Colonia3D Ma*hias Trapp, Amir Semmo, Jürgen Döllner
1
AGENDA 1. INTRODUCTION 2. 3D RECONSTRUCTION 3. INTERACTIVE RENDERING
2
SECTION
INTRODUCTION
WWW.COLONIA3D.DE
4
GOALS & CHALLENGES Goals Virtual reconstruc6on using polygonal 3D models Real-‐6me rendering of 3D reconstruc6on Concept for romano-‐germanic museum (RGM) Challenges Meet requirements of archeologists Meet requirements of museums visitors Implementa6on of interac6ve visualiza6on 5
SECTION
MANUAL 3D RECONSTRUCTION
WORKFLOW Archaeologists 2D AutoCAD drawings Meta data (text & images) Designer 3DSmax & mental ray Exhibi6on concept CG engineer Customize rendering framework Model op6miza6on 7
3D BUILDING RECONSTRUCTION
8
DETAILS
Reconstructed capital, 1:1 model from Xanten
Virtual reconstruction without textures 9
APPLICATIONS: 3D PRINTER
10
APPLICATIONS: MOVIE SCENERY
11
TWO LEVELS-‐OF-‐DETAIL
12
3D SCENE -‐ OVERVIEW
13
DIGITAL TERRAIN MODEL
14
APPEARANCE = LIGHTING + TEXTURE
15
SECTION
INTERACTIVE RENDERING
DATA COMPLEXITY – BOTTOMLINE Scene StaSsScs (total): # Models: 420 # Ver6ces: 15,793,008 # Faces: 21,424,732 # Texel: 1,320,041,992 (4 GB) data too complex for real-‐Sme visualizaSon on consumer hardware
17
OPTIMIZATIONS FOR REALTIME
18
DRAWBACKS OF OPTIMIZATION TEXTURE ATLAS
19
APPLICATIONS FOR VIRTUAL 3D MODELS
20
SECTION
ROMANO-‐GERMANIC MUSEUM
BASIC QUESTIONS Major challenges How to create an “experience”? 3 visualiza6on scenarios How to display meta data? Integrated vs. mul6ple views How to support the user? Make use of modern hardware
22
SETUP OVERVIEW
23
PROJECTION
SERVER
TOUCH TABLE
3 PRESENTATION SCENARIOS
CLIENT 24
RECONSTRUCTION SCENARIO
25
FINDING SCENARIO ObjecSve Display finding in the context of reconstruc6on Enable browsing of findings Highligh6ng of objects-‐of-‐interest PresentaSon Style Plain colors + Gooch Shading Unsharp masking the depth buffer 26
FINDING SCENARIO
27
SUPPORTING MULTIPLE
28
SUPPORTING MULTIPLE EXCAVATION
29
COMPARISON SCENARIO
30
AQUIRING PANORAMIC IMAGES
By manual image aquisiSon & image sStching (Photoshop CS3)
By using rendering output directly (Trapp&Döllner GRAPP 2008) 31
3D INTEGRATION
32
SUPPORTING THE USER IN 3D Why
Computed parabolic camera path
Avoid „ge_ng lost“ situa6ons Support easy explora6on of sites
Approaches Explicit collision model for physics engine Constraint orbiter camera Automa6c camera path genera6on Dedicated „Home“ scenario 33
SECTION
CONCLUSIONS
LESSONS LEARNED AIer 4 year development and 7 months up-‐Rme: Distributed, interdisciplinary development is costly 3D reconstruc6on: mulRple iteraRons required Add scale elements Test and tune the applica6on and setup off-‐site early Acquiring robust hardware
35
POTENTIAL FOR FUTURE WORK Make it be*er Link to the tangible assets of museum Include high-‐detail findings Conduct user evalua6on Indoor visualiza6on, explora6on and naviga6on Make it available Accessible via web using WPVS Providing the framework for other ci6es Licensing the model to the community 36
WRAP UP
Interac6ve museum applica6on of a complete city Now permanent exhibi6on at the RGM Extensible real-‐6me visualiza6on framework Poten6al for future work
37
ACKNOWLEDGMENTS Special thanks to the team
Johannes Bäuerlein, Henner von Hesberg, Fabian Kampa, Simone Lamberts, Janine Lehmann, Chris6an Leuenhagen, Stefan Maass, Silvio Mölter, Sebas6an Heilmann, Annehe Paetz, Chris6an Rademann, Christopher von Bronsart, Michael Hoffmann, Solveig Böhl, Yu-‐Chung Chen, Su Hyung Han, Enricheha Minuzzi, Bierschenk Mar6n, Sascha Blähgen, Omar Gerado Chacòn Yela, Benjamin Jager, Sven Aufenvenne, Mar6n Kramer, Benjamin Richter, and Leif Rumbke.
Contact
mahhias.trapp@hpi.uni-‐potsdam.de 38
THANK YOU… QUESTIONS -‐
39