Prospects for Seascape Repair: Three Case Studies from Eastern Australia

Page 1


Prospectsforseascaperepair:Three casestudiesfromeasternAustralia

Threecasestudiesspanning tropical,subtropicaland temperateenvironments highlighttheminimumpotential benefitsofinvestinginrepairof coastalseascapes.Fisheries,a marketbenefitindicatorreadily understoodbyarangeof stakeholdersfrompolicymakers tocommunityadvocates,were usedasasurrogatefor ecosystemservicesgenerated throughseascapehabitat restoration.Foreachcasestudy, whilerecognisingthatbiological informationwillalwaysremain imperfect,theprospects forseascaperepairare compelling.

Keywords: coastalwetlands,ecological restoration,ecosystemservices,fisheries, saltmarshes.

ColinCreighton, IanMcLeod and Marcus Sheaves arefromTropWATER,JamesCookUniversity,Townsville,Queensland,Australia. MarcusSheaves isHeadofMarineBiology andAquacultureattheCollegeofScienceand Engineering,JamesCookUniversity,Queensland,Australia,(JamesCookUniversityTownsville4811,Queensland,Australia.Emails: colinmwnrm@bigpond.com,ian.mcleod1@jcu. edu.au&marcus.sheaves@jcu.edu.au); Vishnu Prahalad isLecturerofPhysicalGeographyat theDisciplineofGeographyandSpatialSciences, UniversityofTasmania,Hobart,Australia(PO Box78,Hobart7001,Tasmania,Australia. Email:vishnu.prahalad@utas.edu.au); Matthew D.Taylor isAssociateDirectorFisheries

Figure1. SeascapehabitatsfromeasterncoastalAustraliausedascandidateexamplesto illustratethebenefitsfromrestoration:(a)tropicalcasestudy:cast-nettinginactionalongamangrove-linedcreekinAustralia’swet–drytropics;(b)subtropicalcasestudy:aremnantsubtidal marshchannelontheLakeWooloweyahdelta,northernNewSouthWales(thechannelextends inabout20mandthenhitsthedyke);(c)temperatecasestudy:pop-netsinactionathightideon asaltmarshinTasmania’snorth-westcoast,and(d)thefocalspeciesYellow-eyeMullet(Aldrichettaforsteri).

ResearchatthePortStephensFisheriesInstitute,NewSouthWalesDepartmentofPrimary Industries,TaylorsBeachRd,TaylorsBeach, NewSouthWales,Australia&ConjointProfessorattheSchoolofEnvironmentalandLifeSciences,UniversityofNewcastle,NewSouth Wales,Australia(Callaghan,NewSouthWales 2308,Australia.Email:matt.taylor@dpi.nsw. gov.au); TerryWalshe isfromtheCentrefor EnvironmentalandEconomicResearch,UniversityofMelbourne(Victoria3010,Australia. Email:twalshe@unimelb.edu.au).

Introduction

Coastalseascapesareamosaicoftidallyinfluencedhabitatsthatinclude channels,gutters,mudflats,mangrove clumps,mangrove-linedchannelsand variouscommunitiesofseagrass,saltmarshesandtidalfreshwaterwetlands.Theirgenerallyflatprofileand proximitytothecoastandhumansettlementsmakethemamenableto beingdrained,filledandconverted

tofarmland,sportsfields,housesand canalorindustrialestates(Lee etal. 2006;Sheaves etal. 2014;Rogers etal.2016).Saltmarsheshaveoften bornethebruntofanthropogenic impactsduetotheir‘frontline’position,beingmostexposedtohuman settlementsandactivities.Alongthe Australiancoast,seascapesandespeciallytheirsaltmarshcomponents havebeencleared,drained,filled andleveesconstructedtoexclude tidalinundation(Sinclair&Boon 2012;Prahalad2014).Moregenerally, modificationtoseascapes especially barrierstowaterflowandconnectivity,suchasbundwalls,orroads occursalongalmosteveryriverand estuaryinthemorepopulatedparts ofAustralia(NLWRA2002;Creighton etal. 2015).

Functionally,theseascapecontinuumdrivescoastalecologicalproductivityandprovidesarangeof ecosystemservices(e.g.Laegdsgaard 2006;Mount etal. 2010;Boon etal. 2011;Creighton etal. 2015).Anumberoftheimportantregulating,supportingandprovisioningservices suchascarbonsequestration(Lawrence etal. 2012)andcommercial andrecreationalfisheries(Creighton etal. 2015;Taylor etal. 2017a,2017b)aredependenton hydrologicalconnectivitybeingmaintained,sothatfreshandtidalwaters haveadequateopportunitiestomeet. Reinstatingtidalconnectivityto ensurebiological,chemicaland hydrologicalfluxesiskeytorestoring ecosystemfunctionandecosystem services(e.g.Raposa&Talley2012). Indeed,theAustralianGovernment’s conservationadvicefortherecovery ofcoastalsaltmarshlistedasathreatenedecologicalcommunityunder the EnvironmentProtectionandBiodiversityConservationAct1999 (EPBCAct)clearlyidentifiestheneed for‘maintenanceofecologicalfunctionandincreasedresilience’through ‘permanentorintermittentconnectionwiththesea;functioningtrophic pathways;[and]structuralhabitat ’

(TSSC,2013,p.23).Thereisestimatedtobe164,000–245,000haof saltmarshcoveredunderthislisting, withdataabouttheirdeclineinextent andconditionhighlyvariableacross regions(forexamplesofhigh-resolutiondata,seeSinclair&Boon2012 andPrahalad2014).

Recognisingthevalueofcoastal seascapehabitats,theongoingthreats totheirecosystemservicesandthe needforecologicalmanagementand restoration,thetwocentralquestions weseektoaddressare:(i)whatare thepotentialbenefitsthatcanbe derivedfromseascaperepair?and (ii)howdothesebenefitsoutweigh thecostsforrepairunderdifferent riskscenarios?Weenvisagethisinformationwouldprovidequantifiable potentialbenefitsaspartofbusiness casesthatmightthenattractpublic orprivateinvestmentinrepair.This approachaccordswiththeextended attentionbeingpaidtoenvironmental assets(NaturalInfrastructure)in nationalaccounts(BureauofMeteorology2013),andtheincreasingnumberofrobustvaluationsofecosystem services(e.g.throughtheUnited NationsSystemofEnvironmental-EconomicAccountsframework:United Nations2014).

