JOURNAL OF COMPUTER AND MATHEMATICAL SCIENCES An International Open Free Access, Peer Reviewed Research Journal www.compmath-journal.org
ISSN 0976-5727 (Print) ISSN 2319-8133 (Online) Abbr:J.Comp.&Math.Sci. 2014, Vol.5(3): Pg.312-320
Ranking Algorithm for Symmetric Octagonal Fuzzy Numbers Dhanalakshmi V. and Felbin C. Kennedy Research Scholar, Stella Maris College (Autonomous), Chennai, INDIA. Research Guide, Associate Professor, Stella Maris College (Autonomous), Chennai, INDIA. (Received on: June 27, 2014) ABSTRACT Ranking of fuzzy numbers play an important role in decision making, optimization, forecasting etc. Fuzzy numbers must be ranked before an action is taken by a decision maker. In this paper, we propose a ranking algorithm for symmetric octagonal fuzzy numbers, which results in equality only when the numbers coincide. Also the ranking algorithm is verified for some reasonable properties of ordering of fuzzy numbers Keywords: Symmetric Octagonal fuzzy number, ranking, mode, deviation, spread.
1. INTRODUCTION Ranking fuzzy numbers is an important task in analyzing fuzzy information in optimization, data mining, decision making and related areas. Unlike real numbers, fuzzy numbers have no natural order; also no ordering technique is conducive to all. Thus significant contributions have been made in ranking fuzzy numbers1–7,10,12,13. All the ranking ~ ~ procedures in literature defines A f B , ~ ~ ~ ~ ~ ~ A p B and A ≈ B , here A ≈ B implies the
two fuzzy numbers are equivalent, not necessarily be equal. That is, two different fuzzy numbers depending on the ranking method are infered as equivalent. But in many applications the two fuzzy numbers need to be shown different. In this paper, we have proposed a ranking algorithm for symmetric octagonal fuzzy number, in which we obtain the equality only when the two symmetric octagonal fuzzy numbers coincide. Some of the reasonable properties for ranking fuzzy numbers proposed in11 are verified for this algorithm.
313
Dhanalakshmi V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014)
After the introduction, this paper is arranged as follows. In Section 2, the concept of fuzzy number and octagonal fuzzy numbers are recalled. Section 3 introduces the ranking algorithm for symmetric octagonal fuzzy numbers and the properties of the proposed algorithm are discussed in Section 4. The concluding remarks are presented in Section 5. 2. SYMMETRIC OCTAGONAL FUZZY NUMBERS
~ ii. A is normal i.e. ∃x0 ∈ Rsuch that
µ A~ ( x0 ) = 1 iii. µ A~ is piecewise continuous
~ Definition 2.3[9]A fuzzy number A is said to be a generalized octagonal fuzzy number denoted by
~ A = (a1, a2 , a3 , a4 , a5 , a6 , a7 , a8 ; k , w) where a1, a2 , a3 , a4 , a5 , a6 , a7 , a8 , k , w are
real numbers such that For the sake of completeness we recall the required definitions and results. Definition 2.1 [8]The characteristic function µ A~ of a crisp set A ⊆ X assigns a value either 0 or 1 to each member in X . This function can be generalized to a function µ A~ such that the value assigned to the element of the universal set X fall within a specified range i.e. µ A~ : X → [0,1]. The assigned value indicates the membership grade of the element in the set A . The function µ A~ is called the membership function and the set
~ A = {( x, µ A~ ( x)) : x ∈ X } is called a fuzzy
set.
a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ a6 ≤ a7 ≤ a8 and 0 < k < w and its membership function µ ~ is given by A
0 x − a1 k a2 − a1 k k ( a 4 − x ) + w ( x − a3 ) a4 − a3 w µ A~ ( x) = k ( x − a5 ) + w(a6 − x) a6 − a5 k x − a8 k a8 − a7 0
x ≤ a1 a1 ≤ x ≤ a2 a2 ≤ x ≤ a3 a3 ≤ x ≤ a4 a 4 ≤ x ≤ a5 a5 ≤ x ≤ a6 a6 ≤ x ≤ a7 a7 ≤ x ≤ a8 x ≥ a8
~
~ Definition 2.2 [8]A fuzzy set A ,defined on the universal set of real numberR, is said to be a fuzzy number if its membership function has the following characteristics: ~ i. A is convex i.e.
