HÀNH TRANG KIẾN THỨC CHO KÌ THI THPT QG
vectorstock.com/10499249
Ths Nguyễn Thanh Tú Tuyển tập
Bộ chuyên đề, bài tập trắc nghiệm tổng hợp môn Vật Lý lớp 12 - Chuyên đề 1: Dao động cơ học (Có lời giải chi tiết) PDF VERSION | 2019 EDITION ORDER NOW / CHUYỂN GIAO QUA EMAIL TAILIEUCHUANTHAMKHAO@GMAIL.COM
Tài liệu chuẩn tham khảo Phát triển kênh bởi Ths Nguyễn Thanh Tú Đơn vị tài trợ / phát hành / chia sẻ học thuật : Nguyen Thanh Tu Group Hỗ trợ 24/7 Fb www.facebook.com/HoaHocQuyNhon Mobi/Zalo 0905779594
MỤC LỤC CHƯƠNG 1: DAO ĐỘNG CƠ.............................................................1 Chủ đề 1. DAO ĐỘNG ĐIỀU HÒA .....................................................1 A. TÓM TẮT LÍ THUYẾT...............................................................1
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
B. PHƯƠNG PHÁP GIẢI CÁC DẠNG TOÁN ...................................1 Dạng 1. CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG ĐIỀU HÒA VÀ CÁC ĐẠI LƯỢNG ĐẶC TRƯNG ...........................................1 1.2. Các phương trình độc lập với thời gian ..........................................3 2. Các bài toán sử dụng vòng tròn lượng giác.......................................7 2.1. Chuyển động tròn đều và dao động điều hoà .................................7 2.2. Khoảng thòi gian để véc tơ vận tốc và gia tốc cùng chiều, ngược chiều...........................................................................................................8 2.3. Tìm li độ và hướng chuyển động Phương pháp chung: .................8 2.4. Tìm trạng thái quá khứ và tương lai .............................................10 2.4.1. Tìm trạng thái quá khứ và tương lai đối với bài toán chưa cho biết phương trình của x, v, a, F... .............................................................10 2.4.2. Tìm trạng thái quá khứ và tương lai đối với bài toán cho biết phương trình của x, v, a, F... ....................................................................13 2.5. Tìm số lần đi qua một vị trí nhất định trong một khoảng thời gian .................................................................................................................19 2.6. Viết phương trình dao động điều hòa ...........................................22 BÀI TẬP TỰ LUYỆN.........................................................................28 Dạng 2. BÀI TOÁN LIÊN QUAN ĐẾN THỜI GIAN .......................44 1. Thời gian đi từ x1 đến x2 ..................................................................44 1.1. Thời gian ngắn nhất đi từ x1 đến vị trí cân bằng và đến vị trí biên .................................................................................................................44 1.2. Thời gian ngắn nhất đi từ x1 đến x2 ..............................................47 1.3.Thời gian ngắn nhất liên quan đến vận tốc, động lượng ...............51 1.4. Thời gian ngắn nhất liên quan đến gia tốc, lực, năng lượng ........54
U C TI O
N
CHƯƠNG 1: DAO ĐỘNG CƠ Chủ đề 1. DAO ĐỘNG ĐIỀU HÒA A. TÓM TẮT LÍ THUYẾT + Dao động cơ là chuyển động qua lại của vật quanh 1 vị trí cân bằng. + Dao động tuần hoàn là dao động mà sau những khoảng thời gian bằng nhau, trạng thái dao động (vị trí, vận tốc,..) được lặp lại như cũ. + Dao động điều hòa là dao động trong đó li độ của vật là một hàm côsin (hay sin) của thời gian. x A cos t v x ' A sin t 2 a v ' A cos t F ma m2 A cos t
A
O
O
a max 2 A v0 v đổi chiều
A
x max A a max 2 A v0 v đổi chiều
TU
x0 a0
PR
x min A
D
+ Nếu x A sin t thì có thể biến đổi thành x A cos t 2
H
v max A
AN
a đổi chiều
N
G
U
YE
N
TH
B. PHƯƠNG PHÁP GIẢI CÁC DẠNG TOÁN 1. Các phương pháp biểu diễn dao động điều hòa và các đại lượng đặc trưng 2. Bài toán liên quan đến thời gian. 3. Bài toán liên quan đến quãng đường. 4. Bài toán liên quan đến vừa thời gian và quãng đường. 5. Bài toán liên quan đến chứng minh hệ dao động điều hòa. Dạng 1. CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG ĐIỀU HÒA VÀ CÁC ĐẠI LƯỢNG ĐẶC TRƯNG Phương pháp giải Một dao động điều hòa có thể biểu diễn bằng: + Phương trình + Hình chiếu của chuyển động tròn đều + Véc tơ quay + Số phức. Khi giải toán nếu chúng ta sử dụng hợp lí các biểu diễn trên thì sẽ có được lời giải hay và ngắn gọn. 1. Các bài toán yêu cầu sử dụng linh hoạt các phương trình 1.1. Các phương trình phụ thuộc thời gian: x A cos t
v x ' A sin t a v ' 2 A cos t
1
F ma m2 A cos t
kx 2 m2 A 2 m2 A 2 cos 2 t 1 cos 2t 2 2 2 4 mv 2 m2 A 2 m2 A 2 Wd sin 2 t 1 cos 2t 2 2 2 4 m2 A 2 kA 2 W = Wt + Wd 2 2 Phương pháp chung: Đối chiếu phương trình của bài toán với phưong trình tổng quát để tìm các đại lượng. Ví dụ 1: (ĐH − 2014) Một chất điểm dao động điều hòa với phương trình x 3cos t (x tính bằng cm, t tính bằng s). Phát biểu nào sau đây đúng? A. Tốc độ cực đại của chất điểm là 9,4 cm/s. B. Chu ki của dao động là 0,5 s. C. Gia tốc của chất điểm có độ lớn cực đại là 113 cm/s2. D. Tần số của dao động là 2 Hz. Hướng dẫn Tốc độ cực đại: vmax = A = 9,4 cm/s => Chọn A. Ví dụ 2: (ĐH − 2012) Một vật nhỏ có khối lượng 250 g dao động điều hòa dưới tác dụng của một lực kéo về có biểu thức F = − 0,4cos4t (N) (t đo bằng s). Dao động của vật có biên độ là A. 8 cm. B. 6 cm. C. 12 cm. D. 10 cm. Hướng dẫn Đối chiếu F = − 0,4cos4t (N) với biểu thức tổng quát F = − mω2Acos t
TU
PR
O
D
U C TI O
N
Wt
N
G
U
YE
N
TH
AN
H
4 rad / s 2 A 0,1 m Chọn D m A 0, 4 N Ví dụ 3: Một vật nhỏ khối lượng 0,5 (kg) dao động điều hoà có phương trình li độ x = 8cos30t (cm) (t đo bằng giây) thì lúc t = 1 (s) vật A. có li độ 4 2 (cm). B. có vận tốc − 120 cm/s. 2 C. có gia tốc 36 3 (m/s ). D. chịu tác dụng hợp lực có độ lớn 5,55N. Hướng dẫn Đối chiếu với các phương trinh tổng quát ta tính được: x 0, 08cos 30t m x 0, 08cos 30.1 0, 012 m v x ' 2, 4sin 30t m / s t 1 v 2, 4sin 30.1 2,37 m / s 2 2 a v ' 72 cos 30t m / s a v ' 72 cos 30.1 11,12 m / s F ma 36 cos 30t N F ma 36 cos 30.1 5,55 N Chọn D. Ví dụ 4: Một chất điểm dao động điều hòa có phương trình vận tốc là v 3 cos 3t (cm/s). Gốc tọa độ ở vị trí cân bằng. Mốc thời gian được chọn vào lúc chất điểm có li độ và vận tốc là: A. x = 2cm, v = 0. B. x = 0, v = 3π cm/s. C. x= − 2 cm, v = 0. D. x = 0, v = − π cm/s. Hướng dẫn Đối chiếu với các phương trình tổng quát ta tính được:
2
x A cos 3t 2 v x ' 3A sin 3t 3A cos 3t A 1 cm 2 x 0 1cos 3.0 2 0 Chọn B. v 3 cos 3.0 3 cm / s 0
O
2
t
x A cos t
x A cos t
x A sin t
TH
AN
H
t
x A sin t
TU
PR
t
D
U C TI O
N
Ví dụ 5: (THPTQG – 2017) Một vật dao động điều x(cm) hòa trên trục Ox. Hình bên là đồ thị biểu diễn sự phụ thuộc của li độ x vào thời gian t. Tần số góc của dao t(s) động là. 0 A. 10 rad/s. B. 10π rad/s. C. 5π rad/s. D. 5 rad/s. 0, 2 Hướng dẫn * Chu kỳ T = 0,4s 2 / T 5 rad / s Chọn C. Chú ý: Bốn trường hợp đặc biệt khi chọn gốc thời gian là lúc: vật ở vị trí biên dương và qua vị trí cân bằng theo chiều âm, vật ở biên âm và vật qua vị trí cân bằng theo chiều dương.
2
N
t
YE
1.2. Các phương trình độc lập với thời gian
N
G
U
2 v2 2 x 2 A kx 2 mv 2 m2 A 2 kA 2 a 2 x ; W W W t d 2 2 2 2 F m2 x kx k m2 Phương pháp chung: Biến đổi về phương trình hoặc hệ phương trình có chứa đại lượng cần tìm và đại lượng đã biết. Ví dụ 1: Một vật dao động điều hoà, khi vật có li độ x1 = 4 (cm) thì vận tốc v1 40 3 (cm/s) và khi vật có li độ x 2 4 2 (cm) thỉ vận tốc v1 40 2 cm / s (cm/s). Động năng biến thiên với chu kỳ A. 0,1 s.
B. 0,8 s.
Áp dụng công thức: x 2
C. 0,2 s. Hướng dẫn
v2 A2 2
3
D. 0,4 s.
2 40 3 A 2 42 2 2 10 rad / s T 0, 2 s 2 40 2 2 A 2 4 2 2 Động năng và thế năng đều biến đổi tuần hoàn theo thời gian với chu kỳ là: T T ' 0,1 s Chọn A. 2 Ví dụ 2: Vận tốc và gia tốc của con lắc lò xo dao động điều hoà tại các thời điểm t1,t2 có giá trị tương ứng là v1 = 0,12 m/s, v2 = 0,16 m/s, a1= 0,64 m/s2, a2 = 0,48 m/s2. Biên độ và tần số góc dao động của con lắc là: A. A = 5 cm, ω = 4 rad/s. B. A = 3 cm, ω = 6 rad/s. C. A = 4 cm, ω = 5 rad/s. D. A = 6 cm, ω = 3 rad/s. Hướng dẫn v2 a 2 v2 2 2 a 2 x Áp dụng công thức: x 2 A 4 2 A2
U C TI O
N
TU
PR
O
D
0, 482 0,162 2 4 2 A A 0, 05 m Chọn A. 2 2 0, 64 0,12 A 2 4 rad / s 4 2 Ví dụ 3: (ĐH − 2011) Một chất điểm dao động điều hòa trên trục Ox. Khi chất điểm đi qua vị trí cân bằng thì tốc độ của nó là 30 cm/s. Khi chất điểm có tốc độ là 15 cm/s thì gia tốc của nó có độ
D. 8 cm.
TH
AN
H
lớn là 90 3cm / s 2 cm/s2. Biên độ dao động của chất điểm là A. 5 cm. B. 4 cm. C. 10 cm. Hướng dẫn 2 v Phối hợp với công thức: x 2 2 A 2 ;a 2 x; v max A ta suy ra: 2
2
2
G
U
YE
N
90 3 15 2 aA v 1 A 1 A 5 cm Chọn A. 2 2 v max v max 30 30 Ví dụ 4: Một con lắc lò xo dao động điều hòa theo phương ngang với biên độ A. Tìm độ lớn li độ x mà tại đó công suất của lực đàn hồi đạt cực đại.
N
C. A 2. Hướng dẫn Công suất của lực bằng tích độ lớn của lực F k x và tốc độ v. A. A
B. 0.
P F.v
k v k 2 v 2 kA 2 .2 x . x 2 2 2 2
Pmax
k A 2 v2 A 2 A x2 2 x Chọn D. 2 2 2
D. 0,5A 2.
Ở trên ta đã áp dụng bất đẳng thức 2ab a b , dấu ‘=’ xẩy ra khi a = b. Ví dụ 5: Một con lắc lò xo có độ cứng k = 40 N/m đầu trên được giữ cố định còn phía dưới gắn vật m dao động điều hòa theo phương thẳng đứng với biên độ 2,5 cm. Khi ở vị trí cao nhất lò xo 2
2
4
không biến dạng. Lấy g = 10 m/s2. Trong quá trình dao động, trọng lực của m có công suất tức thời cực đại bằng A. 0,41 W. B. 0,64 W. C. 0,5 W. sD. 0,32 W. Hướng dẫn Tại vị trí cân bằng: mg k 0 A. Tần số góc:
k m
g 0
g A
Công suất tức thời của trọng lực: Pcs F.v P.v mgv với v là tốc độ của vật m.
Pmax mgv max kA
g .A kA Ag 40.2,5.102 2,5.102.10 0,5W A
D
U C TI O
N
Chọn C. Ví dụ 6: Một chất điểm dao động điều hòa trên trục Ox với chu kì 2 s và biên độ 10 cm. Tại thời điểm t, lực hồi phục tác dụng lên vật có độ lớn F = 0,148 N và động lượng của vật lúc đó p = 0,0628 kgm/s. Tính khối lượng của vật nặng. A. 0,25 kg. B. 0,20 kg. C. 0,10 kg. D. 0,15 kg. Hướng dẫn Từ công thức tính độ lớn lực hồi phục F k x m2 x , độ lớn động lượng của vật p = mv ta
O
v2 A 2 ta được: 2 2 rad / s ; A 0,1 m F2 p2 2 T 2 2 A mà 2 4 m m F 0,148 N ; p 0, 0628 kgm / s
TU
PR
rút ra |x| và v rồi thay vào: x 2
N
G
U
YE
N
TH
AN
H
nên suy ra: m 0,25 (kg) => Chọn A. Ví dụ 7: Gọi M là điểm của đoạn AB trên quỹ đạo chuyển động của một vật dao động điều hòa. Biết gia tốc tại A và B lần lượt là − 3 cm/s2 và 6 cm/s2 đồng thời chiều dài đoạn AM gấp đôi chiều dài đoạn BM. Tính gia tốc tại M. A. 2 cm/s2. B. 1 cm/s2. C. 4 cm/s2. D. 3 cm/s2. Hướng dẫn 2 Áp dụng công thức a x cho các điểm A, B, M và lưu ý AM = 2MB nên x 2x B 2 x A 22 x B xM xA 2 xB xM xM A 2 x M 3 3 a A 2a B aM 3 cm / s 2 Chọn D. 3 Ví dụ 8: Một vật dao động điều hòa có chu kì 2 s, biên độ 10 cm. Khi vật cách vị trí cân bằng 5 cm, tốc độ của nó bằng A. 27,21 cm/s. B. 12,56 cm/s. C. 20,08 cm/s. D. 18,84 cm/s. Hướng dẫn v2 Từ công thức: x 2 2 A 2 suy ra: 2 2 v A2 x 2 A2 x 2 102 52 27, 21 cm / s Chọn A. T 2 Ví dụ 9: Một quả cầu dao động điều hoà với biên độ 5 (cm), chu kỳ 0,4 (s). Tính vận tốc cùa quả cầu tại thời điểm vật có li độ 3 (cm) và đang chuyển động theo chiều dương. A. v = 62,8 (cm/s). B. v = ± 62,8 (cm/s) C. v = − 62,8 (cm/s). D. v = 62,8 (m/s).
5
Hướng dẫn
2 v 2 2 x 2 A v A2 x 2 A 2 x 2 62,8 cm / s Chọn A T v 0 Chú ý: Các bài toàn đơn giản như: cho x tính v hoặc cho v tính x. Từ các công thức A 2 v A2 x 2 2 v 2 A A x 2 2 ta suy ra các điểm đặc biệt v A x A 1 v max A 2
x A v 0
x
2
v
2
Wd Wt
A 3 A v Wt 3Wd 2 2
A A 3 v Wd Wt 2 2 2
A
D
x
A
N
x
U C TI O
x 0 v A.
