinez Suite 274
Mayagüez, P.R. 0O68O
(Organización Ambientalista del Area oeste) 5.
Misión Industrial de p.r
p/c Jorge Fernández Portó Apartado 3728
6.
San Juan, Puerto Rico 00936 Ariosto Sotomayor Negrón Calle Estación Núm. 55 Mayagüez, P.R. ooeso
7.
Ing. Juan G. Muriel Jardines de Mayagüez Edificio 5, Apto, 609
Mayagüez, Puerto Rico ooeso 8.
Sr. Oliverio Serrano Rivas Interventor Apartado 1273
Mayagüez, Puerto Rico 00681
9.
Rev. Henry L. Beauchamp, c. Ss R
Parroquia Ntra. señora del Car¿e^
Calle Claudio Carrero Núm. 293 Bo vi m
Mayagüez, Puerto Rico 00680
'
COMPAÑIA DE FOMENTO INDUSTRIAL Avenida Roosevelt Núm. 355 Hato Rey, Puerto Rico Teléfono:
765-2926
Ledo. Angel L. Landrón Sandin McCONNELL VALDES KELLEY SIFRE GRIGGS & RUIZ-SÜRIA G.P.O. Box 364225
San Juan, Puerto Rico Tel. 250-5680
Por:
José Antonio Tulla
Colegiado Núm. 5865
00936