Definition 2.5A fuzzy number A is said to be a symmetric octagonal fuzzy number denoted
by
~ A = (a L , aU , r, s, t; k , w)
where a L ≤ aU and r, s, t are real numbers such that its representation as generalized octagonal fuzzy number is
µ A~ ( λ x1 + (1 − λ ) x 2 ) ≥ min ( µ A~ ( x1 ), µ A~ ( x 2 ))
( a L − r − s − t , a L − s − t , a L − t , a L , aU , aU + t ,
∀ x1 , x 2 ∈ R , ∀ λ ∈ [ 0,1]
aU + s + t , aU + r + s + t ; k , w ).
Dhanalakshmi V. V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014))
Figure 1: Graphical representation of the symmetric octagonal fuzzy number
Definition 2.6 The α -cut cut of the symmetric octagonal fuzzy number
~ A = (a L , aU , r, s, t; k , w) given in
( A L ) , ( A R ) ] α ∈ [0, k ] ~ A = [ AαL , AαR ] = αL 1 αR 1 ( Aα ) 2 , ( Aα ) 2 ] α ∈ (k ,1] where k −α , k k −α ( AαR )1 = aU + s + t + r , k
w −α , w−k w −α ( AαR ) 2 = aU + t w− k
( AαL ) 2 = a L − t
Definition 2.7 Let
3. RANKING OF SYMMETRIC OCTAGONAL FUZZY NUMBERS Definition 3.1 For any symmetric octagonal fuzzy number A = (a L , aU , r , s, t ; k , w) mode, divergence & spread at w w and k level are defined as : i.
~ w − Divergence( A) = w(aaU − a L + 2t )
iii.
~ Spread k ,w ( A ) = w t
iv.
~ k (a L + aU ) k − Mode( A ) = 2
v.
symmetric octagonal fuzzy numbers, then their sum is defined as
vi.
~ ~ A + B = (aL + bL , aU + bU , r1 + r2 , s1 + s2 , t1 + t2 ;
w(a L + aU ) ~ w − Mode( A) = 2
ii.
~ A = (aL , aU , r1 , s1 , t1; k1 , w1 ) and ~ B = (bL , bU , r2 , s2 , t2 ; k2 , w2 ) be two
min(k1 , k2 ), min(w1 , w2 ))
1 (2,5,1,2,3; ,1) 2
~
Definition 2.5 is
( AαL )1 = a L − s − t − r
314
vii.
k (2aaU + 2t + s ) ~ k − rightmode( A) = 2 k (2aa L − 2t − s ) ~ k − leftmode( A) = 2 ~ 0 − Divergence( A)
= k (aU − aL + 2r + 2s + 2t )
315
Dhanalakshmi V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014)
~ w − Divergence(B ) then go to Step 3
~ Spread 0, k ( A) = k r
viii.
else
~
Given any two symmetric octagonal fuzzy numbers we present here an algorithm to compare them.
Case(i): If w − Divergence( A) < ~ ~ ~ w − Divergence(B ) then A f B
ALGORITHM
Case(ii) : If w − Divergence( A) > ~ ~ ~ w − Divergence(B ) then A p B
~
Let A = (aL , aU , r1 , s1 , t1 ; k1 , w1 ) and
~
Case(iii): If w − Divergence( A) =
~ B = (bL , bU , r2 , s2 , t2 ; k2 , w2 ) be two
symmetric octagonal fuzzy numbers, then ~ use the following steps to compare A ~ and B
~
Step1: Find w − Mode(A) and
~ w − Mode(B)
~ w − Mode( A) ~ ~ Case(i): If ~ then A f B > w − Mode( B )
~
~
~ w − Divergence(B ) then go to Step 3 ~ Step 3: Find Spread k ,w ( A) and ~ Spreadk , w ( B ) ~ If w − Mode( A) ≥ 0 then ~ ~ Case(i): If Spread k ,w ( A) < Spreadk , w ( B ) ~ ~ then A f B
~
~
Case(ii): If w − Mode( A) < w − Mode( B ) ~ ~ then A p B
Case(ii): If Spread k ,w ( A) > ~ ~ ~ Spreadk , w ( B ) then A p B
~ w − Mode( A) Case(iii): If ~ then go to = w − Mode( B )
Case(iii): If Spread k , w ( A) =
~ Spreadk , w ( B ) then go to Step 4
else
Step 2
~ w − Divergence(A) ~ w − Divergence(B ) ~ If w − Mode( A) ≥ 0 then ~ Case(i): If w − Divergence( A) > ~ ~ ~ w − Divergence(B ) then A f B ~ Case(ii): If w − Divergence( A) < ~ ~ ~ w − Divergence(B ) then A p B ~ Case(iii): If w − Divergence( A) = Step2:
Find
~
and
~
~
~
~