2
O
v2 x v 1 2 A A Đồ thị liên hệ x, v là đường elip và các bán trục A và ωA. Ví dụ 10: Một vật nhỏ có khối lượng 0,3 kg dao động điều hòa dọc theo trục Ox. Vị trí cân bằng của vật trùng với O. Trong hệ trục vuông góc xOv, đồ thị biểu diễn mối quan hệ giữa vận tốc và li độ của vật như hình vẽ. 5 Lực kéo về cực đại tác dụng lên vật trong quá trình dao động là
TU
PR
2 2 Từ A x
H
2
AN
TH
B. 30N.
YE
N
A. 24N.
x(cm) 5
0
2
C. 1,2N. Hướng dẫn
D. 27N.
G
U
2 2 A 5 cm 0, 05 m x v * Từ 1 A A A 2 m / s
N
40 rad / s Fmax kA m2 A 24 N Chọn A. Ví dụ 11: (THPTQG − 2016) Cho hai vật dao động điều hòa dọc theo hai đường thẳng cùng song song với trục Ox. Vị trí cân bằng của mỗi vật nằm trên đường thắng vuông góc với trục Ox tại O. Trong hệ trục vuông góc xOv, đường (1) là đồ thị biểu diễn mối quan hệ giữa vận tốc và li độ của vật 1, đường (2) là đồ thị biểu diễn mối quan hệ giữa vận tốc và li độ của vật 2 (hình vẽ). Biết các lực kéo về cực đại tác dụng lên hai vật trong quá trình dao động là bằng nhau. Tỉ số giữa khối lượng của vật 2 với khối lượng của vật 1 là A. 1/3. B. 3. C. 1/27. D. 27.
6
v (1)
x (2)
Hướng dẫn 1A1 2 A 3 m 2 1A1 A 2 2 2 x v m112 A1 m 2 22 A 2 * Từ 1 27 m1 2 A 2 A1 A A A2 3 A1 2
2
Chọn D.
D
U C TI O
N
2. Các bài toán sử dụng vòng tròn lượng giác Kinh nghiệm cho thấy, những bài toán không liên quan đến hướng của dao động điều hòa hoặc liên quan vận tốc hoặc gia tốc thì nên giải bài toán bằng cách sử dụng các phương trình; còn nếu liên quan đến hướng thì khi sử dụng vòng tròn lượng giác sẽ cho lời giải ngắn gọn! Ta đã biết, hình chiếu của chuyển động tròn đều trên một trục nằm trong mặt phẳng quỹ đạo biểu diễn một dao động điều hòa: x A cos t
AN
H
TU
PR
O
+ Ở nửa trên vòng tròn thì hình chiếu đi theo chiều âm, còn ở dưới thì hình chiếu đi theo chiều dương! 2.1. Chuyển động tròn đều và dao động điều hoà Phương pháp chung: Dựa vào mối quan hệ giữa các đại lượng trong dao động điều hòa và trong chuyển động tròn đều. x A cos t = Hình chiếu của CĐTĐ: bán kính bằng A, tần số góc ω, tốc độ dài 2
TH
v T A.
2
2
2
v2 x v x v x 2 A 1 1 A A A vT Ví dụ 1: (THPTQG − 2016): Một chất điểm chuyển động tròn đều trên đường tròn tâm O bán kính 10 cm với tốc độ góc 5 rad/s. Hình chiếu của chất điểm lên trục Ox nằm trong mặt phẳng quỹ đạo có tốc độ cực đại là A. 15 cm/s. B. 50 cm/s. C. 250 cm/s. D. 25 cm/s. Hướng dẫn * Một chất điểm chuyển động tròn đều trên đường tròn bán kính R với tốc độ góc thì hình chiếu của nó trên một trục nằm trong mặt phẳng quỹ đạo sẽ dao động điều hòa với biên độ đúng bằng R và tần số góc đúng bằng * Hình chiếu của chất điểm lên trục Ox nằm trong mặt phẳng quỹ đạo dao động điều hòa với biên độ A = 10 cm và tần số góc = 5 rad/s => tốc độ cực đại là v max A = 50 cm/s => Chọn B. Ví dụ 2: Một chất điểm M chuyển động tròn đều trên quỹ đạo tâm O bán kính R với tốc độ 100 cm/s. Gọi P là hình chiếu cùa M trên trục Ox nằm trong mặt phẳng quỹ đạo. Khi P cách O một đoạn 6 (cm) nó có tốc độ là 50 (cm/s). Giá trị R bằng A. 4 3 (cm). B. 2,5 (cm) C. 6 3 (cm). D. 5 (cm) Hướng dẫn
N
G
U
YE
N
2
7
2
2
62 502 x v 1 A 4 3 cm Chọn A. * Sử dụng: 1 2 A 1002 A vT 2.2. Khoảng thòi gian để véc tơ vận tốc và gia tốc cùng chiều, ngược chiều. Phương pháp chung: Viết phương trìnnh dưới dạng: x A cos t ; t rồi phối hợp với vòng tròn
O
D
U C TI O
N
lượng giác. Chú ý rằng v luôn cùng hướng với hướng chuyển động, a luôn hướng về vị trí cân bằng. /2 a 0 Vật đi từ x = A đến x = 0 0 v 0 2 a 0 (II) (I) Vật đi từ x = 0 đến x = -A 2 v 0 0 3 2 a 0 Vật đi từ x = - A đến x = 0 v 0 2 (III) (IV) a 0 Vật đi từ x = 0 đến x = a 3 2 2 v 0 3 / 2
N
G
U
YE
N
TH
AN
H
TU
PR
Ví dụ 1: Một chất điểm dao động điều hòa trên trục Ox có phương trình x = Acos(5πt + π/2) (cm). Véc tơ vận tốc và véc tơ gia tốc sẽ có cùng chiều dương của trục Ox trong khoảng thời gian nào (kể từ thời điểm ban đầu t = 0) sau đây? A. 0,2 s < t < 0,3 s. B. 0,0s < t < 0,l s. C. 0,3 s < t < 0,4 s. D. 0,1 s < t <0,2 s. Hướng dẫn Muốn v > 0, a > 0 thì chất điểm chuyển động tròn đều phải thuộc góc (III) (Vật đi từ x = − A đến x = 0): 3 5t 0,1s t 0, 2s Chọn D. 2 2 Ví dụ 2: Một chất điểm dao động điều hòa trên trục Ox có phương trình x= Acos(5πt + π/2) (cm). Véc tơ vận tốc và véc tơ gia tốc sẽ có cùng chiều âm của trục Ox trong khoảng thời gian nào (kể từ thời điểm ban đầu t = 0) sau đây? A. 0,2s < t < 0,3 s. B. 0,0 s < t < 0,1 s. C. 0,3 s < t < 0,4 s. D. 0,1 s < t < 0,2 s. Hướng dẫn Muốn v < 0, a < 0 thì chất điểm chuyển động tròn đều phải thuộc góc (I) (Vật đi từ x = A đến x = 0). Vì 5t / 2 / 2 nên ( ) phải bắt đầu từ 2π : 5 0,3s t 0, 4s Chọn C. 2 2 2.3. Tìm li độ và hướng chuyển động Phương pháp chung: Vật chuyển động về vị trí cân bằng là nhanh dần (không đều) và chuyển động ra xa vị trí cân bằng là chậm dần (không đều). x t 0 A cos .t 0 x A cos t t t0 Cách 1: v x ' A sin t v t 0 A sin .t 0 + v t 0 > 0: Vật đi theo chiều dương (x đang tăng). 2 5t
+ v t 0 < 0: Vật đi theo chiều âm (x đang giảm),
8
Cách 2: Xác định vị trí trên vòng lượng giác ở thời điểm t 0 : .t 0 . Nếu thuộc nửa trên vòng tròn lượng giác thì hình chiếu chuyển động theo chiều âm (li độ đang giảm). Nếu thuộc nửa dưới vòng tròn lượng giác thì hình chiếu chuyển động theo chiều dương (li độ đang tăng). Li độ dao động điều hòa: x A cos t 0 Vận tốc dao động điều hòa: v = x' = in t 0 Ví dụ 1: Một vật dao động điều hòa có phương trình li độ x 2 2 cos 10t 3 / 4 , trong đó x
O
D
U C TI O
N
tính bằng xentimét (cm) và t tính bằng giây (s). Lúc t = 0 s vật có A. li độ − 2 cm và đang đi theo chiều âm. B. li độ − 2 cm và đang đi theo chiều dương. C. li độ +2 cm và đang đi theo chiều dương. D. li độ +2 cm và đang đi theo chiều âm. Hướng dẫn 3 x 0 2 2 cos 10.0 4 2 cm Cách 1: Chọn A. v x ' 20 2 sin 10.0 3p 0 0 4
/2
PR
/2
TU
3 / 4
0 2
TH
AN
H
25.2 / 4
3 / 2
3 / 2
N
G
U
YE
N
3 3 0 10.0 4 4 :Chuyen dong theo chieu am Cách 2: Chọn A. x 2 2 cos 3 2cm 4 Ví dụ 2: Một vật dao động điều hòa có phương trinh li độ x 2 cos 10t / 4 , trong đó x tính
bằng xentimét (cm) và t tính bằng giây (s). Lúc t = 5 s vật chuyển động A. nhanh dần theo chiều dương của trục Ox. B. nhanh dần theo chiều âm của trục Ox. C. chậm dần theo chiều dương của trục Ox. D. chậm dần theo chiều âm của trục Ox. Hướng dẫn 5 10.5 25.2 (xem hình phía trên) 4 4 => Chuyển động theo chiều âm về vị trí cân bằng (nhanh dần) => Chọn B. Ví dụ 3: Một vật dao động điều hòa theo phương trình: x 2 cos 2t / 6 (cm), trong đó t được tính theo đơn vị giây (s). Động năng của vật vào thời điểm t = 0,5 (s) A. đang tăng lên. B. có độ lớn cực đại. C. đang giảm đi. D. có độ lớn cực tiểu.
9
Hướng dẫn t 2.0,5 hình chiếu đang chuyển 6 6 động về vị trí cân bằng nên động năng đang tăng => Chọn A.
/6
D
U C TI O
N
2.4. Tìm trạng thái quá khứ và tương lai 2.4.1. Tìm trạng thái quá khứ và tương lai đối với bài toán chưa cho biết phương trình của x, v, a, F... Phương pháp chung: + Dựa vào trạng thái ở thời điểm t0 để xác định vị trí tương Tương lai ứng trên vòng tròn lượng giác. t0 + Để tìm trạng thái ở thời điểm ( t 0 t ) ta quét theo Quá khứ
O
chiều âm một góc t.
PR
+ Để tìm trạng thái ở thời điểm ( t 0 t ) ta quét theo
TU
chiều dương một góc t
N
G
U
YE
N
TH
AN
H
Ví dụ 1: Một chất điểm chuyển động tròn đều với tốc độ 1 m/s trên đường tròn đường kính 0,5 m. Hình chiếu M’ của điểm M lên đường kính của đường ưòn dao động điều hòa. Biết tại thời điểm t = t0, M’ đi qua vị trí cân bằng theo chiều âm. Hỏi trước thời điểm và sau thời điểm t0 là 8,5 s hình chiếu M’ ở vị trí nào và đi theo chiều nào? Hướng dẫn Cách 1: Dùng VTLG 50 A 2 25 cm Biên độ và tần số góc lần lượt là: v T 100 4 rad / s A 25 Góc cần quét: t 34 rad 10,8225 5.2 0, 08225 Tương lai
M
Tương lai M
Quá khứ
M ' 0,5
x
x
Quá khứ
0,5 M ' 0,32
0,32
+ Để tìm trạng thái ở thời điểm t = t0 − 8,5 s ta chỉ cần quét theo chiều âm góc 0,8225π:
10
x 25cos 0,3225 13, 2 > 0 . Lúc này chất điểm nằm ở nửa dưới nên hình chiếu đi theo
TU
PR
O
D
U C TI O
N
chiều dương. + Để tìm trạng thái ở thời điểm t = t0 + 8,5 s ta chỉ cần quét theo chiều dương góc 0,8225π. Suy ra: x 25cos 0,3225 13, 2cm < 0. Lúc này chất điểm nằm ở nửa dưới nên hình chiếu đi theo chiều dương. Cách 2: Dùng PTLG Không làm mất tính tổng quát của bài toán ta chọn gốc thời gian t = t0 = 0 thì phương trình li x 25cos 4t 2 cm độ và phương trình vận tốc có dạng: v x ' 4.25cos 4t cm / s 2 Để tìm trạng thái trước thời điểm t0 một khoảng 8,5s t 2 ta chọn t = − 8,5s x 25cos 4.8,5 2 13, 2 cm t t v x ' 4.25sin 4.8,5 84,9 cm / s 0 2 Lúc này vật có li độ 13,2 cm và đang đi theo chiều dương. t Để tìm trạng thái sau thời điểm t0 một khoảng 8,5 s ta 2 cho t = +8,5 s:
N
G
U
YE
N
TH
AN
H
x 25cos 4.8,5 2 13, 2 cm v x ' 4.25sin 4.8,5 84,9 cm / s 0 2 Lúc này vật có li độ − 13,2 cm và đang đi theo chiều dương. Chú ý: Phối hợp cả hai phương pháp chúng ta có thể rút ra quy trình giải nhanh cho loại bài toán này như sau: Bước 1: Chọn gốc thời gian t = t0 = 0 và dùng VTLG để viết pha dao động: t Bước 2: Lần lượt thay t = − Δt và t = +Δt để tìm trạng thái quá khứ và trạng thái tương lai: x A cos t v A sin v > 0: Vật đi theo chiều dương (x đang tăng) v < 0: Vật đi theo chiều âm (x đang giảm) Ví dụ 2: Một chất điểm chuyển động tròn đều với tốc độ 0,75 m/s trên đường tròn bán kính 0,25 m. Hình chiếu M’ của điểm M lên đường kính của đường tròn dao động điều hòa. Biết tại thời điểm han đầu, M’ đi qua vị trí x = A/2 theo chiều âm. Tại thời điểm t A. 24,9 cm theo chiều dương C. 22,6 cm theo chiều dương. B. 24,9 cm theo chiều âm. D. 22,6 cm theo chiều âm. Hướng dẫn
11
* Biên độ và tần số góc: v A 25 cm ; T 3 rad / s A Pha dao động có dạng: 3t
t
3
3
3
Thay t = 8 s thì
A 2
x A cos 24,9 cm 3.8 3 v A sin 6, 4 cm / s 0
N
Ví dụ 3: Vật dao động điều hoà dọc theo trục Ox (với O là vị trí cân bằng), với chu kì 2 (s), với biên độ A. Sau khi dao động được 4,25 (s) vật ở li độ cực đại. Tại thời điểm ban đầu vật đi theo chiều B. âm qua vị trí có li độ A 2 . D. âm qua vị trí có li độ A/2. Hướng dẫn 2 Chọn lại gốc thời gian t = t0 = 4,25 s thì pha dao động có dạng: t t T
O
D
U C TI O
A. dương qua vị trí có li độ A/ 2 . C. dương qua vị trí có li độ A/2.
t
TH
AN
H
TU
PR
Để tìm trạng thái ban đầu ta cho t = − 4,25 s thì A x A cos 4, 25 2 Chọn A. v A sin Sau khi đã hiểu rõ phương pháp học sinh có thể rút gọn cách trình bày để phù hợp với hình thức thi trắc nghiêm.