Althoughthetwoquestionswe addressarepertinenttoallofAustralia’sseascapehabitats,wefocus onsaltmarshinparticular,duetoits vulnerablestatusundertheEPBC Actandtheneedtoaddressrepairas partoftheproposedRecoveryPlan (TSSC2013;Rogers etal. 2016).The focusonsaltmarshisfurtherjustified giventheaddedeffectsofclimate changeandsealevelrisethatrequire coastalwetlandstoretreatinland,furtherincreasingland-useconflictsand opportunitycostsforrepair(Abel etal. 2011;Prahalad etal. 2019a).

Toaddressourquestions,weused threecasestudies(Taylor&Creighton 2018;Prahalad etal. 2019b;Abrantes etal.2019)developedaspartofa researchprogramsupportedby AustralianGovernment’sNational

EnvironmentalScienceProgram.The casestudiesspanarangeofbiophysicalandpolicysettingsacrosstropical,subtropicalandtemperate Australia(Figs1,2,Table1).Across thesecasestudies,wesoughtindicators(cf.UnitedNations2014)that (i)aresupportedbycalculationsthat areclear,simpleandreadilyunderstoodbypolicymakertocommunity advocate;(ii)reflectvaluationsthat arewellfoundedandbasedonAustralia’sexistingcommoditymarkets; and(iii)areconservativeandgenerallylowerboundplausibleestimates ofvalue,withonlyselected,usually singlebenefitstreamsusedinthevaluationprocess.Here,weemploykey prawnandfishspeciesaseasilypubliclyunderstoodexemplarindicators forestimatingthepotentialbenefits ofseascaperepair.Benefitstreams areaccompaniedbylistsofecologicallysustainableassumptionsthat clearlydemonstratethatthevalues areconservative.Wealsolistadditionallikelybenefitstherebyalso demonstratingtheconservativenatureoftheresults.

Theterm‘value’usedhererefersto marketclearingpricesoftradable commodities.Thesedollar(AUD)valuesreflecttheeconomiccostsand potentialbenefitsifthereisinvestmentinrepair(orbenefitsforgoneif thereisnorepair).Byusingcommerciallyrecognisedspeciesandtheir dollarvalueinthemarketplace,we seektotranslatewhatcanbean obscuresetofecosystemservicesinto commonlyandreadilyunderstood metrics.Indoingso,weprovide groundworkfordevelopingmore detailed,contextuallynuancedand locallyspecificbusinesscasesforseascapeconservationandrepair.We acknowledgethoughthattheinterpretationsofvalueencompassawide rangeofattributesbeyondthescope ofthepresentpaper(e.g.nonmarket andnonusevalues),andnotallof theseattributesareamenableoreven suitableforeconomicvaluation(see Boon&Prahalad2017).

Figure2. LocationofthethreecasestudiesfromeasterncoastalAustraliausedtosignifythepotentialfisheriesbenefitsthatcanbederivedfrom repairoftropical,subtropicalandtemperateseascapeenvironments.TheslightangulartiltinthemapisduetheTransverseMercatorprojectionused.

CaseStudies

Thefollowingthreecasestudiessignifythepotentialbenefitsthatcan bederivedfromrepairofcoastal saltmarshspanningtropical,subtropicalandtemperateseascapeenvironments.Theeastcoasttropicaland subtropicalstudiesselectedprawn speciesasindicatorsforestimating benefits(i.e.potentialincreasesin prawnbiomass)fromseascape repair.Thisisbecauseprawnsare iconicseafoodproductsinthetropicalandsubtropicalregions,generally inhighdemand,andarewellunderstoodasanindicatorofpotential marketbenefitbyarangeofstakeholders.Prawnsarealsoannual, highlyfecundspeciesthatwill rapidlyexpandinpopulationsize

byexploitingrepairedhabitat.In comparison,thereislimitedunderstandingofseafoodderivedfrom saltmarshesintemperateregions (Wegscheidl etal. 2017).Theeast coasttemperatestudytherefore examinedthefishassemblagein generalandidentifiedthemostdominantseafood/fishspeciesofcommercialandrecreationalinterestto illustratebothcurrentandpotential fisheryvalue.

Casestudy1:Eastcoast tropicalsaltmarsh restoration(Bowling GreenBay,north Queensland)

TheBananaPrawn(Fenneropenaeus merguiensis)fisherywaschosenas themarketbenefitindicator.This

speciesusestropicalestuariesasnurserygrounds(Vance etal. 1990; Sheaves etal. 2012),wheretheyrely onsaltmarshvegetationforpartof theirnutritionalsupport(Abrantes& Sheaves2009).TheBananaPrawnis acommerciallyimportantfoodspeciesandimportanttargetofrecreationalfishersthroughoutnorth Queenslandestuaries.Thespeciesis alsovitalpreyofotherhighprofile commercial/recreationalspeciessuch asBarramundi(Latescalcarifer). BananaPrawnishighlyfecundand willrecruitrapidlytorepairedenvironments.Finally,BananaPrawnis anidealtargetspeciesbecausethey canbesampledusingcastnets,agear typethatisparticularlysuitablefor smallmangrove-linedestuaries (Fig.1a),andprovideaccurate

Table1. Casestudyinrelationtolocalpolicycontext(cf.Rogers etal.2016),proposedlikelypolicychanges,andtargetedecosystemservice subsidiesresultingfromseascaperepair(selectedonthebasisthattheyarereadilyunderstoodbypolicymakersanddecision-makers) Climate zone Casestudy area Policycontext(forboth conservationandrestoration,if applicable)

Prospectsforseascape conservationandrepairusing fisheriesasapolicysurrogate

Changesintermsofincreased fisheriesproductionoutputs resultingfromseascaperepair TropicalBowling GreenBay, north Queensland

Saltmarshes,mangrovesandtidal channelsdesignatedasfishhabitat areasprotectedunderQueensland FisheriesAct1994 (Rogers etal. 2016).Protectiondoesnotextendto nondesignatedwetlandareas(e.g.on pastureland).Majorinvestmentin ecosystemrepairproposedunderthe AustralianGovernment Reef2050 Long-termSustainabilityPlan

Conserveexistingsaltmarshaskey fishhabitatsthroughcooperation withStateFisheriesagencies(e.g. asmarineprotectedareasunderthe Queensland FisheriesAct1994). Investintherepairofdegraded saltmarshbyremovaloftidal barrierstoreinstatetidalflows.