Case(i): If Spread k ,w ( A) > Spreadk , w ( B ) ~ ~ then A f B Case(ii): If Spread k ,w ( A) < Spreadk , w ( B ) ~ ~ then A p B
~
Case(iii): If Spread k , w ( A) =
~ Spreadk , w ( B ) then go to Step 4
Step 4: Find w1 and w2
~ ~ Case (i): If w1 > w2 then A f B ~ ~ Case (ii): If w1 < w2 then A p B
316
Dhanalakshmi V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014)
Case (iii): If w1 = w2 then go to Step 6
~
Step 5: Find k − Mode(A) and
~ k − Mode(B )
~ 0 − Divergence( A) and ~ 0 − Divergence( B ) ~ Case(i): If 0 − Divergence( A) > ~ ~ ~ 0 − Divergence( B ) then A f B ~ Case(ii): If 0 − Divergence( A) < ~ ~ ~ 0 − Divergence( B ) then A p B ~ Case(iii): If 0 − Divergence( A) = ~ 0 − Divergence( B ) then go to Step 9
Step 8: Find
~
~
~
~
~
~
Case(i): If k − Mode( A) > k − Mode( B ) ~ ~ then A f B Case(ii): If k − Mode( A) < k − Mode( B ) ~ ~ then A p B Case(iii): If k − Mode( A) = k − Mode( B ) then go to Step 6
~
Step 6: Find k − rightmode( A) and
~ k − rightmode(B )
~ k − rightmode( A) ~ ~ ~ then A f B > k − rightmode( B ) ~ k − rightmode( A) ~ ~ Case(ii): If ~ then A p B < k − rightmode( B ) ~ k − rightmode( A) Case(iii): If ~ then go to = k − rightmode( B )
Step 9: Find k1 and k2
~ ~ Case (i): If k1 > k 2 then A f B ~ ~ Case (ii): If k1 < k2 then A p B ~ ~ Case (iii): If k1 = k 2 then A ≈ B
Case(i): If
Step 7
~
Let A = (aL , aU , r1 , s1 , t1 ; k1 , w1 ) and
~ k − leftmode(B )
~ k − leftmode( A) ~ ~ Case(i): If ~ then A f B > k − leftmode( B ) ~ k − leftmode( A) ~ ~ Case(ii): If ~ then A p B < k − leftmode( B )
Step 8
Proposition 4.1: If equality holds in all the nine steps of the above algorithm, then the two symmetric octagonal fuzzy numbers are equal. Proof:
~
Step7: Find k − leftmode(A) and
~ k − leftmode( A) Case(iii): If ~ then = k − leftmode( B )
4. PROPERTIES OF THE RANKING ALGORITHM
~ B = (bL , bU , r2 , s2 , t2 ; k2 , w2 ) be two
symmetric octagonal fuzzy numbers, such that all the nine steps of the above algorithm
~
~
leads equality. To prove that A and B are equal, i.e. to prove that aL = bL , aU = bU , r1 = r2 , s1 = s2 , t1 = t 2 ,
go to
k1 = k 2 , w1 = w2 .
From step 4,
w1 = w2
(1)
317
Dhanalakshmi V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014)
From step 9,
k1 = k 2
(2)
From step 3 and equation (1),
t1 = t2
Proposition 4.3: Let (3)
From step 1 and equation (1), ~ ~ w − Mode( A) = w − Mode( B ) w1 (a L + aU ) w2 (bL + bU ) = 2 2 ⇒ a L + aU = bL + bU
⇒
(4)
From step 2 and equation (1) and (3), ~ ~ w − Divergence( A) = w − Divergence( B ) ⇒ w1 (aU − aL + 2t1 ) = w2 (bU − bL + 2t 2 ) ⇒ aU − a L = bU − bL
(5)
(6)
From step 6 and equations (3) and (6), ~ ~ k − rightmode ( A ) = k − rightmode( B ) k1 (2aU + 2t1 + s1 ) k 2 (2bU + 2t 2 + s 2 ) = 2 2 ⇒ s1 = s 2
~ A = (aL , aU , r1, s1, t1; k1, w1 ) , ~ B = (bL , bU , r2 , s2 , t2 ; k2 , w2 ) and ~ C = (cL , cU , r3 , s3 , t3; k3 , w3 ) be three
symmetric octagonal fuzzy numbers such ~ ~ ~ ~ ~ ~ that A f B and B f C , then A f C . Proof: Case (i): Let the order be determined in step 1, i.e ~ ~ ~ ~ A f B by w − Mode( A) > w − Mode( B ) ~ ~ and B f C by
~ ~ w − Mode( B) > w − Mode(C ) ,
From equations (4) and (5),
aU = bU , aL = bL
of symmetric octagonal fuzzy numbers is obtained by the proposed algorithm.