N
G
U
YE
N
Ví dụ 4: Vật dao động điều hoà dọc theo trục Ox (với O là vị trí cân bằng), với chu kì 1,5 (s), với biên độ A. Sau khi dao động được 3,25 (s) vật ở li độ cực tiểu. Tại thời điểm ban đầu vật đi theo chiều A. dương qua vị trí có li độ A. dương qua vị trị li độ A/2 B. âm qua vị trí có li độ A/2. C. dương qua vị trí có li độ − A/2. D. âm qua vị trí có li độ − A/2. Hướng dẫn 2 4t t Chọn lại gốc thời gian t = t0 = 3,25 s thì T 3 Để tìm trạng thái ban đầu ta cho t = − 3,25 s thì A 43, 25 x A cos 2 Chọn D. 3 v A sin 0 Ví dụ 5: Một chất điểm chuyển động tròn đều với tốc độ 0,75 m/s trên đường tròn đường kính 0,5 m. Hình chiếu M’ của điểm M lên đường kính của đường tròn dao động điều hòa. Biết tại thời điểm ban đầu, M’ đi qua vị trí cân bằng theo chiều âm. Tại thời điểm t = 8 s hình chiếu M’qua li độ A. − 10,17 cm theo chiều dương. B. − 22,64 cm theo chiều âm. C. 22,64 cm theo chiều dương. D. 22,64 cm theo chiều âm. Hướng dẫn
12
vT 3 rad / s 3t A 2 x A cos 0, 2264 m Chọn D. t 8 3.8 2 v A sin 0 Ví dụ 6: Một vật thực hiện dao động điều hoà với biên độ A tại thời điểm t1 = 1,2 s vật đang ở vị trí x = A/2 theo chiều âm, tại thời điểm t2 = 9,2 s vật đang ở biên âm và đã đi qua vị trí cân bằng 3 lần tính từ thời điểm t1. Hỏi tại thời điểm ban đầu thì vật đang ở đâu và đi theo chiều nào. A. 0,98 chuyển động theo chiều âm. B. 0,98A chuyển động theo chiều dương C. 0,588A chuyển động theo chiều âm. D. 0,55A chuyển động theo chiều âm. Hướng dẫn Chọn lại gốc thời gian t = t1 = 1,2 s thì pha dao M1 t 3 động có dạng: t 3 Từ M1 quay một vòng (ứng với thời gian T) thì vật qua vị trí cân bằng 2 lần, rồi quay tiếp một góc 3 2π/3 (ứng với thời gian T/3) vật đến biên âm và tổng M 2 cộng đã qua vị trí cân bằng 3 lần. A T 2 Ta có: T 9, 2 1, 2 T 6 s 3 2 rad / s T 3 Để tìm trạng thái ban đầu ta cho t = − 1,2 s thì
x A cos 0,98A 1, 2 Chọn B 3 3 15 v A sin 0
AN
H
TU
PR
O
D
U C TI O
N
A 0, 25 m ;
U
YE
N
TH
2.4.2. Tìm trạng thái quá khứ và tương lai đối với bài toán cho biết phương trình của x, v, a, F... Phương pháp chung: Biết tại thời điểm t vật có li độ x = x1. Cách 1: Giải phương trình bằng PTLG. Các bước giải bài toán tìm li độ, vận tốc dao động sau (trước) thời điểm t một khoảng Δt. * Từ phương trình dao động điều hoà: x = Acos(ωt + φ) cho x = x1. Lấy nghiệm t ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0) hoặc
N
G
t ứng với x đang tăng (vật chuyển động theo chiều dương) (với 0 arccos x1 A shift cos x1 A ) * Li độ và vận tốc dao động sau (trước) thời điểm đó Δt giây là: x A cos t x A cos t hoặc v A sin t v A sin t Ngày nay với sự xuất hiện của máy tính cầm tay như Casio 570ES, 570ESplus...ta xây dựng quy trình giải nhanh như sau: * Li độ và vận tốc sau thời điểm t một khoảng thời gian Δt lần lượt bấm như sau: A cos t shift cos x1 A A sin t shift cos x1 A * Li độ và vận tốc trước thời điểm t một khoảng thời gian Δt lần lượt bấm như sau:
13
O
D
N
G
U
YE
N
TH
AN
H
TU
PR
U C TI O
N
A cos t shift cos x1 A sin t shift cos x1 A (Lấy dấu cộng trước shift cos( x1 A ) nếu ở thời điểm t li độ đang giảm (đi theo chiều âm) và lấy dấu trừ nếu i độ đang tăng (đi theo chiều dương)) Cách 2: Dùng vòng tròn lượng giác (VTLG) Ví dụ 1: Một vật dao động theo phương trình x = 4.cos(πt/6) (cm) (t đo bằng giây). Tại thời điểm ti li độ là 2 3 cm và đang giảm. Tính li độ sau thời điểm t1 là 3 (s). A. − 2,5 cm. B. − 2 cm. C. 2 cm. D. 3 cm. Hướng dẫn t x 4 cos 6 2 3 t Cách 1: Dùng PTLG: x t 3 4 cos t 3 s t 6 6 6 v x ' 4.sin 0 6 6 t x t 3 4 cos 2 cm Chọn B. 6 2 Bấm máy tính chọn đơn vị góc rad Bấm nhấm: 4 cos x3 shift cos 2 3 4 rồi bấm = sẽ được – 2 Chọn B. 6 Cách 2: Dùng VTLG: M2 Tại thời điểm t1 có li độ là 2 3 cm và đang giảm nên chất điểm chuyển động đều nằm tại M1 M1 + Để tìm trạng thái ở thời điểm t = t1 + 3 s ta quét theo t1 6 2 chiều dương góc: t và lúc này chuyển động 2 6 tròn đều nằm tại M2. Điểm M2 nằm ở nửa trên vòng tròn 2 2 3 nên hình chiếu của nó đi theo chiều âm (x đang giảm). Li độ của dao động lúc này là: x 2 4 cos 2 cm => Chọn B. 6 2 Chú ý: Phối hợp cả hai phương pháp chúng ta có thể rút ra quy trình giải nhanh cho loại bài toán này như sau: Bước 1: Chọn gốc thời gian t = t0 và dùng VTLG để viết pha dao động: t . . Bước 2: Thay t = − Δt và t = + Δt để tìm trạng thái quá khứ và trạng thái tương lai: x A cos t v A sin v > 0: Vật đi theo chiều dương (x đang tăng) v < 0: Vật đi theo chiều âm (x đang giảm)
14
Cách 3: Chọn lại gốc thời gian t = t1 thì pha dao động t có dạng: 6 6 Để tìm trạng thái sau đó 3 s ta cho t = +3 s thì .3 2 x A cos 2 6 6 3 v A sin 0 Chọn B.
t 6 6
6
2 3
H
TU
PR
O
D
U C TI O
N
Kinh nghiệm: Chọn lại gốc thời gian trùng với trạng thái đã biết tức là viết lại pha dao động x A cos t . Từ đó ta tìm được trạng thái quá khứ hoặc tương lai v A sin Ví dụ 2: Một chất điểm dao động điều hòa theo phương trình x = 5sin(5πt + φ) (x tính bằng cm và t tính bằng giây). Tại thời điểm t0, chất điểm có li độ 3 cm và đang tăng. Gọi li độ và vận tốc của chất điểm ở thời điểm trước đó 0,1 s và sau đó 0,1 (s) lần lượt là x1, v1, x2, v2. Chọn phương án đúng. A. x1 = 4cm. B. x2 = − 4cm. C. v1 = − 15π cm/s. D. v2 = − 15π cm/s. Hướng dẫn Chọn lại gốc thời gian t = t0 và viết phương trình li độ dạng hàm cos thì pha dao động 3 có dạng: 5t arccos . 5 Để tìm trạng thái trước t0 là 0,1 s ta cho t = − 0,1 s 3 3 1 5.0,1 arccos 5 3 arccos
5
5
5t arccos
3 5
YE
N
TH
AN
x1` A cos 1` 4 cm v1 A sin 1 15 cm Để tìm trạng thái sau t0 là 0,1 s ta cho t = +0,1 s thì
G
U
3 x 2 A cos 2 4 cm 2 5.0,1 arccos 5 v 2 A sin 2 15 cm
N
Kinh nghiệm: Đối với bài toán liên quan đến chiều tăng (giảm) (chiều dương, chiều âm) thì nên dùng VTLG. Đối với bài toán không liên quan đến chiều tăng giảm (chiều dương chiều âm) thì nên dùng PTLG. Ví dụ 3: Một vật dao động điều hòa theo phương ngang với phương trình: x = 20cos2πt (cm) (t đo bằng giây). Vào một thời điểm nào đó vật có li độ là 10 3 cm thì li độ vào thời điểm ngay sau đó 1/12 (s) là A. 10 cm hoặc 5 cm. B. 20 cm hoặc 15 cm. C. 10 cm hoặc 15 cm. D. 10 cm hoặc 20 cm. Hướng dẫn
15
Bài toán này nên dàng phương pháp GPTLG vì bài toán không nói rõ qua li độ 10 3 cm đi 2t 6 theo chiều dương hay chiều âm: x 20 cos 2t 10 3 2t 6
Bấm nhấp tính (chọn gốc rad) 1 Bấm nhập: 20 cos 2x. shift cos 10 3 20 12 1 Bấm nhập: 20 cos 2. shift cos 10 3 20 12
rồi bấm = sẽ được 10.
rồi bầm = sẽ được 20.
U C TI O
N
1 10 cm x 11/12 20 cos 2 t 40 cos Chọn D 12 6 6 20 cm
x 2 10 cm Chọn B. x 2 20 cm Nếu tính vận tốc thì bấm máy tính (chọn đơn vị góc rad) 1 Bấm nhập: 20 cos 2x. shift cos 10 3 20 rồi bấm = sẽ được − 108,8. 12 1 Bấm nhập: 20 cos 2. shift cos 10 3 20 rồi bầm = sẽ được 0. 12 x 2 10 cm Chọn B. x 2 20 cm Ví dụ 4: Một vật dao động điêu hòa theo phương ngang, trong thời gian 100 giây nó thực hiện đúng 50 dao động. Tại thời điềm t vật có li độ 2 cm và vận tốc 4 3 (cm/s). Hãy tính li độ cua vật đó ở thời điềm (t + 1/3 s) A. 7 cm B. – 7cm C. 8 cm D. – 8 cm Hướng dẫn t 2 x A cos t 2 T 2 rad / s n T v A sin t 4 3 A sin tt 4 3
U
YE
N
TH
AN
H
TU
PR
O
D
1 A cos t A cos t A cos t.cos A sin t.sin 7 cm 3 3 3 3
G
1 t 3
N
x
Bấm máy tính (chọn đơn vị góc rad): 2 Tính A trước: A x1
v12 2 13 cm 2
1 2 Bấm nhập: 2 13 cos . shift cos rồi bấm = sẽ được 7 2 13 3 x 2 7 cm Chọn A.
Ví dụ 5: Một vật dao động điều hòa dọc theo Ox với tần số góc π rad/s. Tại thời điểm t vật có li độ 2 cm và vận tốc 4 3 (cm/s). Vận tốc của vật đó ở thời điểm (t + 1/3 s) gần giá trị nào nhất trong số các giá trị sau đây? A. 16 cm/s. B. − 5 cm/s. C. 5 cm/s. D. − 16 cm/s.
16
Hướng dẫn x A cos t 2 v A sin t 4 3 A sin t 4 3 1 v 1 A sin t A sin t A sin t.cos A cos t.sin 3 3 3 t 2 3
3 cm / s 5, 44 cm / s Chọn C. Bấm máy tính (chọn đơn vị góc rad): 2 Tính A trước: A x1
v12 2 3 cm 2
TU
PR
x A cos10t1 2 cm v 10A sin t1 20 cm / s A sin10t1 2
O
D
U C TI O
N
1 2 Bấm nhập: 2 13 sin x shift cos rồi bấm= sẽ được 5,44 Chọn C. 3 2 13 Ví dụ 6: Xét con lắc dao động điều hòa với tần số dao động là ω = 10π (rad/s). Thời điểm t = 0,1 (s), vật nằm tại li độ x = +2 cm và có trí cân bằng. Hỏi tại thời điểm t = 0,05 (s), vật đang ở li độ và có vận tốc bằng bao nhiêu: A. x = +2cm, v = + 0,2π m/s. B. x = − 2 cm, v = − 0,2 π m/s. C. x = − 2cm, v = + 0,2 π m/s. D. x = + 2cm, v = − 0,2 π m/s. Hướng dẫn
TH
AN
H
x A cos10 t1 0, 05 A sin10t1 2 cm t t1 0, 05s v 10A sin t1 0, 05 10A cos10t1 20 cm / s Chọn A. Ví dụ 7: Một vật dao động điều hòa theo trục Ox (O và vị trí cân bằng) với tần số góc 4π (rad/s). Tại thời điểm t0 vật có vận tốc 4 3 cm/s. Hãy tính li độ của vật đó ở thời điểm t 0 0,875s B. 3 cm
C. 2cm.
N
3 cm
YE
A.
D. – 2cm.
Hướng dẫn
G
U
x A cos 4t v 4A sin 4t 4 3 1 t 2
A cos 4 t 0,875 A cos 4 7. A sin 4t 3 cm Chọn B 2
N
x
Trao đổi: Bài toán này chưa cho A nhưng cho v1 vẫn tính được x2 là do nó trùng với trường T hợp đặc biệt t 2 t1 2.3 1 nên x 2 v1 / 3 . Một trong những điểm khác nhau căn 4 bản giữa hình thức thi tự luận và thi trắc nghiệm là ở chỗ, thi tự luận thường có xu hướng giải quyết một bài toán tổng quát, còn thi trắc nghiệm thì thường đặc biệt hóa bài toán tổng quát. Vì vậy, nếu để ý đến các trường hợp đặc biệt thì khi gặp bài toán khó ta có cảm giác như bài toán dễ. 1) Hai thời điểm cách nhau một khoảng thời gian t 2 t1 nT. (chúng tôi gọi là hai thời điểm cùng pha) thì x 2 x1 ; v 2 v1 ;a 2 a1 .....
17
2) Hai thời điểm cách nhau một khoảng thời gian t 2 t1 2n 1 điểm ngược pha) thì x 2 x1 ; v 2 v1 ;a 2 a1 ....
T (chúng tôi gọi là hai thời 2
T (chúng tôi gọi là hai thời 4 2 2 ;a12 a 22 a max , v 2 x1 ; v1 x 2 ( khi n lẻ điểm vuông pha) thì x12 x 22 A 2 ; v12 v 22 v max
3) Hai thời điểm cách nhau một khoảng thời gian t 2 t1 2n 1
thì v 2 x1 ; v1 x 2 và khi n chẵn thì v 2 x1 ; v1 x 2 . Ví dụ 8: Một vật dao động điều hòa có chu kì T. Tại một thời điểm vật cách vị trí cân bằng 6 cm, sau đó T/4 vật có tốc độ 12π cm/s. Tìm T. C. 2 Hướng dẫn
B. 2 s.
D. 0,5 s.
U C TI O
T 2 2 2 t 2 t1 4 A x1 x 2 v2 v x12 22 2 2 rad / s 2 x1 v A 2 x 2 2 2 2
N
A. 1 s.
2 1 s Chọn A. Ví dụ 9: (ĐH − 2012) Một con lắc lò xo gồm lò xo nhẹ có độ cứng 100 N/m và vật nhỏ khối lượng m. Con lắc dao động điều hòa theo phương ngang với chu kì T. Biết ở thời điểm t vật có li độ 5 cm, ở thời điểm t + T/4 vật có tốc độ 50 cm/s. Giá trị của m bằng A. 0,5 kg. B. 1,2 kg. C. 0,8 kg. D. l ,0 kg. Hướng dẫn T 2 2 2 t 2 t1 4 A x1 x 2 v 22 v 2 x 2 10 rad / s 1 2 2 x1 v A 2 x 2 2 2 2 k m 2 1 kg Chọn D. Ví dụ 10: Một con lắc lò xo treo thẳng đứng, dao động điêu hòa với chu kì T. Biết ở thời điểm t vật cách vị trí cân bằng 5 cm, ở thời điểm t + T/4 vật có tốc độ 50 cm/s. Hỏi khi vật ở vị trí cân bằng lò xo dãn bao nhiêu? Lấy g = 10 m/s2. A. 0,075 m. B. 0,15 m. C. 0,1 m. D. 0,05 m. Hướng dẫn Vì x, v vuông pha nhau mà hai thời điểm lại vuông t 2 t1 2n 1 T / 4 nên
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
T
v1 v 50 2 10 rad / s x2 x1 5
mg g 2 0,1 m Chọn C. k Ví dụ 11: Một vật dao động điều hòa có chu kì 1 s. Tại một thời điểm t = t1 vật có li độ x1 = − 6 cm, sau đó 2,75 s vật có vận tốc là A. 12 3 cm/s. B. 6 3 cm/s. C. − 12π cm/s. D. 12π cm/s. Hướng dẫn Độ dãn của lò xo ở vị ở VTCB: l0
18
T T 2n 1 n 5 : là số lẻ nên 4 4 v 2 x1 12 cm / s Chọn C.