Increaseincommerciallyand recreationallyimportantspecies populations,suchasBananaPrawns (Fenneropenaeusmerguiensis)and theirkeypredatorsBarramundi (Latescalcarifer).Indirectadditional increasesincommercialand recreationalpiscivorousfishspecies abundanceandbiomassthrough enhancedfoodchainsresultingin increasedbiomassofpreytaxasuch asHerrings(Clupeidae)andMullet (Mugilidae).

SubtropicalClarence River estuary,New SouthWales (NSW)

Coastalsaltmarshhabitatand associatedecologicalcommunityare listedasan‘endangeredecological community’underNSW Threatened SpeciesConservationAct1995 (Rogers etal. 2016).The NSWMarine EstateManagementStrategy2018–2028 seeksto‘reducethecumulative impactsofexistingagricultural infrastructureonfreshwaterflowsand estuarinehydrology’(e.g. reinstatementoftidalflowsto saltmarsh).

Investintherepairofdegraded saltmarshbyremovaloftidal barrierstoreinstatetidalflows(e.g. throughthe NSWMarineEstate ManagementStrategy2018–2028).

Increaseintherecruitmentand trophicproductivityofSchoolPrawn (Metapenaeusmacleayi),a commerciallyandrecreationally importantspecies.Additionalgains infisheriesproductivitythrough exportofbiomass(through outwelling)fromsaltmarshtoother seascapehabitats.

TemperateCircular Headregion, north-west Tasmania

Norecognitionofsaltmarshesand theirvalueswithinStatelegislation (exceptforafewlistedspeciesand thoseareaswithinexistingreserves). Someprotectionaffordedunderthe statewideplanningregime,subjectto enforcement(seePrahalad etal. 2019a).

estimateswithahighnumberofreplicatescollected(Johnston&Sheaves 2007).

Theeastcoasttropicalstudy (Abrantes etal.2019)foundthatestimatesofproductivityofindividual componentsoftheestuarywere highlyvariableanddependedona numberofassumptions,whichare difficulttovalidate(Ronnback etal. 1999;Minello etal. 2008;Rozas& Minello2011).Incomparison,estimatesatthewhole-of-estuarylevel, theseascapeslevel,inlinewithcurrentunderstandingofestuarinespeciesrelianceonamosaicofhabitats (Nagelkerken etal. 2015;Sheaves 2017),requiredarelativelylow

Conserveexistingsaltmarshaskey fishhabitatsthroughliaisonwith StateFisheriesagencies(e.g.as marineresourcesprotectedareas underthe LivingMarineResources ManagementAct1995).Investin therepairofdegradedsaltmarshby removalofleveestoreinstatetidal flows(seeFigure4).

numberofassumptionsandproduced estimateswithrelativelylowvariability.Abrantes etal. (2019)foundasa conservativeestimate,amaximum juvenileprawnbiomassof6.5g/m2 forthe2mwidebandsalongthe estuaryedgewhereprawnsarefound. Fortheestuarystudied,withanedge areaof5.6ha,theconservativetotal biomassofjuvenilepawnswas0.36 tonnes.

Theactualestuaryproductivity wouldlikelybemuchhigherbecause thisestimateonlyrelatestothemaximumjuvenilestockforasampling occasionanddoesnottakeinto accountcontinualmovementsof prawnstooffshoreadulthabitatonce

Increaseinthreecommerciallyand recreationallyimportantspecies populations,especiallyofYellow-eye Mullet(Aldrichettaforsteri). Additionalfoodsubsidiesto piscivorousfishthataretargetedby bothcommercialandrecreational fishersfromSilversides (Atherinidae)andGobies(Gobiidae).

theyreachasufficientsize.Tomore preciselycalculateestuaryproductivity,informationwouldbeneeded onpatternsofrecruitment,growth rates,mortality,predationandemigration.Sufficeittosayanestimate ofBananaPrawnproductivityof 0.36tonnesisprobablyordersof magnitudebelowtotalestuaryproductivity(Abrantes etal. 2019). Whilethisprovidesabaselineestimatethatcanbeusedtodemonstrate thepotentialbenefitsofseascape repair,muchmoreextensivestudies wouldberequiredtolinkproduction ofBananaPrawntoparticularareas ofsaltmarshhabitat(Sheaves&Johnston2010;Sheaves etal. 2012).

Casestudy2:Eastcoast subtropicalsaltmarsh restoration(Clarence Riverestuary,northern NewSouthWales)

TheSchoolPrawn(Metapenaeus macleayi)fisherywaschosenasa marketbenefitindicator.School Prawnishighlyreliantonestuarine nurseryhabitatandprimaryproductivityderivedfromestuarinehabitats forrapidgrowththroughtheirearly life-historystages(Hart etal. 2018; Raoult etal. 2018).Thespeciesis importanttobothcommercialand recreationalfisheriesinNewSouth Wales(Taylor etal. 2017a).School Prawnisfastgrowingandhighly fecund,andgivenreasonablefreshwaterinflowtoestuaries,itisunlikelyto experiencestock-relatedlimitations torecruitment.Thespeciesismostly commerciallyharvested;thiscommercialharvestprovidesasought-after productforhumanconsumptionand isthemostwidelyusedbaitforrecreationalfisheriesinsouth-easternAustralia.Giventhelife-history characteristicsoftheSchoolPrawn, benefitsfromhabitatrestorationare likelytobeevidentinthisspecies overatmosttwotothreeyears.

Basedonassumptionsdetailedby theeastcoastsubtropicalstudy(Taylor&Creighton2018),estimatesindicatethatreinstatementof connectivityof27.6haofshallow subtidalcreeksandsubsequentutilisationbySchoolPrawns(assuming goodjuvenilerecruitment)could yield ~2500kgofproduct,equating toagrossvalueof AUD24,000and associatedtotaloutputof ~AUD140,000peryear.Whenconvertedbacktoaper-hectareestimate, thesevaluesequateto ~AUD900and AUD5000perhaperyear,respectively,forseascapehabitat.