⇒
(7)
then ~ ~ ~ w − Mode( A) > w − Mode( B) > w − Mode(C ) ~ ~ ⇒ w − Mode( A) > w − Mode(C ) ~ ~ ⇒ AfC Case (ii): ~ ~ ~ ~ Suppose A f B by step 1 and B f C in step i say i=2,3,...,9
~
From step 8 and equations (3), (6) and (7), ~ ~ 0 − Divergence( A) = 0 − Divergence( B ) ⇒ k1 (aU − a L + 2r1 + 2s1 + 2t1 ) = k 2 (bU − bL + 2r2 + 2s2 + 2t 2 ) ⇒ r1 = r2
Hence the proof. Remark 4.2: In the above theorem, we have proved that equality, not just the equivalence
~
i.e. w − Mode( A) > w − Mode( B ) and
~ ~ w − Mode( B) = w − Mode(C ) and the
inequality happens in the later steps, then ~ ~ ~ w − Mode( A) > w − Mode( B) = w − Mode(C ) ~ ~ ⇒ w − Mode( A) > w − Mode(C )
~ ~ ⇒ AfC ~ ~ ~ ~ w − Mode( A) = w − Mode( B ) and
Similarly, A f C if
318
Dhanalakshmi V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014)
~ ~ w − Mode( B) > w − Mode(C ) Case (iii): Similar to case (ii), it can be proved that ~ ~ ~ ~ ~ ~ A f C if A f B by step i and B f C in ~ ~ step j where j=i+1,...,9or B f C by step i ~ ~ and A f B in step j where j=i+1,...,9. ~ ~ ~ ~ Thus in all possibilities, A f B and B f C ~ ~ ⇒ AfC. Hence the proof.
~
~
Proposition 4.4: Let A and B be two symmetric octagonal fuzzy numbers with same height and ~ ~ ~ ~ inf supp( A ) > sup supp( B ), then A f B . Proof:
~
~ ~ ⇒ w − Mode( A) > w − Mode( B ) ~ ~ ⇒ A f B. Hence the proof.
~
~
~
Proof: Let A = (aL , aU , r1, s1, t1; k1, w1 ) ,
~ B = (bL , bU , r2 , s2 , t2 ; k2 , w2 ) and ~ C = (cL , cU , r3 , s3 , t3; k3 , w3 ) be the
three given symmetric octagonal fuzzy numbers. By hypothesis, k1 = k 2 = k 3 ~ ~ and w1 = w2 = w3 Suppose A f B happens in step 1, then
Let A = (aL , aU , r1 , s1 , t1 ; k1 , w1 ) and
~ ~ w − Mode( A) > w − Mode( B )
be the two given symmetric octagonal fuzzy numbers.
⇒
~ B = (bL , bU , r2 , s2 , t2 ; k2 , w2 )
Since they have the same height,
w1 = w2
.
⇒ a L > a L − r1 − s1 − t1 > bU + r2 + s 2 + t 2 > bU
(8)
~ ⇒ aU > a L > bU > bL , by definition of A
aU + a L > bL + bU
min( w1 , w 3 )( a L + aU + c L + cU ) 2 min( w 2 , w 3 )( b L + bU + c L + cU ) > 2 ~ ~ ~ ~ ⇒ w − Mode ( A + C ) > w − Mode ( B + C ) ~ ~ ~ ~ ⇒ A + C f B + C.
~ ~ Suppose A f B happens in step 2, then
~
and B
Adding (8) and (9),
⇒ a L + aU + c L + cU > b L + bU + c L + cU ,
⇒
⇒ a L − r1 − s1 − t1 > bU + r2 + s 2 + t 2
⇒ aU > bL
w1 ( a L + aU ) w 2 ( b L + bU ) > 2 2 ⇒ a L + aU > b L + bU adding c L + cU both sides
~ ~ inf supp( A ) > sup supp( B )
⇒ aL > bU
~
Proposition 4.5: Let A , B and C be three symmetric octagonal fuzzy numbers with ~ ~ same k and w then A f B ~ ~ ~ ~ ⇒ A + C f B + C.