Vì t 2 t1 2, 75 2x5 1
PR
O
D
U C TI O
N
2.5. Tìm số lần đi qua một vị trí nhất định trong một khoảng thời gian Cách 1 : Giải phương trình lượng giác. Các bước giải bài toán tìm số lần vật đi qua vị trí đã biết x (hoặc v, a, ω|, Wđ, F) từ thời điểm t1 đến t2. * Giải phương trình lượng giác được các nghiệm. * Từ t1 t t2 => Phạm vi giá trị của k Z . * Tổng số giá trị của k chính là số lần vật đi qua vị trí đó. Lưu ý: + Trong mỗi chu kỳ vật qua mỗi vị trí biên 1 lần còn các vị trí khác 2 lần. + Mỗi một chu kỳ vật đạt vận tốc v hai lần ở 2 vị trí đối xứng nhau qua vị trí cân bằng và đạt tốc độ v bốn lần mỗi vị trí 2 lần do đi theo 2 chiều âm dương. + Đối với gia tốc thì kết quả như với li độ. + Nếu t = t1 tính từ vị trí khảo sát thì cả quá trình được cộng thêm một lần vật đi qua li độ đó, vận tốc đó... Cách 2: Dùng đồ thị: + Dựa vào phương trình dao dộng vẽ đồ thị x (v, a, F, Wt, Wd) theo thời gian + Xác định số giao điểm của đồ thị với đường thẳng x = x0 trong khoảng thời gian t1 ; t 2
TU
Cách 3: Dùng vòng tròn lượng giác. + Viết phương trình dưới dạng hàm cos: x A cos t ; t
N
G
U
YE
N
TH
AN
H
+ Xác định vị trí xuất phát. + Xác định góc quét .t n.2 (n là số nguyên) + Qua điểm x kẻ đường vuông góc với Ox sẽ cắt vòng tròn tại hai điểm (một điểm ở nửa trên vòng tròn có hình chiếu đi theo chiều âm và điểm còn lại có hình chiếu đi theo chiều dương). + Đếm số lần quét qua điểm cần tìm. Ví dụ 1: Một vật dao động điều hoà theo phương trình x = 4cos(π/2 + π/2) (cm) (t đo bằng giây). Từ thời điểm t = 0 (s) đến thời điểm t = 5 (s) vật đi qua vị trí x = − 2 cm là A. 3 lần trong đó 2 lân đi theo chiều dương và 1 lần đi theo chiều âm. B. 3 lần trong đó 1 lần đi theo chiều dương và 2 lần đi theo chiều âm. C. 5 lần trong đó 3 lần đi theo chiều dương và 2 lần đi theo chiều âm. D. 5 lần trong đó 2 lần đi theo chiều dương và 3 lần đi theo chiều âm. Hướng dẫn Cách 1: Giải phương trình lượng giác. Từ thời điểm t = 0 (s) đến thời điểm t = 5 (s) số lần vật đi qua vị trí x = − 2 cm theo chiều dương được xác định như sau: t x 4 cos 2 2 2 t 2 7 0 t 5 k2 t 4k k 1 2 2 3 3 t v 2 sin 0 2 2 Từ thời điểm t = 0 (s) đến thời điểm t = 5 (s) số lần vật đi qua vị trí x = − 2 cm theo chiều âm được xác định như sau:
19
t x 4 cos 2 2 2 t 2 1 0 t 5 2 t 4 1 2 2 3 3 t v 2 sin 0 2 2 Chọn B. Cách 2: Dùng đồ thị. Vẽ đồ thị x theo t. x(cm)
4
2 4
1
4
3
5
6
O
D
2
U C TI O
N
t(s)
0
2
YE
N
TH
AN
H
TU
PR
Qua điểm x = − 2 cm kẻ đường song song với trục hoành thì trong khoảng thời gian [0, 5s] nó cắt đồ thị tại 3 điểm, tức là vật qua vị trí x = − 2 cm ba lần (hai lần đi theo chiều âm và một lần đi theo chiều dưong) => Chọn B. Cách 3: Dùng vòng tròn lượng giác t1 t t 2 x 4 cos 2 2 2 2 .0 Vị trí bắt đầu quét: t1 2 2 2 Góc quét thêm: 2 0,5 2
0,5
Chọn B
co1lan theo chieu am
G
U
1vong co 2 lan (1lan theo chieu duong va1lan theo chieu am)
N
Kinh nghiệm: Đối với hình thức thi trắc nghiệm đòi hỏi phải ra quyết định nhanh và chỉnh xác thì nên rèn luyện theo cách 3. Ví dụ 2: Một vật dao động điều hòa theo phương trình x = 6cos(5πt + π/6) cm (t đo bằng s). Trong khoảng thời gian từ thời điểm t1 = 0,4 (s) đến thờ điểm t2 = 2,9 (s) vật đi qua vị trí x = 3,6 cm được mấy lần A. 13 lần. B. 12 lần. C. 11 lần. D. 7 lần. Hướng dẫn
20
x 6 cos 5t 5t 6 6
t1 2
Vị trí bắt đầu quét: t1 5.0, 4 2 6 6 Góc quét thêm: t 12,5 6.2 0,5 6 vong co12 lan
6
3, 6
co1lan
Qua x = 3,6 cm có 13 lần Chọn A.
3 3
TH
qua1lan
2 vong qua 4 lan
AN
Góc quét thêm: t 5 2.2
H
Vị trí bắt đầu quét: 0 5.0
TU
PR
O
D
U C TI O
N
Kinh nghiệm: Nếu bài toán cho phương trình dao động dạng sin thì ta đổi về dạng cos: x A sin t A cos t 2 Ví dụ 3: (ĐH − 2008) Một chất điểm dao động điều hòa theo phương trình x = 3sin(5πt + π/6) (cm) (x tính bằng cm và t tính bằng giây). Trong một giây đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = +1 cm A. 7 lần. B. 6 lần. C. 4 lần. D. 5 lần. Hướng dẫn x 3sin 5t 6 3cos 5t 6 2 x 3cos 5t 5t 3 3 1
Vật qua vị trí x = 1cm là 5 lần Chọn D.
t1
3
N
Ví dụ 4: Một chất điểm dao động điều hòa theo phương trình x 10 cos 5t / 3 (cm)( t tính
N
G
U
YE
bằng s). Sau khoảng thời gian 4,2s kể từ t = 0 chất điểm qua vị trí có li độ − 5cm theo chiều dương bao nhiêu lần: A. 20 lần. B. 10 lần. C. 21 lần D. 11 lần Hướng dẫn x 10 cos 5t 5t 3 3 Vị trí bắt đầu quét: 0 5.0 3 3 5 5 Góc quét thêm: t 21 10.2 10 vong qua10 lan
co 0 lan
Vật qua vị trí x = − 5 cm theo chiều dương là 10 lần Chọn D.
0
3
Ví dụ 5: Một vật dao động điều hoà theo phưong trình li độ: x = 2cos(3πt + π/4) cm. Số lần vật đạt tốc độ cực đại trong giây đầu tiên là
21
A. 4 lần.
B. 2 lần.
C. 1 lần. Hướng dẫn
D. 3 lần.
Tốc độ cực đại khi vật qua VTCB (x = 0) Vị trí bắt đầu quét: 0 3.0 4 4 Góc quét thêm: t 3 2
0
O
qua1lan
1vong qua 2 lan
4
Vật qua vị trí x = 0cm là 3 lần Chọn D. Kinh nghiêm: Đối với các bài toán liên quan đến v, a, F, Wt, Wđ thì dựa vào công thức độc lập với thời gian để quy về x.s
TU
PR
O
D
U C TI O
N
Ví dụ 6: Một chất điểm dao động điều hòa theo phương trình x = 3cos(5πt − π/3) (cm) (t tính bằng giây). Trong một giây đầu tiên từ thời điểm t = 0, số lần động năng của chất điểm bằng 8 lần thế năng của chất điểm là A. 5 lần. B. 6 lần. C. 10 lần. D. 9 lần. Hướng dẫn 8 Wd 9 W Wd 8Wt 2 2 W 1 W kx 1 kA x A 1 cm t 9 2 9 2 3 O 1 1 Vị trí bắt đầu quét: 0 5.0 3 3 Góc quét thêm: t 5 2.2 Tổng cộng 10 lần Chọn C.
H
2 lan
AN
2 vong 8 lan
3
TH
2.6. Viết phương trình dao động điều hòa Thực chất của viết phương trình dao động điều hòa là xác định các đại lượng A, ω và của
YE
Cách 1: 2 2f T v2 2 A x 2
N
phương trình x A cos t
G
U
k g m
N
v max a max 2W Snua chu ky Schu ky Chieu dai quy dao 2 k 2 4 2 A ? x A cos t x 0 A cos t 0 v A sin t v 0 A sin ? Cách 2: Dùng vòng tròn lượng giác x 0 A cos ; v 0 0 thuộc dưới trên vòng tròn, v0 < 0, thuộc nửa trên vòng tròn Cách 3: Dùng máy tính cầm tay Casio Fx 570es x 0 A cos a x 0 A cos x A cos t t 0 v0 Cơ sở: v 0 A sin A sin b v A sin t Một dao động điều hòa x A cos t có thể biểu diễn bằng một số phức
22
x A Aei A cos i.A sin a bi Phương pháp: x x 0
v0 i A x A cos t
Thao tác bấm máy: Bấm: MODE 2
Màn hình xuất hiện: CMPLX Màn hình xuất hiện chữ R
Bấm: SHIFT MODE 4
v0 i Bấm SHIFT 2 3 (Màn hình sẽ hiện A , đó là biên độ A và pha ban đầu φ). Ví dụ 1: Một chất điểm dao động điều hoà theo trục Ox (O là vị trí cân bằng) với chu kì 2,09 (s). Lúc t = 0 chất điểm có li độ là +3 cm và vận tốc là 9 3 cm/s. Viết phương trình dao động của chất điểm. Hướng dẫn
U C TI O
N
Bấm nhập: x 0
D
Cách 1:
TH
AN
H
TU
PR
O
A 6 cm x A cos t 2 3 A cos t 0 3 rad / s T v A sin t 9 3 3A sin 3 x 6 cos 3t cm 3 Cách 2: Dùng máy tính Casio 570ES Thao tác bấm máy; Thao tác bấm máy: Màn hình xuất hiện: CMPLX Bấm: MODE 2 Màn hình xuất hiện chữ R Bấm: SHIFT MODE 4
N
v0 i với x 0 3cm; v 0 9 3 cm / s và 3 rad / s
YE
Bấm nhập: x 0
G
U
1 Bấm: SHIFT 2 3 sẽ được 6 3
N
Kết quả này có nghĩa là: x 6 cos 3t cm 3
Quy trình giải nhanh: 1) Để viết phương trình dao động dạng hàm cos khi cho biết x0, v0 và ω ta nhập: v shift 23 x 0 0 i A x A cos t 2) Để viết phương trình dao động dạng hàm sin khi cho biết x0, v0 và ω ta nhập:
23
v0 shift 23 i A x A sin t i Lúc t = 0, nếu vật qua vị trí cân bằng theo chiều dương thì x0 = 0 và v0 = ωA. Lúc t = 0, nếu vật qua vị trì cân bằng theo chiều âm thì x 0 0 và v 0 A . Lúc t = 0, nếu vật qua vị trí biên dương thì x0 = +A và v0 = 0. Lúc t = 0, nếu vật qua vị trí biên âm thì x0 = − A và v0 = 0. Ví dụ 2: Một vật dao động điều hoà theo phương ngang trong 100 s nó thực hiện được 50 dao động và cách vị trí cân bằng 5 cm thì có tốc độ 5 3 (cm/s). Lấy π2 = 10. Viết phương trình dao động điều hoà của vật dạng hàm cos, nếu chọn gốc thời gian là lúc: a) Vật đi qua vị trí cân bằng theo chiều dương. b) Vật đi qua vị trí cân bằng theo chiều âm. x0
v2 10 cm 2
D
x2
O
Biên độ
U C TI O
Hướng dẫn t 100 2 2 s . Tần số góc: Chu kỳ: T rad / s n 50 T
N
c) Vật đi qua vị trí có tọa độ − 5cm theo chiều âm với vận tốc 5 3 cm / s
.10 1 shift 23 i 10 x 10 cos t cm 2 2
b) 0
.10 1 shift 23 i 10 x 10 cos t cm 2 2
TU
PR
a) 0
H
5 3 2 2 shift i 10 x 10 cos t cm 3 3
AN
c) 5
TH
Ví dụ 3: Một vật dao động điều hòa dọc theo trục Ox. Lúc t = 0, li độ x 0 2(cm) vận tốc
N
G
U
YE
N
v 0 2(cm / s) và gia tốc a 0 22 (cm / s 2 ) . Viết phương trình dao động của vật dưới dạng hàm số cos A. x = 2cos(πt − π/3) cm. B. x = 4cos(πt + 5π/6) cm. C. x = 2cos(πt + 3π/4) cm. D. x = 4cos(πt − π/6) cm. Hướng dẫn a0 Tần số góc: rad / s x0 Nhập số liệu theo công thức: x 0
v0 i sẽ được:
2 3 3 shift 23 i 2 x 2 cos t cm Chọn C. 4 4 Chú ý: Với các bài toán số liệu không tường minh thì không nên dùng phương pháp số phức. Ví dụ 4: Một vật dao động điều hòa với biên độ A, tần số góc ω. Chọn gốc thời gian là lúc vật đi qua vị trí có toạ độ dương và có vận tốc bằng − ωA/2. Phương trình dao động của vật là A. x = Asin(ωt − π/6). B. x = Acos(ωt – 2π/3). C. x = Acos(ωt + π/6). D. x = Asin(ωt + π/3). Hướng dẫn 2
24
6 x A cos 0 x A cos t t 0 v A sin A / 2 x A cos t v A sin t 6 Chọn C. Ví dụ 5: Một vật dao động điều hoà, khoảng thời gian giữa hai lần liên tiếp vật qua vị trí cân bằng
U C TI O
N
là 0,5 s; quãng đường vật đi được trong 0,5 s là 8 cm. Tại thời điểm t = 1,5 s vật qua li độ x 2 3 cm theo chiều dương. Phương trình dao động là: A. x = 8cos(2πt − π/3) cm. B. x = 4cos(2πt + 5π/6) cm. C. x = 8cos(2πt + π/6) cm. D. x = 4cos(2πt − π/6) cm. Hướng dẫn 2 T 2 0,5 s T 1 s T 2 rad / s A Snua chu ky 4 cm 2
TU
PR
O
D
5 6 x A cos 2.1,5 2 3 t 1,.5 s Chọn B. v 2A sin 2.1,5 0 x 4cos 2t 5 6 Ví dụ 6: (ĐH − 2011) Một chất điểm dao động điêu hòa trên trục Ox. Trong thời gian 31,4 s chất điểm thực hiện được 100 dao động toàn phần. Gốc thời gian là lúc chất điểm đi qua vị trí có li độ 2
N
G
U
YE
N
TH
AN
H
cm theo chiều âm với tốc độ là 40 3 cm/s. Lấy π2 = 3,14. Phương trình dao động của chất điểm là A. x= 6cos(20t − π/6) (cm). B. x = 4cos(20t + π/3) (cm). C. x = 4cos(20t − π/3) (cm). D. x = 6cos(20t + π/6) (cm). Hướng dẫn Không cần tính toán đã biết chắc chắn ω = 20 (rad/s). Gốc thời gian là lúc chất điểm đi qua vị trí có li độ 2 cm theo chiều âm 2 nên chuyển động tròn đều phải nằm ở nửa trên vòng tròn => chỉ có thể là B hoặc D. Để ý x0 = Acosφ thì chỉ B thỏa mãn => chọn B. Bình luận: Đối với hình thức thi trắc nghiệm gặp bài toán viết phương trình dao động nên khai thác thế mạnh của VTLG 3 và chú ý loại trừ trong 4 phương án (vì vậy có thể không dùng 0 đến một vài số liệu của bài toán).
2 Ví dụ 7: Một con lắc lò xo dao động điêu hoà với biên độ A = 5 cm, chu kì T = 0,5 s. Phương trình dao động của vật với gốc thời gian là lúc vật đi qua vị trí x = 2,5 cm theo chiều dương là A. x = 5cos(4πt − π/6) (cm). B. x = 5cos(4πt − π/3) (cm). C. x = 5cos(2πt + 5π/6) (cm). D. x = 5cos(πt + π/6) (cm). Hướng dẫn
25
Gốc thời gian là lúc chất điểm đi qua vị trí có li độ 2,5 cm theo chiều dương nên chuyển động tròn đều phải nằm ở nửa dưới vòng tròn => chỉ có thể là A hoặc B! Không cần tính toán đã biết chắc chắn ω = 4π (rad/s)! Để ý x0 = Acosφ thỉ chỉ B thỏa mãn => chọn B. Chú ý: Bốn trường hợp đặc biệt cần nhớ đế tiết kiệm thời gian khi làm bài: 1) Nếu chọn gốc thời gian là lúc vật ở biên dương (x = +A) thì pha dao động và phương trình li độ lần lượt là: t x A cos t A sin t 2
2
3
0
2 2) Nếu chọn gốc thời gian là lúc vật qua vị trí cân bằng theo chiều âm thì pha dao động và t 2 phương trình li độ lần lượt là: x A cos t A sin t 2 3) Nếu chọn gốc thời gian là lúc vật ở biên âm (x = − A) thì pha dao động và phương trình li t độ lần lượt là: x A cos t A cos t A sin t 2
AN
H
2
x A sin t
TH
t
TU
PR
O
D
U C TI O
N
G
U
YE
N
t
N
t
x A cos t
t
x A cos t
x A sin t
2
4) Nếu chọn gốc thời gian là lúc vật qua vị trí cân bằng theo chiều dương thì pha dao động và t 2 phương trình li độ lần lượt là: x A cos t A sin 2 Ví dụ 8: Vật dao động điều hòa với tần số góc 2π (rad/s), vào thời điểm t = 0, quả cầu đi qua vị trí cân bằng theo chiều dương. Vào thời điểm t = 1/12 (s) quả cầu có li độ z = 5 cm. Phương trình dao động là A. x = 10sin(2πt + π) cm. B. x = 10sin(2πt) cm. C. x = 5sin(2πt + π/2) cm. D. x = 5sin(2πt) cm. Hướng dẫn
26
Khi t = 0 vật qua VTCB theo chiều dương nên: x A sin 2t 1 x 1 A sin 2. 5cm A sin A 10cm Chọn B. 12 6 12
U C TI O
N
Ví dụ 9: (ĐH − 2013): Một vật dao động điều hòa dọc theo trục Ox với biên độ 10 cm, chu kì 2 s. Tại thời điểm t = 0 s vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là: A. x 10 cos 2t cm . B. x 10 cos 2t cm . 2 2 C. x 10 cos t cm . D. x 10 cos t cm . 2 2 Hướng dẫn 2 rad / s . Tại thời điểm t = 0 s vật đi qua vị trí cân bằng theo chiều dương T x A sin A cos t / 2 Chọn D.