Thebenefitsofhabitatrepairare notlimitedtothevaluesestimated fromdirectusageofthehabitatfor SchoolPrawn.Seascapehabitatscontainimportantprimaryproducersthat

contributetotheoverallproductivity oftheestuary,andconsequently,they makesubstantialcontributionstothe exploitedbiomassharvestedfrom estuarinesystems(Taylor etal. 2017a,2017b).Potentialgainsinprimaryproductivitywhenthesehabitatsarereconnectedtothebroader estuarywillbeoutwelledtoother areasacrosstheestuarinesystem.This canoccurthroughmechanisms includingthetransportofparticulate organiccarbon(POC),transportof dissolvedorganiccarbon(DOC),or consumptionofmarshplantsbysmall nektononthemarshsurface(when inundated),andsubsequentmovementthroughouttheestuary.These additionalbenefitsarenotcaptured inthisanalysis,butcouldcontribute toafishery-derivedvalueofupto AUD20,000perhaperyearofareal saltmarshthatisreconnectedtothe estuaryintheClarenceRiversystem (Taylor etal. 2017a).

Anyreconnectedsubtidalchannels arisingfromrepair(Fig.1b),aswellas outwelledproductivity,willalsoprovidehabitattodirectlysupportother targetspeciessuchasMudCrab (Scyllaserrata),DuskyFlathead (Platycephalusfuscus),Yellowfin Bream(Acanthpagrusaustralis),Luderick(Girellatricuspidata)andSea Mullet(Mugilcephalus)(Morton etal. 1987;Mazumder2009;Webley etal. 2009).Directsupportofadults and/orjuvenilesoftheseexploited specieswillproducefisherybenefits thatcontributeadditionalvaluefrom habitatrepair.Boththesefactorswill seeflow-onbenefitsforrecreational andcommercialfisheriesalike.

Casestudy3:Eastcoast temperatesaltmarsh restoration(CircularHead region,north-west Tasmania)

Theeastcoasttemperatestudy(Prahalad etal. 2019b)wasthefirstdocumentationoffishusageofTasmanian saltmarshes.Thefocusonfishand theselectionofnorth-westCircular

Headregionstudyareastemmedfrom anumberofreasons.TheCircular Headregionishometoaboutafourth ofallcoastalsaltmarshesinTasmania andformspartofarichseascape matrixwithexpansivetidalflats,seagrassbedsandbuffering Melaleuca ericifolia swampforests(Mount etal. 2010).Theregionisveryimportantforcommercialandrecreational fisheriesinTasmania.TheCircular Headregionsaltmarsheshavebeen subjecttomostextensiveclearing andagriculturaldrainageworks,with thelargestpotential(~629haor55% ofcurrentextent)forhabitatrepair throughtidalrestoration(Prahalad 2014).

Prahalad etal. (2019b)found11 fishspeciesusingCircularHeadsaltmarsheswithahighmeandensityof >72fishper100m2 (sampledata fromApriltoMay2017;Fig.1c). ThefamilyAtherinidae(Silversides) contributedthreespeciesand74%of thetotalcatchnumbers.Commercial andrecreationalspeciesthatutilise thesesaltmarshesinnorth-westTasmanianseascapesincludethefollowing:Yellow-eyeMullet(Aldrichetta forsteri),AustralianSalmon(Arripis truttaceus)andGreenbackFlounder (Rhombosoleatapirina).Thesethree speciescontributedcloseto20%of thetotalcatchnumbers.Ofthese,Yellow-eyeMullet(Fig.1d)wasmost abundantandcommon,presentin 24(65%)ofthe37netsthatcaught fishandmadeup19%ofthetotal catch.Extendedsamplingthroughout theyearmayrevealfurtherspecies usingsaltmarshes.

Yellow-eyeMullet,AustralianSalmonandGreenbackFlounderare amongthesevenkeyspeciestargeted byrecreationalfishersinTasmania (Lyle etal. 2014).Notably,YelloweyeMulletandAustralianSalmonhelp underpinrecreationalfisheriesinthe north-westregionofTasmania,with byfarthegreatestproportionofMullet andSalmon(74%and23%ofstatewide recreationalcatchin2012–13)being caughtfromthisregion(Lyle etal.

2014).ThecommercialcatchofYellow-eyeMulletpeakedin1999/2000 andhasdecreasedsince,with2tonnes reportedtobecaughtin2015/16 (Emery etal. 2017).AlthoughtheTasmanianstockofYellow-eyeMulletis classifiedas‘sustainable’,anyrepair andexpansionoftheirnurseryhabitat arelikelytosupportandenhanceits carryingcapacity,andhenceitssustainabilitystatus.Forexample,given thatanaverageof13.6individualsof Yellow-eyeMulletwerefoundina 100m2 areaofsaltmarsh(Prahalad etal. 2019b),restoringtidalflowsto anominal100haofsaltmarshcould translatetoanincreaseinthespecies populationby136,000individuals (seeFig.4).Therewasalsoevidence forrapidrecruitmentpotential.Samplestakenfromrehabilitatingsaltmarshesbehindpreviouslybreached leveessupportedsimilarfishassemblagestonearbyunalteredmarshes withoutlevees.Thisindicatesthat removingtidalbarrierstoreconnect marshescurrentlybehindleveesis likelytoreturnimmediatebenefitsfor fishusethroughexpandedhabitat andfoodresources(cf.Roman etal. 2002;Raposa&Talley2012).

WhileSilversides(Atherinidae)are notdirectlytargetedbyfishersinTasmania,theyprovideanabundantfood sourceforotherpiscivorousfishthat aretargetedbybothcommercialand recreationalfishers(cf.Mazumder etal. 2011).Mostimportantly,these arepartofthesuiteofspeciesthatcontributetooverallmarinebiodiversity andproductivityofthesetemperate systems.Theseseascapescontribute morebroadlytothemarinefoodweb viaexportofplantandanimalmatter tocoastalwaters(Melville&Connolly 2003;Svensson etal. 2007).

ASimpleFrameworkfor BuildingaBusinessCase forInvestmentinSeascape Repair

Whileacknowledgingasuiteof ecosystemservicesassociatedwith

repair(e.g.Jenkins etal. 2010),this researchhasemphasisedbenefits stemmingfromincreasedharvestfor recreationandhumanconsumption ofasubsetofspecies readilyvalued benefits.Ifthesebenefitsareestimatedtobegreaterthanthecostsof implementation,thenaprospective repairprojecthasabenefit–costratio of atleast 1(andusuallymuchhigher: seedeGroot etal. 2013).