(9)
~ ~ w − Mode( A) = w − Mode( B ) and ~ ~ w − Divergence( A) > w − Divergence( B ) ~ ~ w − Mode( A) = w − Mode( B )
319
Dhanalakshmi V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014)
w1 (a L + aU ) w2 (bL + bU ) = 2 2 ⇒ a L + aU = bL + bU
5. CONCLUSION
⇒
⇒ a L + aU + cL + cU = bL + bU + cL + cU ~ ~ ~ ~ ⇒ w − Mode( A + C ) = w − Mode( B + C ) and ~ ~ w − Divergence( A) > w − Divergence( B ) ⇒ a U − a L + 2 t 1 > bU − b L + 2 t 2 ⇒ a U − a L + 2 t1 + c U − c L + 2 t 3 > bU − b L + 2 t 2 + c U − c L + 2 t 3 ~ ~ ⇒ w − Divergence ( A + C ) ~ ~ > w − Divergence ( B + C ) ~ ~ ~ ~ ⇒ A + C f B + C.
In a similar manner, the result can be proved for all cases. Remark 4.6: The above Proposition may not hold for arbitrary k and w, for
1 2 1 1 ~ B = (2,4,1,1,1; , ) and C~ = (1,2,1,1,1; 1 , 1 ) , 4 2 4 2 ~ ~ then A f B as ~
Let A = (1,4,1,1,1; ,1) ,
~ 5 5 ~ w − Mode( A) = > = w − Mode( B ) , 2 4
1 1 4 2 1 1 ~ ~ B + C = (3,6,2,2,2; , ) 4 2 ~
~
but A + C = (2,6,2,2,2; , ) and
~ ~ 9 ~ ~ ⇒ w − Mode( A + C ) = 2 < = w − Mode( B + C ) 4 ~ ~ ~ ~ ⇒ A + C p B + C.
In this paper, an algorithm for pairwise comparison of symmetric octagonal fuzzy numbers is introduced. A strong property of uniqueness of a symmetric octagonal fuzzy numbers is established in Proposition 4.1. Also some of the reasonable properties of ranking fuzzy numbers were verified. REFERENCES 1. Abbasbandy S. and B. Asady, Ranking of fuzzy numbers by sign distance, Information Sciences 176(16), 24052416, (2006). 2. Asady, B. and Zendehnam, A. Ranking fuzzy numbers by distance minimization.Applied Mathematical Modelling.31: 2589-2598 (2007). 3. Bortolan G. and R. Degani, A review of some methods for ranking fuzzy numbers, Fuzzy Sets and Systems 15, 119, (1985). 4. Chen, L-H., Lu, H-W., An approximate approach for ranking fuzzy numbers based on left and right dominance, Computers and Mathematics with Applications, Vol. 41, pp.1589-1602 (2001). 5. Chu T.C. and C. T. Tsao, Ranking fuzzy numbers with an area between the centroid point and original point, Computers and Mathematics with Applications 43, 111-117, (2002). 6. Deng, Y., Z. Zhenfu, L. Qi, Ranking fuzzy numbers with an area method using radius of gyration, Computers and Mathematics with Applications, 51: 1127-1136 (2006).
Dhanalakshmi V., et al., J. Comp. & Math. Sci. Vol.5 (3), 312-320 (2014)
7. Dubois D. and H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30, 183224, (1983). 8. Klir George J and Bo Yuan, Fuzzysets and Fuzzylogic: Theoryand Applications, Prentice Hallof India, (1997). 9. Malini S. U., Kennedy Felbin C., An Approach for Solving Fuzzy Transportation Problem Using Octagonal Fuzzy Numbers, Applied Mathematical Sciences, Vol. 7, pp. 2661-2673 (2013). 10. S. H. Nasseri and M. Sohrabi, Hadiâ&#x20AC;&#x2122;s method and its advantage in ranking
320
fuzzy numbers, Australian Journal of Basic Applied Sciences 4(10), 46304637, (2010). 11. X. Wang and E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities , Fuzzy Sets and Systems, 118, 378-405, (2001). 12. Z.X. Wang, Y.J. Liu, Z.P. Fan and B. Feng, Ranking L-R fuzzy number based on deviation degree, Information Sciences, 179, 2070-2077 (2009). 13. Y. -M. Wang, J. -B. Yang, D. -L. Xu, and K. S. Chin, On the centroid of fuzzy numbers, Fuzzy Sets and Systems, 157, 919-926, (2006).