AN
H
TU
PR
O
D
Kinh nghiệm: Nếu bài toán cho biết w, v0 , a0 thì ta tính ωA trước rồi đến ω, φ theo quy trình như sau: m2 A 2 2W A ? W 2 m v x ' A sin t t 0 v 0 A sin ? a v ' cos t i a A cos ? 0 Nếu x A sin t thì biến đổi dạng cos: x A cos t 2 Ví dụ 10: Một con lắc lò xo dao động điều hoà theo phương trình x A cos t cm (t đo
N
G
U
YE
N
TH
bằng giây). Vật có khối lượng 500 g, cơ năng của con lắc bằng 0,01 (J). Lấy mốc thời gian khi vật có vận tốc 0,1 m/s và gia tốc là − 1 m/s2. Pha ban đầu của dao động là A. 7π/6. B. –π/3. C. π/6. D. –π/6. Hướng dẫn m2 A 2 2W A 0, 2 W 2 m Chọn D. v x ' A sin t t 0 0, 2sin 0,1 a v ' cos t i 6 .0, 2 cos 1 Ví dụ 11: Một vật dao động điều hoà theo phương trinh: x = Acos(ωt + φ) cm (t đo bằng giây). Khi t = 0 vật đi qua vị trí x 3 2 cm, theo chiều âm và tại đó động năng bằng thế năng. Tính φ. A. π/6. B. 3π/4. C. 2π/3. D. π/4. Hướng dẫn 1 x 0 A cos 3 2 cos 2 4 x A cos t t 0 v x ' A sin 0 2 v x ' A sin t 2 Wd Wt W kx 0 kA A x 0 2 6 cm 2 2 4
27
Chọn D. 4 Ví dụ 12: Một vật dao động điều hoà trên trục Ox với tần số f = 4 Hz, theo phương trình x = Acos(ωt + φ). Khi t = 0 thì x = 3 cm và sau đó 1/24 s thì vật lại trở về toạ độ ban đầu. Phương trình dao động của vật là
A. x = 3 3 cos(8πt − π/6) cm.
B. x = 2 3 cos(8πt − π/6) cm.
D. x = 3 2 cos(8πt + π/3) cm. Hướng dẫn * Ta có: ω = 2πf = 8π (rad/s); T = l/f = 1/4 s > Δt = 1/24 s => Trong thời gian Δt = 1/24 s vật chưa quay hết được một vòng. * Góc quét: 2 t 8 / 24 / 3 / 6. C. x = 6cos(8πt + π/6) cm.
N
/ 6
U C TI O
* Biên độ A x 0 / cos 3 / cos / 6 2 3 .
ChọnB
/ 6
PR
O
D
Ví dụ 13: (THPTQG − 2017) Hình bên là đồ thị biểu diễn sự phụ thuộc của vận tốc v theo thời gian t của một vật dao động điều hòa. Phương trình dao động của vật là v(cm / s)
TU
0 2,5
0,1
AN
H
5
t(s) 0, 2
TH
3 20 cos t cm 4 6 3 3 20 C. x cos t cm 8 6 3
G
U
YE
N
A. x
N
* Chu kì: T = 6 ô = 6.0,1/4 = 0,3 s
3 20 cos t cm 4 6 3 3 20 D. x cos t cm 8 6 3 Hướng dẫn
B. x
2 20 rad / s T 3
20t * Khi t = 0 thì vmax/2 và đang đi theo chiều âm nên v 5cos cm / s (cm/s) 3 3 20t 3 A cm x A cos 3 i 4 * Đối chiếu với: Chọn B. v A cos 20t 6 2 3
BÀI TẬP TỰ LUYỆN PHẦN 1 Bài 1: Dưới tác dụng của một lực F = −0,8sin5t (N) (với t đo bằng giây) vật có khối lượng 400 g dao động điều hòa. Biên độ dao động của vật là
28
A. 18cm. B. 8 cm. C. 32 cm. D. 30 cm. Bài 2: Vật dao động cho bởi phương trình: x = sin2(πt + π/2) − cos2(πt + π/2) (cm), t đo bằng giây. Hỏi vật có dao động điều hòa không? nếu có tính chu kì dao động. A. không. B. có, T = 0,5s. C. có, T =ls. D. có, T = 1,5 s. Bài 3: Phương trình gia tốc của một vật dao động điều hòa có dạng a = 20πsin(4πt − π/2), với a đo bằng cm/s2 và t đo bằng s. Phát biểu nào sau đây là đúng?
TH
AN
H
TU
PR
O
D
U C TI O
N
A. Vận tốc của vật dao động lúc t = 0,0625 s là −2,5 2 cm/s. B. Li độ dao động cực đại là 5 cm. C. chu kì dao động là 1 s. D. tốc độ cực đại là 20π cm/s. Bài 4: Phương trình gia tốc của một vật dao động điều hòa có dạng a = 8cos(20t − π/2), với a đo bằng m/s2 và t đo bằng s. Phương trình dao động của vật là A. x = 0,02cos(20t + π/2) (cm). B. x = 2cos(20t + π/2) (cm), C. x = 2cos(20t − π/2) (cm). D. x = 4cos(20t + π/2) (cm). Bài 5: Một chất điểm dao động điều hòa theo phương thẳng đứng với phương trình x = Acos(ωt + π) cm. Thời gian chất điểm đi từ vị trí thấp nhất đến vị trí cao nhất là 0,5 s. Sau khoảng thời gian t = 0,625 s kể từ lúc bắt đầu dao động, chất điểm đang ở vị trí có li độ A. x 0 B. x 0,5A 3cm . C. x 0,5A 2cm D. x = 0,5A. Bài 6: Một vật dao động điều hòa phải mất 0,025 (s) để đi từ điểm có vận tốc bằng không tới điểm tiếp theo cũng có vận tốc bằng không và hai điểm đó cách nhau 10 (cm). A. Chu kì dao động là 0,025 (s). B. Tần số dao động là 20 (Hz), C. Biên độ dao động là 10 (cm). D. Tốc độ cực đại là 2 m/s. Bài 7: Một vật dao động điều hòa phải mất 0,025 (s) để đi từ điểm có vận tốc bằng 0 tới điểm tiếp theo cũng có vận tốc bằng 0, hai điểm cách nhau 10 (cm). Chọn phương án đúng A. Chu kì dao động là 0,025 (s). B. Tần số dao động là 10 (Hz), C. Biên độ dao động là 10 (cm). D. Vận tốc cực đại của vật là 2π (m/s). Bài 8: Vật dao động điều hòa theo phương trình x = Asinωt (cm). Sau khi bắt đầu dao động 1/8 chu kì vật có li độ 2 2 cm. Sau 1/4 chu kì từ lúc bắt đầu dao động vật có li độ là
N
G
U
YE
N
A. 2cm. B. 3cm. C. 4 cm. D. 2 3 cm. Bài 9: Li độ của vật dao động điều hòa có phương trình x = Acos(ωt + φ). Nếu vận tốc cực đại là vmax = 8π (cm/s) và gia tốc cực đại amax = 16π2 (cm/s2) thì A. A = 3(cm). B. A = 4(cm). C. A = 5(cm). D. A = 8(cm). Bài 10: Một chất điểm khối lượng 0,01 kg dao động điều hòa một đoạn thẳng dài 4 cm với tần số 5 Hz. Tại thời điểm t = 0 chất điểm qua vị trí cân bằng theo chiều dương của quỹ đạo. Hợp lực tác dụng vào chất điểm lúc t = 0,95 s có độ lớn A. 0,2N. B. 0,1 N. C. 0N. D. 0,15N. Bài 11: Một vật dao động điều hòa có dạng hàm cos với biên độ bằng 6 cm. Vận tốc vật khi pha dao động là π /6 là −60 cm/s. Chu kì của dao động này là A. 0,314 s. B. 3,18 s. C. 0,543 s. D. 20 s. Bài 12: Phương trình dao động của vật dao động điều hòa: x = Acos(ωt + π/2) cm gốc thời gian đã chọn là lúc vật A. đi qua vị trí cân bằng theo chiều đương. B. ở vị trí biên dương, C. đi qua vị trí cân bằng ngược chiều dương. D. ở biên âm. Bài 13: Một dao động điều hòa có phương trình x = −5cos(5πt − π/2) (cm). Biên độ và pha ban đầu của dao động là A. 5 cm; −π/2. B. 5 cm; π/2. C. 5 cm; π. D. −5 cm; 0.
29
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
Bài 14: Một vật dao động điều hòa theo phương trình x = 10cos(4πt + π/2) (cm). Gốc thời gian được chọn vào lúc A. đi qua vị trí cân bằng theo chiều dương. B. ở vị trí biên dương, C. đi qua vị trí cân bằng theo chiều âm. D. ở biên âm. Bài 15: Trong các phương trình sau, phương trình nào mô tả chuyển động của vật dao động điều hoà? A. x 5cos 10t .sin 10t cm. B. x 5t cos 10t 3 2 5 C. x sin 10t D. x 2 cos 10 .sin 10t t 2 Bài 16: Một chất điểm dao động điều hòa với phương trình x = 8cos(πt + π/4) (x tính bằng cm, t tính bằng s) thì A. chu kì dao động là 4 s. B. độ dài quỹ đạo là 8 cm. C. lúc t = 0 , chất điểm chuyển động theo chiều âm. D. khi qua vị trí cân bằng, vận tốc của chất điểm có độ lớn 8 cm. Bài 17: Phát biểu nào sau đây không đúng khi nói về dao động điều hòa của chất điểm? A. Biên độ dao động của chất điểm là đại lượng không đổi. B. Động năng của chất điểm biến đổi tuần hoàn theo thời gian C. Tốc độ của chất điểm tỉ lệ thuận với li độ của nó. D. Độ lớn của hợp lực tác dụng vào chất điểm tỉ lệ thuận với li độ của chất điểm. Bài 18: Phát biểu nào sau đây không đúng? Gia tốc của một vật dao động điều hoà A. luôn hướng về vị trí cân bằng. B. có độ lớn tỉ lệ với độ lớn li độ của vật. C. luôn ngược pha với li độ của vật. D. có giá trị nhỏ nhất khi vật đổi chiều chuyển động. Bài 19: Vận tốc của chất điểm dao động điều hòa có độ lớn cực đại khi A. li độ có độ lớn cực đại. B. li độ bằng không, C. gia tốc có độ lớn cực đại. D. pha cực đại. Bài 20: Trong dao động điều hòa, những đại lượng biến thiên theo thời gian cùng tần số với vận tốc là A. li độ, gia tốc và lực phục hồi. B. động năng, thế năng và lực phục hồi. C. li độ, gia tốc và động năng. D. li độ, động năng và thế năng. Bài 21: Trong chuyển động dao động điều hòa của một vật thì tập hợp ba đại lượng sau đây là không thay đổi theo thời gian? A. vận tốc, lực, năng lượng toàn phần. B. gia tốc, chu kỳ, lực. C. biên độ, tần số, năng lượng toàn phần. D. biên độ, tần số, gia tốc. Bài 22: Tìm kết luận sai khi nói về dao động điều hòa của một chất điểm trên một đoạn thẳng nào đó. A. Trong mỗi chu kì dao động thì thời gian tốc độ của vật giảm dần bằng một nửa chu kì dao động. B. Lực hồi phục (hợp lực tác dụng vào vật) có độ lớn tăng dần kho tốc độ của vật giảm dần. C. Trong một chu kì dao động có 2 lần động năng bằng một nửa cơ năng dao động. D. Tốc độ của vật giảm dần khi vật chuyển động từ vị trí cân bằng ra phía biên. Bài 23: Một chất điểm có khối lượng 100 g chuyển động trên trục Ox dưới tác dụng của lực F = −2,5x (x là tọa độ của vật đo bằng m, F đo bằng N). Kết luận nào sau đây là sai? A. Vật này dao động điều hòa. B. Gia tốc của vật đổi chiều khi vật có tọa độ x = A (A là biên độ dao động)
30
C. Gia tốc của vật a = −25x (m/s2). D. Khi vận tốc của vật có giá trị bé nhất, vật đi qua vị trí cân bằng. 1.B 11.A 21.C
2.C 12.C 22.C
3.A 13.B 23.B
4.B 14.C
5.C 15.D
6.B 16.C
7.D 17.C
8.C 18.D
9.B 19.B
10.A 20.A
PHẦN 2 Bài 1: Một con lắc lò xo, gồm lò xo nhẹ có độ cứng 50 (N/m), vật có khối lượng 2 (kg), dao động điều hoà. Tại thời điểm vật có li độ 3 cm thì nó có vận tốc 15 3 (cm/s). Xác định biên độ. A. 5 cm. B. 6 cm. C. 9 cm. D. 10 cm. Bài 2: Một con lắc lò xo gồm lò xo có độ cứng 2,5 N/m và viên bi có khối lượng 0,1 kg dao động
U C TI O
N
điều hòa. Tại thời điểm t, vận tốc và gia tốc của viên bi lần lượt là 10 cm/s và 0,5 3 m/s2. Biên độ dao động của viên bi là
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
A. 16cm B. 4cm C. 4 3 cm. D. 10 3 cm. Bài 3: Một vật dao động điều hoà, vận tốc của vật khi đi qua vị trí cân bằng có độ lớn 20π (cm/s) và gia tốc cực đại của vật là 200π2 (cm/s2). Tính biên độ dao động. A. 2 cm. B. 10 cm. C. 20 cm. D. 4 cm. Bài 4: Một vật dao động điều hòa dọc theo trục x quanh gốc tọa độ với phương trình x = Acos(4πt + φ) với t tính bằng s. Khi pha dao động là π thì gia tốc của vật là 8 (m/s2). Lấy π2 = 10. Tính biên độ dao động. A. 5 cm. B. 10 cm. C. 20 cm. D. 4 cm. Bài 5: Một vật dao động điều hòa với biên độ 4 cm. Khi vật có li độ 2 cm thì vận tốc là 1 m/s. Tần số dao động là: A. 3 Hz. B. 1 Hz. C. 4,6 Hz. D. 1,2 Hz. Bài 6: Một vật dao động điều hòa trong nửa chu kỳ đi được quãng đường 10 cm. Khi vật có li độ 3 cm thì có vận tốc 16π cm/s. Chu kỳ dao động của vật là: A. 0,5s B. l,6s C. 1 s D. 2s Bài 7: Một vật dao động điều hòa trên trục Ox, xung quanh vị trí cân bằng là gôc tọa độ. Gia tốc của vật phụ thuộc vào li độ x theo phương trình: a = − 400π2x. Số dao động toàn phần vật thực hiện được trong mỗi giây là A. 20. B. 10. C. 40. D. 5. Bài 8: Một con lắc lò xo gồm vật nhỏ có khối lượng 0,25 (kg) và một lò xo nhẹ có độ cứng 100π2 (N/m), dao động điều hòa dọc theo trục Ox. Khoảng thời gian giữa hai lần liên tiếp độ lớn vận tốc của vật cực đại là A. 0,1 (s). B. 0,05 (s). C. 0,025 (s). D. 0,075 (s). Bài 9: Một dao động điều hòa, khi vật có li độ 3 cm thì tốc độ của nó là 15 3 cm/s, và khi vật có li độ 3 2 cm thì tốc độ 15 2 cm/s. Tốc độ của vật khi đi qua vị trí cân bằng là A. 20 (cm/s). B. 25 (cm/s). C. 50 (cm/s). D. 30 (cm/s). Bài 10: Một vật dao động điều hòa khi có li độ x1 = 2 (cm) thì vận tốc v1 4 3 (cm/s), khi có li độ x 2 2 2 (cm) thì có vận tốc v 2 4 2 (cm/s). Biên độ và tần số dao động của vật là A. 8 cm và 2 Hz.
B. 4 cm và 1 Hz.
C. 4 2 cm và 2Hz.
D. 4 2 cm và 1Hz.
31
Bài 11: Một chất điểm dao động điều hòa trên trục Ox. Khi chất điểm đi qua vị trí cân bằng thì tốc
N
độ của nó là 10 cm/s. Khi chất điểm có tốc độ là 5 cm/s thì gia tốc của nó có độ lớn là 10 3 cm/s2. Biên độ dao động của chất điểm là A. 5 cm. B. 4cm. C. 10 cm. D. 8 cm. Bài 12: Một vật dao động điều hòa theo phương trình: x = 2,5cos10πt (cm) (với t đo bằng giây). Tốc độ trung bình của chuyển động trong một chu kì là A. 50 cm/s. B. 25 cm/s. C. 0. D. 15 cm/s. Bài 13: Một vật dao động điều hòa có độ lớn vận tốc cực đại là 5π cm/s. Tốc độ trung bình của vật trong một chu kì dao động là A. 10 cm/s. B. 20 cm/s. C. 0. D. 15 cm/s. Bài 14: Gọi M là trung điểm của đoạn AB trên quỹ đạo chuyển động của một vật dao động điều hòa. Nếu gia tốc tại A và B lần lượt là −2 cm/s2 và 6 cm/s2 thì gia tốc tại M là A. 2 cm/s2. B. 1 cm/s2. C. 4 cm/s2. D. 3 cm/s2.