Ourbiologicalunderstandingofthe magnitudeofstockincreasesassociatedwithanyspecificrepairactions remainsrudimentary.Predictingwith certaintythepay-offofinvestmentin repairprojectsisclearlydifficult. Insufficientinformationshouldalways providetheimpetusforcarefulconsiderationofpotentialrisksandacautionaryapproach.However,riskand uncertaintyareubiquitousfeatures ofmanykindsofinvestment.Delaying decision-makingwhileuncertaintyis furtherreducedorentirelyresolved carriesthecostofforegonebenefits, bothgross(e.g.increasedyields)and net(e.g.avoidedrisks).Repaircosts areverylikelytoincreaseinthefuture duetodecliningresourcecondition relativetodemand,andhighercapital andlabourcosts(Blignaut&Aronson 2008).Italsoignoresthebenefitsof learningviaimplementationthrough adaptivemanagement(Walters1986; Burley etal. 2012).Here,weusethe eastcoastsubtropicalcoastalwetland restoration(ClarenceRiverestuary, northernNewSouthWales)case studytolaygroundworkbyoffering abasicdecisionsupportframework forconsideringinvestmentinseascaperepairunderuncertainty.

Aprimarysourceofuncertaintyis thesizeoftheincreaseinyieldor quotaarepairprojectmightbring. Forexample,forSchoolPrawn,one ofthekeyvariablesforwhichthere waslargeuncertaintywastherecruitmentsubsidyassociatedwithrepairof adiscreteareaofhabitatanditsimplicationsforbiomassandharvest(Taylor&Creighton2018).Assumethat weareconsideringrepairforthree

hypotheticalcandidatesites,A,B andC,withintheClarenceRiverestuary,allofwhicharemotivatedprimarilybyanincreaseinSchoolPrawn abundanceandavailability.Although wemaynotknowthetruemagnitude oftherecruitmentsubsidy,wecan useexpertjudgementtoestimate theprobabilityofadiscretesetofpossibilitiesandestimateassociated improvementsinquotas.TheillustrativejudgementsshowninTable2 forthreehypotheticalsitesarethe authors’own(cf.Taylor&Creighton 2018),butinothersettingsanalysts canformallyelicitjudgementsusing accessibleandprovenmethods(Hemming etal. 2018).

ConsideringsiteAfirst,theriskneutralapproachistocalculatethe expectedbenefitusingtheprobability-weighteddifferencebetweenestimateswithandwithoutrepair.That is,ourrisk-neutralbestestimateof thepay-offforrepairatsiteAisan additionalharvestof375kg/year,on average(Table2).IftheclearingmarketpriceforSchoolPrawnis AUD10kg 1 (Taylor&Creighton 2018),wecannowestimatethepresentvalue, PV,ofthebenefit: PV ¼ A r 1 1 1þr ðÞh ,where A isthe annualbenefit, r isthediscountrate (orinterestrate),and h isthetime horizon(inyears)overwhichthe repairprojectistobeassessed.For A = $3,750, r = 4%or0.04and h = 30years, PV = $64,845.Ifthe (discounted)costsofimplementing theprojectarelessthan$64,845, thentherisk-neutraldecision-maker willproceedwithimplementation, knowingthattheexpectedratioof benefittocostexceeds1.Ifcosts areintheinterval(AUD$25,938–$95,106;seeTable3:siteA),thedecision-makerneedstoconsidertheir attitudetorisk,andperhapsotherservicesthatmaybecomevaluablein future(e.g.carbonandnitrogenstorage,recreation:Jenkins etal. 2010). Inaddition,theprospectsfortransferringlearningoutcomes(knowledge spillover)tootherspeculative

projectsandinvestmentsmaybe worthconsidering.

Afterapplyingthecalculationsand dataforSchoolPrawnshownabove tositesBandC,wereportbestestimatesandplausibleboundsforthe presentvalueofthebenefitofrepair ateachofthethreesitesinTable3. Theestimatedcostsofrepairforour hypotheticalsitesareshownin Table4.Up-frontcostsincludecapital worksandcompensatorypaymentsto landholdersforinundationofotherwiseproductiveland,amongother possibleimpacts.Ongoingcostsare tobeincurredformaintenance.Using thesameformulaaboveforcalculatingthepresentvalueofmaintenance costs(againwitha30-yeartimehorizonanda4%discountrate),we obtaintotalcostsforeachcandidate project.Outcomesaresummarised

as(uncertain)benefit–costratiosin Figure3.

Therisk-neutraldecision-maker focusesonbestestimates.Risk-averse decision-makersfocusonlower bounds,andriskseekersonupper bounds.Thepriorityorderofthe threeprojectsdependsonriskattitudewhereBis(weakly)preferred toA,andCisnonviableforthe risk-neutraldecision-maker;Ais (weakly)preferredtoB,andBispreferredtoCforthosethatarerisk seeking,andnoneoftheprojects mayappealtoarisk-aversedecisionmaker.

Figure3. Benefit–costratiosofthethree hypotheticalcandidaterepairprojects,with plausiblebounds.Asdiscussedintext,these areconservativeestimatesusingonlyour indicatorspeciesandtheactualbenefit-tocostratioisgenerallymuchhigher(seede Groot etal. 2013).

Table2. Estimatedannualharvestrates(kgperyear)forthreehypotheticalcandidaterepair siteswithintheClarenceRiverestuary WithrepairWithoutrepair

Site A† 250700950100300400

Site B 4009001200200550700

Site C 200600800150400500

†ForsiteA,asanexample,theprobabilityweighteddifferencebetweenestimateswithand withoutrepair:0.25 9 (250–100) + 0.50 9 (700–300) + 0.25 9 (950–400) = 375kg/year.

The4%discountratewiththe30yeartimehorizonhasbeenusedby similarassessmentsfocusedonwetlandrestoration(e.g.Jenkins etal. 2010).Althoughsocialinvestments whichaccruebenefitsforthefuture havebeensubjecttoalower‘social discountrate’(andusuallylowerthan private/individualdiscountrates), basedonbothmarketandethical principles(Harrison2010;United Nations2014).Areviewof2160economistsbyWeitzman(2001)indicated apreferencetousediscountratesof lessthan4%anddecreasingtoless than1%forthedistantfuture(i.e.a timehorizonof >76years)forclimate changemitigation.Landmanagers themselvesmaychooserepairunder lowdiscountratesforbothmarket andnonmarketreasonsduetovarying riskperceptions,andatrialauction processcouldhelprevealcosts(e.g. Stoneham etal. 2003).