U C TI O
Bài 15: Một vật dao động điều hòa với phương trình: x = 4 2 cos(25t) cm (t đo bằng s). Vào thời điểm t = π/100 (s) vận tốc của vật là A. 25 cm/s. B. 100 cm/s. C. 50 cm/s. D. −100 (cm/s). Bài 16: Một vật dao động điều hòa dọc theo trục Ox. Lúc vật ở li độ 2 (cm) thì có vận tốc
O
D
2 (cm/s) và gia tốc 2 2 (cm/s2). Tốc độ cực đại của vật là
TH
AN
H
TU
PR
A. 2πcm/s. B. 20πrad/s. C. 2 cm/s. D. 2π 2 cm/s. Bài 17: Một vật thực hiện dao động điều hòa theo phương Ox với phương trình x = 6cos(4t − π/2) với x tính bằng cm, t tính bằng s. Gia tốc của vật có giá trị lớn nhất là A. 1,5 cm/s2. B. 144 cm/s2. C. 96 cm/s2. D. 24 cm/s2. Bài 18: Một vật thực hiện dao động điều hòa theo phương Ox với phương trình x = 6cos(4t − π/2) với x tính bằng cm, t tính bằng ms. Tốc độ của vật có giá trị lớn nhất là A. 1,5 cm/s. B. 144 cm/s. C. 24 cm/s. D. 240 m/s. Bài 19: Một chất điểm dao động điều hòa với biên độ A và tốc độ cực đại là vmax. Khi li độ x = A/3 tốc độ của vật bằng B. 2v max 2 / 3.
C.
3v max / 2.
D. v max / 2.
N
A. vmax.
YE
Bài 20: Một chất điểm dao động điều hòa với biên độ A và tốc độ cực đại là vmax. Khi tốc độ của vật bằng một phần ba tốc độ cực đại thì li độ thỏa mãn
N
G
U
A. |x| = A/4. B. |x| = A/2. C. |x| = 2 A 2 /3. D. |x| = A/ 2 . Bài 21: Một chất điểm dao động điều hòa với biên độ A và tốc độ cực đại là vmax. Khi li độ x = ±A/2 tốc độ của vật bằng A. vmax.
B. vmax./2.
C.
3 vmax/2.
D. v max / 2 .
Bài 22: Một chất điểm dao động điều hòa với biên độ A và tốc độ cực đại là vmax. Khi tốc độ của vật bằng nửa tốc độ cực đại thì li độ thỏa mãn A. |x| = A/4.
B. |x| = A/2.
C. |x| =
3 A/2.
D. |x| = A/ 2 .
Bài 23: Một chất điểm dao động điều hòa với biên độ A và tốc độ cực đại là vmax/ 2 . Khi tốc độ của vật bằng thì li độ thỏa mãn A. |x| = A/4. B. |x| = A/2. C. |x|= 3 A/2. D. |x| = A/ 2 Bài 24: Con lắc lò xo dao động điều hòa với chu kì T = 0,25 s. Khối lượng của vật là m = 250 g (lấy π2 = 10). Độ cứng của lò xo là A. 80 N/m. B. 100 N/m. C. 120 N/m. D. 160 N/m.
32
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
Bài 25: Con lắc lò xo dao động điều hòa trên phương nằm ngang, cứ mỗi giây thực hiện được 4 dao động toàn phần. Khối lượng vật nặng của con lắc là m = 250 g (lấy π2 = 10). Động năng cực đại của vật là 0,288 J. Quỹ đạo dao động của vật là một đoạn thẳng dài A. 6 cm. B. 10 cm. C. 5 cm. D. 12 cm. Bài 26: Một vật nhỏ có khối lượng m = 100 g dao động điều hòa với chu kì là 2 s. Tại vị trí biên, gia tốc của vật có độ lớn là 80 cm/s2. Cho π2 = 10. Cơ năng dao động của vật là A. 3,2 mJ. B. 0,32 mJ. C. 0,32 J. D. 3,2 J. Bài 27: Một chất điểm dao động điều hòa với biên độ 8 cm, cứ mỗi phút chất điểm thực hiện được 40 dao động toàn phần. Tốc độ cực đại của chất điểm là A. 33,5 cm/s. B. 1,91 cm/s. C. 320 cm/s. D. 50 cm/s. Bài 28: Vật dao động điều hòa cứ mỗi phút thực hiện được 120 dao động. Trong quá trình dao động, vận tốc của vật có độ lớn cực đại là 20π (cm/s). Khi động năng của vật gấp 3 lần thế năng thì nó ở cách vị trí cân bằng một đoạn A. 2,9 cm. B. 4,33 cm. C. 2,5 cm. D. 3,53 cm. Bài 29: Vật dao động điều hòa với biên độ A = 5 cm, tần số f = 4 Hz. Khi vật có li độ x = 3 cm thì vận tốc của nó có độ lớn là A. 2π cm/s. B. 16π cm/s. C. 32π cm/s. D. 64π cm/s. Bài 30: Một vật nhỏ khối lượng m = 200 g được treo vào một lò xo khối lượng không đáng kể, độ cứng k. Kích thích để con lắc dao động điều hòa với gia tốc cực đại bằng 16 m/s2 và cơ năng bằng 64 mJ. Độ cứng lò xo và vận tốc cực đại của vật lần lượt là A. 40 N/m; 1,6 m/s. B. 40 N/m; 16 m/s. C. 80 N/m; 8 m/s. D. 80 N/m; 80 cm/s. Bài 31: Một vật dao động điều hòa với biên độ A và cơ năng E. Khi vật có li độ x = 2A/3 thì động năng của vật là A. E/9. B. 4E/9. C. 5E/9. D. E/3. Bài 32: Một vật có khối lượng m = 1 kg được treo vào đầu của lò xo có độ cứng là k = 100 N/m. Biết vật xuống thẳng đứng khỏi vị trí cân bằng một đoạn bằng 10 cm rồi truyền cho vật một vận tốc 1 m/s hướng về vị trí cân bằng. Tính động năng cực đại của vật trong quá ưình dao động điều hòa? A. 1J. B. 2,5 J, C. 1,5 J. D. 0,5 J. Bài 33: Động lượng và gia tốc của vật nặng 1 kg dao động điều hòa tại các thời điểm t1 , t2 có giá trị tương ứng là p1 = 0,12 kgm/s, p2 = 0,16 kgm/s, a1= 0,64 m/s2, a2 = 0,48 m/s2. Biên độ và tần số góc dao động của con lắc là: A. A = 5 cm, ω = 4 rad/s. B. A = 3 cm, ω = 6 rad/s. C. A = 4 cm, ω = 5 rad/s. D. A = 6 cm, ω = 3 rad/s. Bài 34: Một con lắc lò xo dao động điều hòa trên phương nằm ngang với biên độ 12cm. Khi động năng của vật gấp 3 lần thế năng của lò xo, vật có li độ A. ±3 cm. B. ±6 cm. C. ±9 cm. D. 6 2 cm Bài 35: Một chất điểm dao động điều hòa với phương trình: x = 6cos(20t + φ) (cm), trong đó t được tính bằng giây. Khi chất điểm có li độ 2 cm thì tốc độ của nó là A. 80 2 m/s. B. 0,8 2 m/s. C. 40 2 cm/s. D. 80 cm/s. Bài 36: Một vật dao động điều hòa với chu kì 0,2 s biên độ 10 em và có động năng cực đại là 0,5 J. Tìm kết luận sai? A. Động năng của vật tăng dần khi vật tiến về vị trí cân bằng. B. Trong mỗi chu kì dao động có 2 lần vật đạt động năng bằng 0,5 J. C. Động năng của vật biến thiên tuần hoàn với chu kì 0,ls. D. Khi vật đi qua vị trrí có li độ bằng 5 cm thì động năng của vật bằng một nửa động năng cực đại.
33
Bài 37: Một con lắc lò xo gồm lò xo có độ cứng 20 N/m và viên bi có khối lượng 0,2 kg dao động điều hoà. Tại thời điểm t, vận tốc và gia tốc của viên bi lần lượt là 20 cm/s và 2 3 m/s2. Biên độ dao động của viên bi là A. 16 cm. B. 4 cm. C. 4 3 cm. D. 10 3 cm. Bài 38: Một chất điểm khối lượng 750 g dao động điều hòa với biên độ 4 cm, chu kì 2 s (lấy π2 = 10). Năng lượng dao động của vật là A.12J. B. 6 J. C. 12 mJ. D. 6 mJ. Bài 39: Con lắc lò xo có khối lượng m = 100 g, dao động điều hòa với cơ năng E = 32 mJ. Tại thời
N
điểm ban đầu vật có vận tốc v = 40 3 cm/ss và gia tốc a = −8 m/s2. Biên độ dao động là A. 3 cm. B. 4 cm. C. 5 cm. D. 6 cm. Bài 40: Một con lắc lò xo gồm lò xo có độ cứng 20 N/m và viên bi có khối lượng 200 g dao động điều hòa. Tại thời điểm t, vận tốc và gia tốc của viên bi lần lượt là 40 cm/s
D
U C TI O
và 4 15 m/s2. Biên độ dao động của viên bi là A. 8 cm. B. 16 cm. C. 20 cm. D. 4 cm. Bài 41: Một con lắc lò xo dao động điều hòa theo phương ngang với tần số góc 10 rad/s. Biết rằng khi động năng và thế năng bằng nhau thì vận tốc của vật có độ lớn bằng 50 cm/s. Biên độ dao động của con lắc là
PR
O
A. − 5 cm. B. 5 2 cm. C. 6 cm. D. 10 2 cm. Bài 42: Một con lắc lò xo gồm lò xo có độ cứng 20 N/m và viên bi có khối lượng 0,2 kg dao động
TU
điều hòa. Tại thời điểm t, vận tốc và gia tốc của viên bi lần lượt là 20 cm/s và 2 3 m/s2 . Biên độ dao động của viên bi là
AN
H
A. 8 cm. B. 4 cm C. 4 3 cm. D. 10 3 cm. Bài 43: Cho một con lắc lò xo dao động với phương trình x = 5cos(20t + π/6) cm. Tại vị trí mà thế năng lớn gấp ba lần động năng thì tốc độ của vật bằng :
YE
N
TH
A. 100 cm/s. B. 75 cm/s. C. 50 2 cm/s D. 50 cm/s. Bài 44: Con lắc lò xo nằm ngang dao động điều hòa với biên độ A = 8 cm, chu kì T = 0,5 s, khối lượng của vật là m = 400 g, lấy π2 = 10. Động năng cực đại của vật là A. 0,12041. B. 0,2048 J. C. 2,408 J. D. 1.204.1. Bài 45: Một con lắc lò xo, vật nặng có khối lượng là m = 100 g, dao động điều hòa theo phương
N
G
U
trình: x = 4cos( 10 5 t) cm. Lấy g = 10 m/s2. Động năng của vật khi có li độ x = 2 cm là A. 0,01 J. B. 0,02 J. C. 0,03 J. D. 0,04 J. Bài 46: Một chất điểm khối lượng 100 g dao động điều hòa dọc theo trục Ox với phương trình: x = 4cos4t cm. Khi chất điểm chuyển động qua vị trí x = 2 cm, động năng của nó là A. 0,32 mJ. B. 0,96 mJ. C. 1,28 mJ. D. 0,64 mJ. Bài 47: Con lắc lò xo đặt nằm ngang, vật nặng có khối lượng 500 g, dao động điều hòa với chu kì T = 0,445 s. Cơ năng của con lắc là 0,08 J. Lấy π = 3,14. Biên độ dao động của con lắc là A. 3 cm. B. 4 cm. C. 5 cm. D. 6 cm. Bài 48: Vật dao động điều hòa, khi vận tốc của vật bằng một nửa vận tốc cực đại của nó thì tỉ số giữa thế năng và động năng là: A. 2. B. 3. C. 1/2. D. 1/3. Bài 49: Vật dao động điều hòa cứ mỗi phút thực hiện được 120 dao động. Trong quá trình dao động, vận tốc của vật có độ lớn cực đại là 20π (cm/s). Khi động năng của vật gấp 3 lần thế năng thì nó ở cách vị trí cân bằng một đoạn? A. 2,9 cm. B. 4,33 cm. C. 2,5 cm, D. 3,53 cm.
34
1.B 11.A 21.C 31.C 41.B
2.B 12.A 22.C 32.A 42.B
3.A 13.A 23.D 33.A 43.D
4.A 14.A 24.D 34.B 44.B
5.C 15.D 25.D 35.B 45.C
6.A 16.A 26.A 36.D 46.B
7.B 17.C 27.A 37.B 47.B
8.B 18.D 28.C 38.D 48.B
9.D 19.B 29.C 39.B 49.C
10.B 20.C 30.D 40.B
PR
O
D
U C TI O
N
PHẦN 3 Bài 1: Một chất điểm M chuyển động hòn đều trên quỹ đạo tâm O bán kính 10 cm với tốc độ 100 cm/s. Hình chiếu của M trên trục Ox nằm trong mặt phẳng quỹ đạo dao động điều hòa với tần số góc A. 10 (rad/s). B. 20 (rạd/s). C. 5 (rad/s). D. 100 (rad/s). Bài 2: Một chất điểm M chuyển động tròn đều trên quỹ đạo tâm O bán kính 5 cm với tốc độ v. Hình chiếu của M trên trục Ox nằm trong mặt phẳng quỹ đạo dao động điều hòa với tần số góc 20 (rad/s). Giá trị v là? A. 10 (cm/s). B. 20 (cm/s). C. 50 (cm/s). D. 100 (cm/s). Bài 3: Một chất điểm M chuyển động tròn đều trên quỹ đạo tâm O với tốc độ 50 (cm/s). Hình chiếu của M trên trục Ox nằm trong mặt phẳng quỹ đạo dao động điều hòa với tần số góc 20 (rad/s) và biên độ là A. 10 (cm). B. 2,5 (cm). C. 50 (cm). D. 5 (cm). Bài 4: Một chất điểm M chuyển động tròn đều trên quỹ đạo tâm O bán kính 10 cm với tốc độ 100 cm/s. Gọi P là hình chiếu của M trên trục Ox nằm trong mặt phẳng quỹ đạo. Khi P cách O một
H
TU
đoạn 5 3 (cm) nó có tốc độ là A. 10 (cm/s). B. 20 (cm/s). C. 50 (cm/s). D. 100 (cm/s). Bài 5: Một chất điểm M chuyển động tròn đều trên quỹ đạo tâm O bán kính 10 cm với tốc độ 100 cm/s. Gọi P là hình chiếu của M trên trục Ox nằm trong mặt phẳng quỹ đạo. Khi P cách O một
N
G
U
YE
N
TH
AN
đoạn b nó có tốc độ là 50 3 (cm/s). Giá trị b là A. 10 (cm). B. 2,5 (cm). C. 50 (cm). D. 5 (cm). Bài 6: Một chất điểm dao động điều hòa trên trục Ox có phương trình x = Acos5πt (cm). Véc tơ vận tốc hướng theo chiều âm và véc tơ gia tốc hướng theo chiều dương của trục Ox trong khoảng thời gian nào (kể từ thời điểm ban đầu t = 0) sau đây? A. 0,2s < t < 0,3s. B. 0,0s < t< 0,1s. C. 0,3s< t< 0,4s. D. 0,ls<t<0,2s. Bài 7: Một chất điểm dao động điều hòa trên trục Ox có phương trình x = Acos(5πt + π/4) (cm). Véc tơ vận tốc hướng theo chiều âm và véc tơ gia tốc hướng theo chiều dương của trục Ox trong khoảng thời gian nào (kể từ thời điểm ban đầu t = 0) sau đây? A. 0,2s < t < 0,3s. B. 0,05s < t < 0,15s. C. 0,3s < t < 0,4s. D. 0,ls < t < 0,2s. Bài 8: Chọn câu sai. Một vật dao động điều hòa dọc theo trục Ox, gốc O trùng với vị trí cân bằng của vật. Vào thời điểm t vật đi qua điểm M có vận tốc v = −20 cm/s và gia tốc a = −2 m/s2. Vào thời điểm đó vật A. chuyển động nhanh dần. B. có li độ dương, C. chuyển động chậm dần. D. đang đi về O. Bài 9: Chọn phát biểu sai? A. Dao động điều hòa là dao động mà li độ được mô tả bằng một định luật dạng sin (hoặc cosin) theo thời gian: x = Acos(ωt + φ) trong đó A, ω, φ là những hằng số. B. Dao động điều hòa có thể được coi như hình chiếu của một chuyển động tròn đều xuống một đường thẳng nằm trong mặt phẳng quỹ đạo. C. Dao động điều hòa có thể được biểu diễn bằng một véctơ không đổi. D. Khi một vật dao động điều hòa thì động năng của vật đó cũng dao động tuần hoàn.
35
D
U C TI O
N
Bài 10: Một vật dao động điều hòa theo phương ngang với phương trình: x = 4cos(17t + π/3) cm (t đo bằng giây). Người ta đã chọn mốc thời gian là lúc vật có A. li độ −2 cm và đang đi theo chiều âm. B. li độ −2 cm và đang đi theo chiều dương C. li độ +2 cm và đang đi theo chiều dương. D. li độ +2 cm và đang đi theo chiều âm. Bài 11: Một vật dao động điều hòa theo phương trình x = 3cos(2πt – π/3), trong đó x tính bằng xen ti mét (cm) và t tính bằng giây (s). Gốc thời gian đã được chọn lúc vật qua vị trí có li độ A. x = −1,5 cm và đang chuyển động theo chiều dương của trục Ox. B. x = 1,5 cm và đang chuyển động theo chiều dương của trục Ox. C. x = 1,5 cm và đang chuyển động theo chiều âm của trục Ox. D. x = −1,5 cm và đang chuyển động theo chiều âm của trục Ox. Bài 12: Chọn phương án sai khi nói về dao động điều hòa : A. Thời gian dao động đi từ vị trí cân bằng ra biên bằng thời gian đi ngược lại. B. Thời gian đi qua vị trí cân bằng 2 lần liên tiếp là 1 chu kì. C. Tại mỗi li độ có 2 giá trị của vận tốc. D. Khi gia tốc đổi dấu thì vận tốc có độ lớn cực đại. Bài 13: Một vật dao động điều hòa có tần số 2 Hz và biên độ 4 cm. Ở một thời điểm nào đó vật chuyển động theo chiều âm qua vị trí có li độ 2 cm thì sau thời điểm đó 1/12 s vật chuyển động theo
N
G
U
YE
N
TH
AN
H
TU
PR
O
A. chiều dương qua vị trí có li độ −2 cm. B. chiều âm qua vị trí có li độ 2 3 cm C. chiều âm qua vị trí cân bằng. D. chiều âm qua vị trí có li độ −2 cm. Bài 14: Một chất điểm chuyển động với tốc độ 0,75 m/s trên đường tròn đường lánh 0,5 m. Hình chiếu M' của M lên đường kính của đường tròn dao động điều hòa. Tại t = 0 thì M' qua vị trí cân bằng theo chiều âm. Khi t = 4 s li độ của M' là A. −12,5 cm. B. 13,4 cm. C. −13,4 cm. D. 12,5 cm. Bài 15: Một vật thực hiện dao động điều hòa với biên độ A tại thời điểm t1 = 1,2 s vật đang ở vị trí cân bằng theo chiều dương, tại thời điểm t2 = 4,7 s vật đang ở biên âm và đã đi qua vị trí cân bằng 3 lần tính từ thời điểm t1 (không tính lần ở t1). Hỏi tại thời điểm ban đầu thì vật đang ở đầu và đi theo chiều nào. A. 0 chuyển động theo chiều âm. B. 0,588A chuyển động theo chiều dương C. 0,588A chuyển động theo chiều âm. D. 0,55A chuyển động theo chiều âm. Bài 16: Vật dao động điều hòa dọc theo trục Ox (với O là vị trí cân bằng), với chu kì 2 (s), với biên độ A. Sau khi dao động được 2,5 (s) vật ở li độ cực đại. Tại thời điểm ban đầu vật đi theo chiều A. dương qua vị trí cân bằng. B. âm qua vị trí cân bằng, C. dương qua vị trí có li độ −A/2. D. âm qua vị trí có li độ −A/2. Bài 17: Vật dao động điều hòa dọc theo trục Ox (với O là vị trí cân bằng), với chu kì 1,5 (s), với biên độ A. Sau khi dao động được 3,5 (s) vật ở li độ cực đại. Tại thời điểm ban đầu vật đi theo chiều A. dương qua vị trí cân bằng. B. âm qua vị trí cân bằng, C. dương qua vị trí có li độ −A/2. D. âm qua vị trí có li độ A/2. Bài 18: Vật dao động điều hòa dọc theo trục Ox (với O là vị trí cân bằng), với chu kì 2 (s), với biên độ A. Sau khi dao động được 4,25 (s) vật ở li độ cực tiểu. Tại thời điểm ban đầu vật đi theo chiều A. dương qua vị trí có li độ A/ 2 . B. âm qua vị trí có li độ −A/ 2 C. dương qua vị trí có li độ A/2. D. âm qua vị trí có li độ A/2. Bài 19: Vật dao động điều hòa dọc theo trục Ox, với chu kì 2 (s), với biên độ A. Sau khi dao động được 4,25 (s) vật ở vị trí cân bằng theo chiều dương. Tại thời điểm ban đầu vật đi theo chiều
36
A. dương qua vị trí có li độ −A/ 2 . C. dương qua vị trí có li độ A/2. 1.A 11.B
2.D 12.B
3.B 13.D
4.C 14.B
B. âm qua vị trí có li độ +A/ 2 . D. âm qua vị trí có li độ A/2. 5.D 15.C
6.D 16.A
7.B 17.C
8.C 18.B
9.C 19.A
10.D 20.
D
U C TI O
N
PHẦN 4 Bài 1: Một dao động điều hòa có phương trình x = Acos(πt/3) (cm). Biết tại thời điểm t1 (s) li độ x = 2 cm. Tại thời điểm t1 + 6 (s) có li độ là: A. +2 cm. B. − 4,8 cm. C. −2 cm. D. + 3,2 cm. Bài 2: Một dao động điều hòa có phương trình x = 5cos(πt/3) (cm). Biết tại thời điểm t1 (s) li độ x = 4 cm. Tại thời điểm t1 + 3 (s) có li độ là: A. +4 cm. B. − 4,8 cm. C. −4 cm. D. + 3,2 cm. Bài 3: Một vật dao động điều hòa theo phương trình x = 4,5cos(2πt + π/3) (cm) (t đo bằng giây). Biết li độ của vật ở thời điểm t là 2 cm. Li độ của vật ở thời điểm sau đó 0,5 s là? A. 2 cm. B. 3 cm. C. −2 cm. D. −4 cm. Bài 4: Một dao động điều hòa có phương trình x = 2cos(0,2πt) (cm). Biết tại thời điểm t1 (s) li độ x = 1 cm. Tại thời điểm t1 + 5 (s) có li độ là:
TH
AN
H
TU
PR
O
A. + 3 cm. B. − 3 cm. C. −1 cm. D. + lcm. Bài 5: Một chất điểm dao động điều hòa dọc theo trục Ox, xung quanh vị trí cân bằng O với chu kỳ 1 s . Tại thời điểm t = 0 s chất điểm ở li độ x = 2 cm và đang chuyển động ra xa vị trí cân bằng. Tại thời điểm t = 2,5 s chất điểm ở vị trí có li độ A. x = −2 cm và đang hướng ra xa vị trí cân bằng. B. x = + 2 cm và đang hướng ra xa vị trí cân bằng C. x = 2 cm và đang hướng về vị trí cân bằng. D. x = −2 cm và đang hướng về vị trí cân bằng. Bài 6: Một vật dao động điều hòa chu kì 2 (s). Tại thời điểm t0 vật có li độ 2 cm thì vận tốc của vật ở thời điểm t0 + 0,5 (s) là
YE
N
A. π 3 (cm/s). B. 2π (cm/s). C. 2 3 (cm/s). D. −2π (cm/s). Bài 7: Một vật dao động điều hòa chu kì 2 (s). Tại thời điểm t0 vật có li độ 2 cm thì vận tốc của vật ở thời điểm t0 + 3,5 (s) là
G
U
A. π 3 (cm/s). B. −2π (cm/s). C. 2π 3 (cm/s). D. 2π (cm/s). Bài 8: Một vật dao động điều hòa theo trục Ox (O là vị trí cân bằng), hai lần liên tiếp vận tốc của
N
nó triệt tiêu là 1 (s). Tại thời điểm t vật có vận tốc 4π 3 (cm/s). Hãy tính li độ của vật đó ở thời điểm (t + 1/2 s) A. 4 3 cm B. − 7 cm. C. 8 cm. D. − 8 cm. Bài 9: Một chất điểm dao động điều hòa theo phương trình x = 3sin(5πt + φ) (x tính bằng cm và t tính bằng giây). Tại thời điểm t, chất điểm có li độ 2 cm và đang tăng. Li độ chất điểm ở thời điểm sau đó 0,1 (s) là A. −1 cm. B. 5 cm. C. 3 cm. D. −2 cm. Bài 10: Một vật dao động điều hòa theo phương ngang với phương trình: x = 20sin2πt (cm). Vào một thời điểm nào đó vật có li độ là 5 cm thì li độ vào thời điểm ngay sau đó 1/8 (s) là: A. 17,2 cm hoặc 7 cm. B. −10,2 cm hoặc 14,4 cm. C. 7 cm hoặc−10,2 cm. D. 17,2 cm hoặc−10,2 cm.
37
U C TI O
N
Bài 11: Một vật dao động điều hòa với chu kì T, với biên độ A và vận tốc cực đại vmax. Trong khoảng thời gian từ t = t1 đến t = t2 = 2t1 tốc độ của vật tăng từ 0,6vmax đến vmax rồi giảm xuống 0,8vmax. Gọi x1, v1, a1, Wt1, Wd1 lần lượt là li độ, vận tốc, gia tốc, thế năng và động năng của chất điểm ở thời điểm t1. Gọi x2, v2, a2, Wt2, Wđ2 lần lượt là li độ, vận tốc, gia tốc, thế năng và động năng của chất điểm ở thời điểm t2. Cho các hệ thức sau đây: 0,5 4 2 2 x12 x 22 A 2 1 ; A v max T 2 ;a12 a 22 2 v 2max ; v 2 x1` 5 T T 2 2 2 v1 x 2 6 ;9W1 16Wd1 7 ; 4Wt 2 3Wd 2 8 ;a1 v 2 9 ;a 2 v1 10 T T T Số hệ thức đúng là A. 6. B. 8. C. 7. D. 9. Bài 12: Một vật dao động điều hòa với phuong trình x = 8cos(4πt + π/4) cm (t đo bằng giây). Biết ở thời điểm t0 vật chuyển động theo chiều dương qua li độ x = 4 cm. Sau thời điểm đó 1/24 (s) thì vật có li độ A. x = 4 3 cm và chuyển động theo chiều dương. B. x = 0 và chuyển động theo chiều âm. C. x = 0 và chuyển động theo chiều dương.
O
D
D. x = 4 3 cm và chuyển động theo chiều âm.
PR
Bài 13: Một vật dao động điều hòa chu kì 2 (s). Tại thời điểm t vật có li độ 2 cm và vận tốc 4π 3 (cm/s). Hãy tính vận tốc của vật ở thời điểm t + 1/3 (s)
TU
A. π/3 (cm/s). B. 2 (cm/s). C. 2 3 (cm/s). D. 2π 3 s (cm/s). Bài 14: Một vật dao động điều hòa với chu kỳ T = 2 s, tại thời điểm ban đầu vật có li độ x = −2 cm
H
và có độ lớn vận tốc là 2π 3 (cm/s), lấy π2 = 10, gia tốc của vật lúc t = 1 s có giá trị
TH
AN
A. −20 (cm/s2). B. 20 3 (cm/s2). C. 20 (cm/s2) D. −20 3 (cm/s2). Bài 15: Vật vật dao động điều hòa với chu kì π/2 s. Tại thời điểm t1: v1= 100 cm/s, a1 = −4 m/s2. Xác định vận tốc và gia tốc vật tại thời điểm t2 = t1 + π/8 (s). A. −100 cm/s và −4 m/s2. B. 100 cm/s và 4 m/s2
N
G
U
YE
N
C. 50 3 cm/s và 2 m/s2. D. 50 cm/s và −4 3 m/s2. Bài 16: Một vật dao động điều hòa có chu kì T = 1 s. Tại một thời điểm vật cách vị trí cân bằng 6 cm, sau đó 0,75 s vật cách vị trí cân bằng 8 cm. Tìm biên độ. A. 10 cm. B. 8 cm. C. 14 cm. D. 2 cm Bài 17: Một vật dao động điều hòa có chu kì 1,2 s với biên độ 12,5 cm. Tại một thời điểm vật cách vị trí cân bằng 10 cm, sau đó 6,9 s vật cách vị trí cân bằng là A. 10 cm. B. 8 cm. C. 7,5 cm. D. 872 cm Bài 18: Một vật dao động điều hòa có chu kì T và biên độ 12 cm. Tại một thời điểm t = t1 vật có li độ x1 = 6 cm và tốc độ v1, sau đó T/4 vật có tốc độ 12π cm/s. Tìm v1. A. 12π 3 cm/s. B. 6π 3 cm/s. C. 6 2 cm/s. D. l2π 2 cm/s. Bài 19: Một vật dao động điều hòa có chu kì T và biên độ 10 cm. Tại một thời điểm t = t1 vật có li độ x1 = 6 cm và tốc độ v1, sau đó 3T/4 vật có tốc độ 12π cm/s. Tìm v1. A. 12π 3 cm/s. B. 6π 3 cm/s. C. 16πcm/s. D. l2π 2 cm/s. Bài 20: Một vật dao động điều hòa với tần số góc 10 rad/s. Tại một thời điểm vật cách vị trí cân bằng 6 cm, sau đó nửa chu kì dao động vật có tốc độ 60 cm/s. Tìm biên độ. A. 10cm.
C. 6 2 cm.
B. 8cm.
38
D. 8 2 cm.
Bài 21: Một vật dao động điều hòa có chu kì T = 1 s. Tại một thời điểm vật cách vị trí cân bằng 6 cm, sau đó 0,5 s vật có tốc độ lổn cm/s. Tìm biên độ. A. 10 cm. B. 8 cm. C. 14 cm. D. 8 2 cm Bài 22: Một vật dao động điều hòa có chu kì T = 1 s. Tại một thời điểm vật cách vị trí cân bằng 8 cm, sau đó 0,5 s vật có tốc độ 16π cm/s. Tìm biên độ. A. 10 cm. B. 8 cm. C. 14 cm. D. 8 2 cm Bài 23: Chất điểm chuyển động trên đường thẳng Ox. Phương trình chuyển động của chất điểm là x = 10cos(10πt − π/6) cm (t: tính bằng s). Vào thời điểm t1 vật đi qua vị trí có tọa độ 5 cm và theo chiều âm của trục tọa độ thì đến thời điểm t2 = t1 + 1/30 s thì vật sẽ có li độ x2 là
U C TI O
N
A. −5 cm. B. 10 cm. C. 0. D. 5 3 cm. Bài 24: Chất điểm dao động điều hòa với x = 6cos(20πt − π/6) (cm). Ở thời điểm t1, vật có li độ x = −3 cm và chuyển động ra biên, ở thời điểm t2 = t1 + 0,025 (s), vật A. có li độ x = 3 cm và chuyển động ra xa vị trí cân bằng. B. có li độ x = 3 3 cm và chuyển động ra xa vị trí cân bằng,
C. có li độ x = −3 3 cm và chuyển động ra xa vị trí cân bằng.
D
D. có li độ x = −3 3 cm và chuyển động về vị trí cân bằng. Bài 25: Một vật dao động theo phương trình x = 4.cos(πt/6) (cm) (t đo bằng giây). Tại thời điểm t1
PR
O
li độ là 2 3 cm và đang giảm. Tính vận tốc sau thời điểm t1 là 3 (s). A.−2,5 cm/s. B. −1,8 cm/s. C. 2 cm/s. D. 5,4 cm/s. Bài 26: Một vật dao động điều hòa theo phương ngang với phương trình: x = 20cos2πt (cm) (t đo
TH
AN
H
TU
bằng giây). Vào một thời điểm nào đó vật có li độ là 10 3 cm thì vận tốc vào thời điểm ngay sau đó 1/12 (s) là A. 108,8 cm/s hoặc 0 cm/s. B. 20 cm/s hoặc 15 cm/s. C. −62,3 cm/s hoặc 125,7 cm/s. D. −108,8 cm/s hoặc 0 cm/s. Bài 27: Một vật dao động điều hòa theo phương ngang, trong thời gian 100 giây nó thực hiện đúng
YE
N
50 dao động. Tại thời điểm t vật có li độ 2 cm và vận tốc 4π 3 (cm/s). Hãy tính li độ của vật đó ở thời điểm (t + 1/3 s) A. 7 cm. B. −7 cm. C. 5 cm. D. −5 cm. Bài 28: Một vật dao động điều hòa dọc theo Ox với tần số góc π rad/s. Tại thời điểm t vật có li độ
N
G
U
2 cm và vận tốc – 4π 3 (cm/s). Vận tốc của vật đó ở thời điểm (t + 1/3 s) gần giá trị nào nhất trong số các giá trị sau đây? A. 16 cm/s. B.−5 cm/s. C. 5 cm/s. D. −16 cm/s. Bài 29: Một con lắc lò xo gồm lò xo nhẹ có độ cứng k và vật nhỏ khối lượng m = 0,5 kg. Con lắc dao động điều hòa theo phương ngang với chu kì T. Biết ở thời điểm t vật có li độ 5 cm, ở thời điểm t + T/4 vật có tốc độ 50 cm/s. Giá trị của k bằng A. 200 N/m B. 150N/m C. 50N/m D. 100N/m Bài 30: Một vật dao động điều hòa có chu kì 1 s. Tại một thời điểm t = t1 vật có vận tốc 12π cm/s, sau đó 2,75 s vật có li độ là A. 6 s cm. 1.A 2.C 11.C 12.A 21.A 22.D
3.C 13.A 23.A
B. −6 3 cm. 4.C 5.A 14.A 15.A 24.D 25.B
C. −6 cm 6.D 7.D 16.A 17.C 26.D 27.D
39
8.A 18.A 28.D
D. 6 cm 9.B 19.C 29.C
10.D 20.C 30.C
PHẦN 5 Bài 1: Một chất điểm dao động điều hòa trên trục Ox có phươmg trình x = 4cos2πt (cm). Trong 2 s đầu tiên có mấy lần vật đi qua điểm có li độ x = 2 cm? A. 2. B. 3. C. 4. D. 1. Bài 2: Một chất điểm dao động điều hòa trên trục Ox có phương hình x = 4sin2πt (cm). Trong 2 s đầu tiên có mấy lần vật đi qua điểm có li độ x = 4 cm? A. 2. B. 3. C. 4. D. l. Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g 2 m/s2, số lần động năng bằng thế năng trong khoảng thời gian 4 s là
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
A. 16. B. 6. C. 4. D. 8. Bài 4: Một vật dao động điều hòa theo phương trình x = 2cos(5πt − π/3) (cm) (t đo bằng giày). Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần. Bài 6: Một chất điểm dao động điều hòa có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (t0 = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần. Bài 7: Một vật dao động điều hòa theo phương trình: x = 2cos(5πt − π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = −1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần. Bài 8: Một chất điểm dao động điều hòa tuân theo quy luật: x = 5cos(5πt − π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần. Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = −1 cm A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 là A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 1.C 2.A 3.D 4.B 5.D 6.C 7.A 8.C 9.C 10.C
N
PHẦN 6 Bài 1: Một chất điểm dao động điều hòa có phương trình x = Acos(ωt + φ), tại thời điểm ban đầu vật đi qua vị trí có li độ x = 0,5.A và đang chuyển động về gốc tọa độ thì pha ban đầu φ bằng: A. –π/6. B. π/6. C. + π/3. D. – π/3 Bài 2: Vật dao động điều hòa theo phương trình: x = 4cos(πt + φ) cm. Tại thời điểm ban đầu vật có li độ 2 cm và đang chuyển động ngược chiều dương của trục toạ độ. Pha ban đầu của dao động điều hòa là A. −π/6. B. π/6. C. + π/3. D. − π/3. Bài 3: Một vật dao động điều hòa với biên độ A, tần số góc ω. Chọn gốc thời gian là lúc vật đi qua vị trí mà vận tốc bằng 0 và sau đó nó đi theo chiều âm. Phương trình dao động của vật là A. x = Asin(ωt). B. x = Acos(ωt − π/2). C. x = Asin(ωt + π/2). D. x = Acos(ωt + πt).