Table3. Bestestimatesandplausibleboundsforthepresentvalueofbenefitsforeachofthree hypotheticalcandidaterepairprojects

PresentvalueofbenefitSiteASiteBSiteC Lowerbound$25,938$34,584$8646

Bestestimate$64,845$60,522$32,423 Upperbound$95,106$86,460$51,876

Table4. Costsforeachofthreehypotheticalcandidaterepairprojects SiteASiteBSiteC

Costsofcapitalworks$8000$7000$10,000

Costsoflandholdercompensation$10,000$25,000$20,000 Annualcostofongoingmaintenance$1500$500$1000 Presentvalueoftotalcosts$43,938$40,646$47,292

Thepurposeofthesimpleframeworkwehaveoutlinedhereisto demonstratehoweffectiveseascape repairdecisionscanbemadedespite uncertainty.Itcanbereadilyadapted todifferentdiscountratesandtime horizonsandextendedtoinclude continuousprobabilisticjudgements andadditionalsourcesofuncertainty (e.g.costtofishers).Wenote,importantly,thatexpertjudgementneed notbeacriticalbottleneckinadaptingthisframeworktodevelopmore detailed,contextuallynuancedand locallyspecificbusinesscases.There

Figure4. Locationoftheeastcoasttemperatestudywiththepotentialforsaltmarshrepairmappedinhighresolution(basedonPrahalad2014) andthelikelymarginalincreaseinthefocalspeciesYellow-eyeMullet(Aldrichettaforsteri;mi-yem,classifiedusingJenksnaturalbreaks).Theinset obliqueimageprovidesacloserviewofthepotentialforsaltmarshrepairthroughrestitutionoftidalflows,throughengagementwithprivatelandmanagers.BasedatafromtheLIST(www.thelist.tas.gov.au,StateofTasmania).TheslightangulartiltintheinsetmapisduetheTransverseMercator projectionused.

aresimpleandaccessibleprotocols availableforelicitingthekindsof judgementsusedinourhypothetical examplehere(Burgman etal. 2011; Hemming etal. 2018).Theframeworkexplicitlyarguesagainstuseof uncertaintyasanexcuseforinaction (alsoseedeGroot etal. 2013).Even whereuncertaintymakesthestandalonemeritofacandidaterepairprojectunclear,thebenefitstobegained fromlearningthroughimplementationandsubsequentmonitoringmay makeimplementationworthwhile (Burley etal. 2012).Alsoofimportance,particularlyinthecontextof seascapehabitatsandtheircapacity

forcarbonstorage,isthe‘socialwelfarevalue’ofrepairthatwould includeavoideddamagesduetomitigationofclimaterisks(Jenkins etal. 2010).Therearemanyotherconsiderationsforleverage,suchasbenefits derivedfromjobcreationandtraining,aswellassustainingculturalvalues(Blignaut&Aronson2008),such asconnectiontoplace(e.g.Aboriginal‘SeaCountry’).

ConcludingComments

Thethreediversecasestudieshave demonstratedthesubstantialindicativebenefitsthatcanaccruefrom

seascaperepairandmayassistinthe formulationoftheproposedRecovery Planforcostalsaltmarshlistedunder theEPBCAct.Whileonlymarketbenefitindicatorspeciesthatarereadily understoodbythecommunitywere usedforillustration,thetotalbenefits (aspositiveexternalities)ofrepairare multiple.Equallyimportantly,even withjustthevalueofthemarketbenefitindicatorspeciesused,theargumentforinvestmentinrepairis compelling(Blignaut&Aronson 2008;Turner&Daily2008).Thechallengeremainsthatwhilerepairdeliversmultiplepublicandprivate benefits,currentlythesedrained

seascapeareasaregenerallyinprivate ownershipandarerestrictedfrom functioningasfisherieshabitats(e.g. Fig.4).Theopportunitycostsfor restoringthesefisherieshabitatsneed tobebroughtintosharperfocusfor policymakerstocommunityadvocatesbyincreasingtherecognition oftherelativecostsandbenefitsof competinglanduses.

Astothespecificcostsofrepair works,activitiesareinmostcasesrelativelysimple generallyinvolving minorearthworksinremovingsmall bundsandanyinfilltoreinstatetidal connectivityandre-establishtidal channels(e.g.Prahalad2014;Prahalad etal. 2019b).Thesearelikelyto berelativelyinexpensiveandcould berapidlyundertakenbyequipment suchasatractor-mountedbackhoe. Thesecostscanbeintegratedapart ofabusinesscasedevelopedfrom thegroundworkwehaveprovided, focusingonareadilyunderstood potentialmarketbenefitindicatoras asurrogateforecosystemservicebenefitsaccruingfromseascaperepair. Anybusinesscaseforrepairwillalso needtoaddresstheneedsforgreater clarity,rigouranddemonstrablemerit inidentificationofsuitablerepairsites andtargets.Indeed,thisprovidesa keychallengeforscientists,determiningamongmanyprospectiverepair sitesandmarketbenefitindicators, allofthemindividuallyworthyto varyingdegreesforseascapefunction, whichofthesesitesandindicators willincreasetheprospectsformuchneededinvestmentinsaltmarshand seascaperepair.

Acknowledgements

Thisworkwasundertakenforthe MarineBiodiversityHub,acollaborativepartnershipsupportedthrough fundingfromtheAustralianGovernment’sNationalEnvironmental ResearchProgram(NESP).RachelTribouthelpedprepareFigure2.NicBax (CSIRO)andanonymousreviewers providedvaluablecomments.

‘ImplicationsforManagers’Box

Documentingthepotentialecosystemservicebenefitsofseascaperepair(e.g. fisheriesproductivity)canfosterimprovedcommunityandagencyunderstanding andpromoteinvestmentinanenhancedfutureforAustralia’scoastalmarine biodiversity.Keystepsinthisprocessinclude:

Identificationoftheseascapehabitat(e.g.saltmarsh)andthefunction (e.g.tidalconnectivity)thatrequiresrestoration.

Selectionofexemplarindicators(e.g.prawnandfishspecies)amongthe suiteofecosystemservicesthatcouldillustratethetangiblebenefitsof seascaperepairreadilyunderstoodbypolicymakerstocommunityadvocates.

Collectionofbiologicalinformationonselectedindicators(e.g.prawn andfishspecies)withrespecttotheirhabitat(e.g.saltmarsh)andthe broaderseascapecontext(e.g.trophicandlifestylerelationships).

Developmentofcandidatescenariosforseascaperepairthatcould securesubstantialimprovementinecosystemservices(primarilyfisheries,butalsoknowledgespilloverandotherpositiveexternalities), bycombiningthebiologicalinformationwithassessmentofeconomic costsandbenefits,engineeringworksandanunderstandingofsocialfeasibility.

References

AbelN.,GorddardR.,HarmanB. etal. (2011)Sea levelrise,coastaldevelopmentandplanned retreat:analyticalframework,governance principlesandanAustraliancasestudy. EnvironmentalScience&Policy 14,279–288.

AbrantesK.andSheavesM.(2009)Sourcesof nutritionsupportingjuvenilepenaeidprawns inanAustraliandrytropicsestuary. Marine andFreshwaterResearch 60,949–959.

AbrantesK.G.,SheavesM.andFriesJ.(2019) Estimatingthevalueoftropicalcoastalwetlandhabitatstofisheries:Caveatsand assumptions. PloSone 14,e0215350.

BlignautJ.andAronsonJ.(2008)Gettingserious aboutmaintainingbiodiversity. Conservation Letters 1,12–17.

BoonP.andPrahaladV.(2017)Ecologists,economicsandpolitics:problemsandcontradictionsinapplyingneoliberalideologyto natureconservationinAustralia. PacificConservationBiology 23,115–132.

BoonP.I.,AllenT.,BrookJ.etal. (2011)MangrovesandcoastalsaltmarshofVictoria:distribution,condition,threatsandmanagement. InstituteforSustainabilityandInnovation, VictoriaUniversity,Melbourne. BurgmanM.,CarrA.,GoddenL. etal. (2011) Redefiningexpertiseandimprovingecological judgment. ConservationLetters 4,81–87. BurleyJ.G.,McAllisterR.R.,CollinsK.A.and LovelockC.E.(2012)Integration,synthesis andclimatechangeadaptation:anarrative

basedoncoastalwetlandsattheregional scale. RegionalEnvironmentalChange 12, 581–593.

CreightonC.,BoonP.,BrookesJ.andSheaves M.(2015)RepairingAustralia’sestuariesfor improvedfisheriesproduction:whatbenefits, atwhatcost? MarineandFreshwater Research 66,493–507.

EmeryT.,BellJ.,LyleJ.andHartmannK.(2017) TasmanianScalefishFisheryAssessment Report2015/16.InstituteforMarineand AntarcticStudies,UniversityofTasmania, Hobart.

deGrootR.S.,BlignautJ.,PloegS.,AronsonJ., ElmqvistT.andFarleyJ.(2013)Benefitsof investinginecosystemrestoration. ConservationBiology 27,1286–1293. HarrisonM.(2010)ValuingtheFuture:Thesocial discountrateincost-benefitanalysis.Visiting ResearcherPaper,ProductivityCommission, Canberra.

HartC.,GastonT.F.andTaylorM.D.(2018)Utilisationofarecoveringwetlandbyacommerciallyimportantspeciesofpenaeidshrimp. WetlandsEcologyandManagement 26, 665–675.

HemmingV.,BurgmanM.A.,HaneaA.M., McBrideM.F.andWintleB.C.(2018)A practicalguidetostructuredexpertelicitation usingtheIDEAprotocol. MethodsinEcology andEvolution 9,169–181.

JenkinsW.A.,MurrayB.C.,KramerR.A.and FaulknerS.P.(2010)Valuingecosystemservicesfromwetlandsrestorationinthe

MississippiAlluvialValley. EcologicalEconomics 69,1051–1061.

JohnstonR.andSheavesM.(2007)Smallfish andcrustaceansdemonstrateapreference forparticularsmall-scalehabitatswhenmangroveforestsarenotaccessible. Journalof ExperimentalMarineBiologyandEcology 353,164–179.

LaegdsgaardP.(2006)Ecology,disturbanceand restorationofcoastalsaltmarshinAustralia: areview. WetlandsEcologyandManagement 14,379–399.

LawrenceA.J.,BakerE.andLovelockC.E. (2012) Optimisingandmanagingcoastalcarbon:ComparativesequestrationandmitigationopportunitiesacrossAustralia’s landscapesandlanduses,FRDCReport 2011/084.FisheriesResearchandDevelopmentCorporation,Canberra.

LeeS.Y.,DunnR.J.K.,YoungR.A. etal. (2006) Impactofurbanizationoncoastalwetland structureandfunction. AustralEcology 31, 149–163.

LyleJ.M.,StarkK.E.andTraceyS.R.(2014) 2012–13SurveyofRecreationalFishingin Tasmania.InstituteforMarineandAntarctic Studies,UniversityofTasmania,Hobart. MazumderD.(2009)Ecologyofburrowingcrabs intemperatesaltmarshofsouth-eastAustralia.In: SaltmarshEcology (edN.Saintilan), pp.115–131.CSIROPublishing,Melbourne. MazumderD.,SaintilanN.,WilliamsR.J.and SzymczakR.(2011)Trophicimportanceofa temperateintertidalwetlandtoresidentand itineranttaxa:evidencefrommultiplestable isotopeanalyses. MarineandFreshwater Research 62,11–19.

MelvilleA.J.andConnollyR.M.(2003)Spatial analysisofstableisotopedatatodetermine primarysourcesofnutritionforfish. Oecologia 136,499–507.

MinelloT.J.,MatthewsG.A.,CaldwellP.A. andRozasL.P.(2008)Populationandproductionestimatesfordecapodcrustaceans inwetlandsofGalvestonBay,Texas. TransactionsoftheAmericanFisheriesSociety 137,129–146.

MortonR.M.,PollockB.R.andBeumerJ.P. (1987)Theoccurrenceanddietoffishesina tidalinlettoasaltmarshinsouthernMoreton Bay,Queensland. AustralianJournalofEcology 12,217–237.

MountR.E.,PrahaladV.,SharplesC.etal. (2010) CircularHeadCoastalForeshoreHabitats: SeaLevelRiseVulnerabilityAssessment. FinalProjectReporttoCradleCoastNatural ResourceManagementRegion.Schoolof GeographyandEnvironmentalStudies, UniversityofTasmania,Hobart. NagelkerkenI.,SheavesM.,BakerR.andConnollyR.M.(2015)Theseascapenursery:A novelspatialapproachtoidentifyandmanage nurseriesforcoastalmarinefauna. Fishand Fisheries 16,362–371. NationalLandandWaterResourcesAudit (NLWRA)(2002) AustralianCatchment, RiverandEstuaryAssessment2002.CommonwealthofAustralia,Canberra.

PrahaladV.(2014)Humanimpactsandsaltmarsh lossintheCircularHeadcoast,north-west Tasmania,1952–2006:implicationsformanagement. PacificConservationBiology 20, 272–285.

PrahaladV.,WhiteheadJ.,LatinovicA.and KirkpatrickJ.(2019a)Thecreationandconservationeffectivenessofstate-widewetlandsandwaterwaysplanningoverlaysfor Tasmania,Australia. LandUsePolicy 81, 502–512.

PrahaladV.,Harrison-DayV.,McQuillanP.and CreightonC.(2019b)ExpandingfishproductivityinTasmaniansaltmarshwetlandsthrough tidalre-connectionandhabitatrepair. Marine andFreshwaterResearch 70,140–151.

RaoultV.,GastonT.F.andTaylorM.D.(2018) Habitat–fisherylinkagesintwomajorsoutheasternAustralianestuariesshowthatthe C4saltmarshplant Sporobolusvirginicus is asignificantcontributortofisheriesproductivity. Hydrobiologia 811,221–238. RaposaK.B.andTalleyD.M.(2012)Ameta-analysisofnektonresponsestorestorationoftiderestrictedNewEnglandsaltmarshes.In: Tidal MarshRestoration – ASynthesisofScience andManagement (edsC.RomanandD.Burdick),pp.97–118.IslandPress/Centerfor ResourceEconomics,Washington,DC. RogersK.,BoonP.I.,BraniganS., etal. (2016) Thestateoflegislationandpolicyprotecting Australia’smangroveandsaltmarshandtheir ecosystemservices. MarinePolicy 72,139–155.

RomanC.T.,RaposaK.B.,AdamowiczS.C., James-PirriM.J.andCatenaJ.G.(2002) Quantifyingvegetationandnektonresponse totidalrestorationofaNewEnglandsalt marsh. RestorationEcology 10,450–460. RonnbackP.,TroellM.,KautskyN.andPrimavera J.H.(1999)Distributionpatternofshrimp andfishamong Avicennia and Rhizophora microhabitatsinthePagbilaomangroves, Philippines. Estuarine,CoastalandShelf Science 48,223–234.

RozasL.P.andMinelloT.J.(2011)Variationin penaeidshrimpgrowthratesalonganestuarinesalinitygradient:implicationsformanagingriverdiversions. JournalofExperimental MarineBiologyandEcology 397,196–207.

SheavesM.(2017)Howmanyfishusemangroves?The75%ruleanill-definedandpoorly validatedconcept. FishandFisheries 18, 778–789.

SheavesM.andJohnstonR.(2010)Implications ofspatialvariabilityoffishassemblagesfor monitoringofAustralia’stropicalestuaries. AquaticConservation:MarineandFreshwaterEcosystems 20,348–356.

SheavesM.,JohnstonR.,ConnollyR.M.and BakerR.(2012)Importanceofestuarine mangrovestojuvenilebananaprawns. Estuarine,CoastalandShelfScience 114, 208–219.

SheavesM.,BrookesJ.,ColesR. etal. (2014) RepairandrevitalisationofAustralia׳ stropicalestuariesandcoastalwetlands:Opportunitiesandconstraintsforthereinstatement

oflostfunctionandproductivity. MarinePolicy 47,23–38.

SinclairS.andBoonP.(2012)Changesinthe areaofcoastalmarshinVictoriasincethe mid19thcentury. Cunninghamia 12,153–176.

StonehamG.,ChaudhriV.,HaA.andStrappazzon L.(2003)Auctionsforconservationcontracts: anempiricalexaminationofVictoria’s BushTendertrial. AustralianJournalofAgriculturalandResourceEconomics 47,477–500.

SvenssonC.J.,HyndesG.A.andLaveryP.S. (2007)Foodwebanalysisintwopermanently opentemperateestuaries:Consequencesof saltmarshloss? MarineEnvironmental Research 64,286–304.

TaylorM.D.andCreightonC.(2018)ThepotentialbenefitsforSchoolPrawn(Metapenaeus macleayi)fromtargetedhabitatrepairinthe lowerClarenceRiverestuary. Wetlands 38, 1199–1209.

TaylorM.D.,BeckerA.,MoltschaniwskyjN.A. andGastonT.(2017a)Directandindirect interactionsbetweenlowerestuarinemangroveandsaltmarshhabitatsandacommerciallyimportantpenaeidshrimp. Estuaries andCoasts 41,815–826.

TaylorM.D.,GastonT.andRaoultV.(2017b)The economicvalueoffisheriesharvestsupported bysaltmarshandmangroveproductivityin twoAustralianestuaries. EcologicalIndicators 84,701–709.

ThreatenedSpeciesScientificCommittee(TSSC) (2013)CommonwealthConservationAdvice forSubtropicalandTemperateCoastalSaltmarsh.DepartmentofSustainability,Environment,Water,PopulationandCommunities, Canberra.

TurnerR.K.andDailyG.C.(2008)Theecosystemservicesframeworkandnaturalcapital conservation. EnvironmentalandResource Economics 39,25–35.

UnitedNations(2014) SystemofEnvironmentalEconomicAccounting2012:CentralFramework.UnitedNations,NewYork.

VanceD.J.,HaywoodM.D.E.andStaplesD.J. (1990)Useofamangroveestuaryasanurseryareabypostlarvalandjuvenilebanana prawns, Penaeusmerguiensis deMan,in northernAustralia. Estuarine,Coastaland ShelfScience 31,689–701.

WaltersC.(1986) Adaptivemanagementof renewableresources.MacMillanPublishing Company,NewYork,NY.

WebleyJ.A.,ConnollyR.M.andYoungR.A. (2009)Habitatselectivityofmegalopaeand juvenilemudcrabs(Scyllaserrata):implicationsforrecruitmentmechanism. MarineBiology 156,891.

WegscheidlC.,SheavesM.,McLeodI.,Hedge P.,GilliesC.andCreightonC.(2017)SustainablemanagementofAustralia’scoastal seascapes:Acaseforcollectingandcommunicatingquantitativeevidencetofoster sustainablecoastaldevelopment. Wetlands EcologyandManagement 25,3–22.

WeitzmanM.L.(2001)Gammadiscounting. AmericanEconomicReview 91,260–271.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.