40
Bài 4: Một vật dao động điều hòa với biên độ A, tần số góc ω. Chọn gốc thời gian là lúc vật đi qua vị trí mà vận tốc bằng 0 và sau đó nó đi theo chiều dương. Phương trình dao động của vật là A. x = Asin(ωt). B. x = Acos(ωt − π/2). C. x = Asin(ωt + π/2). D. x = Acos(ωt + πt). Bài 5: Một vật dao động điều hòa với biên độ A, tần số góc ω. Chọn gốc thời gian là lúc vật đi qua vị trí có toạ độ âm và có vận tốc bằng −ωA/2. Phương trình dao động là A. x = Asin(ωt). B. x = Asin(ωt – 2π /3). C. x = Asin(ωt + 2π/3). D. x = Asin(ωt + π). Bài 6: Một vật có khối lượng 500 g, dao động với cơ năng 10 (mJ), theo phương trình: x = Asin(ωt
N
+ φ) cm (t đo bằng giây), ở thời điểm t = 0, nó có vận tốc 0,1 (m/s) và gia tốc − 3 (m/s2). Tính A và φ A. 4 cm, π/2. B. 2 cm, π/3. C. 4 cm, π/4. D. 2 cm, −π/3. Bài 7 : Con lắc lò xo có khối lượng 1 kg, dao động điều hòa với cơ năng 125 mJ theo phương trình
O
D
U C TI O
x = Acos(ωt + φ) cm. Tại thời điểm ban đầu vật có vận tốc 25 cm/s và gia tốc −6,25 3 m/s2. Pha ban đầu φ bằng A. −π/6. B. π/6. C. −π/3. D. π/3. Bài 8: Một vật dao động điều hòa với tần số 10/π Hz. Khi t = 0 vật có li độ −4 cm và có vận tốc −80 cm/s. Phương trình dao động của vật là : A. x = 4cos(20t + π/4 )(cm). B. x = 4sin(20t + π/4) (cm),
YE
N
TH
AN
H
TU
PR
C. x = 4 2 cos(20t + 3π/4) (cm). D. x = 4 2 sin(20t − π/4) (cm). Bài 9: Một vật dao động điều hòa theo phương ngang trên đoạn thẳng dài 2a với chu kì 2 s. Chọn gốc thời gian là lúc vật đi qua vị trí x = a/2 theo chiều âm của quỹ đạo. Khi t = 1/6 (s) li độ dao động của vật là A. 0. B. −a. C. +a/2. D. −ạ/2. Bài 10: Một chất điểm dao động điều hòa trên trục Ox, trong đoạn thẳng MN dài 16 cm. Chọn gốc tọa độ vị trí cân bằng O, t = 0 lúc vật cách vị trí cân bằng 4 cm và đang chuyển động nhanh dần theo chiều dương. Pha ban đầu của dao động trong phương trình dạng cos là A. φ = π/6. B. φ = −π/3. C. φ = π/3. D. φ = −2π/3. Bài 11: Một vật dao động điều hòa với phương trình: x = Acos(ωt + φ). Ở thời điểm ban đầu t = 0, vật đi qua vị trí cân bằng theo chiều dương. Biết rằng, trong khoảng thời gian 1/60 s đầu tiên, vật
N
G
U
đi được đoạn đường bằng 0,5A 3 . Tần số góc ω và pha ban đầu φ của dao động lần lượt là A. 10π rad/s và π/2. B. 20π rad/s và π/2. C. 10π rad/s và −π/2. D. 20π rad/s và −π/2. Bài 12: Con lắc lò xo dao động điều hòa theo phương thẳng đứng vị trí thấp nhất đến vị trí cao nhất cách nhau 0,2 m là 0,75 s. Chọn thời điểm t = 0 là lúc vật chuyển động nhanh dần theo chiều dương Ox và có độ lớn vận tốc là 0,2π/3 (m/s). Phương trình dao động của vật là A. x = 10cos(4πt/3 + π/3) (cm). B. x = 10cos(4πt/3 – 5π/6) (cm). C. x = 10cos(3πt/4 + π/3) (cm). D. x = 10cos(4πt/3 − π/3) (cm). Bài 13: Một vật dao động điều hòa với phương trình x = Acos(ωt + φ) trên một quỹ đạo thẳng dài 10 cm. Chọn gốc thời gian là lúc vật qua vị trí x = 2,5 cm và đi theo chiều dương thì pha ban đầu của dao động là A. π/3. B. π/6. C. −π/3. D. 2π/3. Bài 14: Con lắc lò xo dao động điều hòa quanh vị trí cân bằng. Trục tọa độ có gốc vị trí cân bằng, phương dọc theo trục của lò xo. Khi vật đi qua vị trí cân bằng, vận tốc có độ lớn 20π cm/s. Gia tốc khi vật tới biên là 2 m/s2. Thời điểm ban đầu của vật có li độ − 10 2 cm và chuyển động về biên. Lấy π2 = 10. Phương trình dao động của vật là
41
A. x = 20cos(πt + π/4) (cm). B. x = 20cos(πt – 3π/4) (cm). C. X = 20sin(πt – 3π/4) (cm). D. x = 20sin(πt − π/4) (cm). Bài 15: Con lắc lò xo có khối lượng m = 100 g. dao động điều hòa x = Acos(ωt + φ) với biên độ A = 2 cm. Tại thời điểm ban đầu vật có vận tốc v = 20 3 cm/s và gia tốc a = 4 m/s2. Pha ban đầu của dao dộng là A. − π/6. B. π/6. C. −π/3. D. −2π/3. Bài 16: Con lắc lò xo có khối lượng m = 100 g, dao động điều hòa x = Acos(ωt + φ) với cơ năng
U C TI O
N
32 mJ. Tại thời điểm ban đầu vật có vận tốc v = 40 3 cm/s và gia tốc a = 8 m/s2. Pha ban đầu của dao động là A. − π/6. B. π/6. C. −2π/3. D. −π/3. Bài 17: Một vật dao động điều hòa cứ sau 0,25 s thì động năng lại bằng thế năng. Quãng đường vật đi được trong 0,5 s là 16 cm. chọn gốc thời gian là lúc vật qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là: A. x = 8cos(2πt − π/2) (cm). B. x = 4cos(4πt + π/2) (cm), C. x = 8cos(2πt + π/2) (cm). D. x = 4cos(4πt − π/2) (cm). Bài 18: Một con lắc lò xo gồm vật nặng có khối lượng m = 0,2 kg và lò xo có độ cứng k = 80 N/m dao động điều hòa theo phương nằm ngang. Lấy gốc thời gian t = 0 là lúc vật nặng có vận tốc v0 =
PR
O
D
0,2m/s và gia tốc a0 = 4 3 m/s2. Phương trình dao động của con lắc lò xo là A. x = 2cos(20t + π/6) (cm). B. x = 2cos(20t − π/6) (cm), C. x = 2cos(20t + 5π/6) (cm). D. x = 2cos(20t – 5π/6) (cm). Bài 19: Một con lắc lò xo có m = 500 g, dao động điều hòa với cơ năng 10 mJ. Lấy gốc thời gian
B. x = 2 3 cos(8πt − π/6) cm.
TH
A. x = 3 3 cos(8πt − π/6) cm.
AN
H
TU
khi vật có vận tốc 0,1 m/s và gia tốc là − 3 m/s2. Pha ban đầu của dao động là A. π/2. B. −π/6. C. −π/4. D. −π/3. Bài 20: Một vật dao động điều hòa trên trục Ox với tẩn số f = 4 Hz, biết toạ độ ban đầu của vật là x = 3 cm và sau đó 1/24 s thì vật lại trở về toạ độ ban đầu. Phương trình dao động của vật là
YE
N
C. x = 6cos(8πt + πt/6) cm. D. x = 3 2 cos(8πt + π/3) cm. Bài 21: Tại thời điểm ban đầu (t = 0), vật dao động điều hòa chuyên độnn qua vị trí x = 2cm ra xa vị trí cân bằng với tốc độ 20 cm/s. Biết chu kì của dao động T = 0.628 s. Viết phương trình dao động cho vật? B. x 2 2 cos 10t / 4 cm.
C. x 2 2 cos 10t / 4 cm.
D. x 2 2 cos 10t 3 / 4 cm.
N
G
U
A. x 2 2 cos 10t 3 / 4 cm.
Bài 22: Treo vật khối lượng m = 100 g vào lò xo thẳng đứng độ cứng k = 100 N/m. Kéo vật đến vị trí lò xo bị dãn 3 cm rồi thảnhẹ cho vật chuyển động. Lấy g = 10 m/s2. Chọn trục toạ độ thẳng đứng, chiều dương hướng lên trên, gốc thời gian là lúc thả vật. Phương trình chuyển động của vật A. x = 4cosl0πt cm. B. x = 3cos10πt cm. C. x = 4cos(10πt + π) cm. D. x = 2cos(10πt + π) cm. Bài 23: Một vật dao động điều hòa với biên độ 6 cm, chu kì 0,05 s. Chọn gốc thời gian là lúc vật có li độ x = − 3 3 cm theo chiều âm. Phương trình dao động của vật là A. x = 6cos(40πt − π/3) cm. C. x = 6cos(40πt + 5πt/6) cm. B. x = 6cos(40πt + 2π/3) cm. D. x = 6cos(40πt + π/3) cm.
42
Bài 24: Một vật dao động điều hoà: Ở li độ x1 = −2 cm vật có vận tốc v1 8 3 cm/s, ở li độ
x 2 2 3 cm vật có vận tốc v 2 8 cm/s. Chọn t = 0 là thời điểm vật có li độ x = −A/2 và đang
N
chuyển động xa vị trí cân bằng. Phương trình dao động của vật là A. x = 4cos(4πt + 2π/3) cm. B. x = 8cos(4πt + πt/3) cm. C. x = 4cos(4πt – 2π/3) cm. D. x = 8cos(4πt − π/3) cm. Bài 25: Một con lắc lò xo gồm vật nhỏ khối lượng m = 100 gam và lò xo nhẹ có độ cứng k = 100 N/m dao động điều hòa với biên độ 9cm. Lấy gốc thời gian là lúc con lắ đang đi theo chiều dương của trục tọa độ, tại đó thế năng bằng ba lần động năng và có tốc độ đang giảm. Lấy π2 = 10. Phương trình dao động của con lắc là: A. x = 9cos(10πt − π/6) cm. B. x = 9cos(10πt + π/6) cm. C. x = 9cos(10πt – 5π/6) cm. D. x = 9cos(10πt + 5π/6) cm. Bài 26: Một chất điểm dao động điều hòa với chu kì 1 s. Tại thời điểm t = 2,5 s tính từ lúc bắt đầu
5.B 15.D 25.A
6.B 16.C 26.C
7.A 17.A
O
4.D 14.C 24.A
PR
3.C 13.C 23.C
G
U
YE
N
TH
AN
H
TU
2.C 12.B 22.D
N
1.C 11.D 21.C
D
U C TI O
dao động, chất điểm đi qua vị trí có li độ x = −2 cm và vận tốc v = − 4 3 cm/s. Phương trình dao động của chất điểm có thể là A. x = 4cos(2πt + 2π/3) cm. B. x = 4cos(2πt – 2π/3) cm. C. x = 4cos(2πt − π/3) cm. D. x = 4cos(2πt + π/3) cm..
43
8.C 18.D
9.A 19.B
10.D 20.B
Dạng 2. BÀI TOÁN LIÊN QUAN ĐẾN THỜI GIAN Chúng ta sẽ nghiên cứu các bài toán + Thời gian đi từ x1 đến x2. + Thời điểm vật qua x0. 1. Thời gian đi từ x1 đến x2 1.1. Thời gian ngắn nhất đi từ x1 đến vị trí cân bằng và đến vị trí biên Phương pháp chung: Cách 1: Dùng VTLG Xác định góc quét tương ứng với sự dịch chuyển:
M1
x1
N
x2
U C TI O
Thời gian: t
M2
Cách 2: Dùng PTLG
PR
O
D
x1 x1 1 x1 A sin t1 sin t1 A t1 arcsin A x A cos t cos t cos t x1 t 1 arcos x1 1` 2 2 2 2 A A
TU
x A sin t
x A cos t
t1
x1
0
A
YE
x1
0
N
G
U
X1
A
t2
t1
x1 A sin t1 A cos t 2
N
t2
AN
A
TH
X1
H
x A cos t
x A sin t
x 1 arcsin 1 A
x 1 arccos 1 A
Ví dụ 1: Một chất điểm dao động điều hoà với biên độ 10 (cm) và tần số góc 10 (rad/s). Khoảng thời gian ngắn nhất để nó đi từ li độ +3,5 cm đến vị trí cân bằng là A. 0,036 s. B. 0,121 s. C. 2,049 s. D. 6,951 s. Hướng dẫn
44
Cách 1: Dùng VTLG Thời gian ngắn nhất dao động điều hòa đi từ x = 3,5 cm đến x = 0 bằng thời gian chuyển động tròn đều đi tròn đều đi từ M đến N: t mà 3,5 sin 0,3576 rad 10 0,3576 0, 036 s Chọn A. Nên t 10
M
10
10
U C TI O
N
Cách 2: Dùng PTLG x 1 1 3,5 t1 arcsin 1 asin 0, 036 s Chọn A. A 10 10 Kinh nghiệm:
3,5
1) Quy trình bấm máy tính nhanh: shift sin 3,5 10 10 (máy tính chọn đơn vị góc là rad). 2) Đối với dạng bài này chỉ nên giải theo cách 2 (nếu dùng quen máy tính chỉ hết cỡ 10 s!).
O
D
3) Cách nhớ nhanh "đi từ x1 đến VTCB là shift shift sin x1 A " "đi từ x1 đến VT biên
PR
shift cos x1 A
N
TH
AN
H
TU
4) Đối với bài toán ngược ta áp dụng công thức: x1 A sin t1 A cos t 2 . Ví dụ 2: Vật dao động điều hoà, thời gian ngắn nhất vật đi từ vị trí x = +A đến vị trí x = A/3 là 0,1 s. Chu kì dao động của vật là A. 1,85 s. B. 1,2 s. C. 0,51 s. D. 0,4 s. Hướng dẫn x x 1 T T 1 t 2 arccos 1 arccos 1 0,1 arccos T 0,51 s Chọn C A 2 A 2 3 Chú ý: Đối với các điểm đặc biệt ta dễ dàng tìm được phân bố thời gian như sau: A A 3 A
YE U
T 24
G
T 12
N
2
2
0
A
2 T 24
T 12
Kinh nghiệm : 1) Nếu số 'xấu’ x1 0;
A A A 3 ; ; thì dùng: 2 2 2
shift sin x1 , shift cos x1
A A A 3 ; ; thì dùng trục phân bố thời gian. 2 2 2 Ví dụ 3 : Vật dao động điều hoà với biên độ A. Thời gian ngắn nhất vật đi từ vị trí có li độ A/2 đến vị trí có li độ A là 0,2 s. Chu kì dao động của vật là: A. 0,12 s. B. 0,4 s. C. 0,8 s. D. 1,2 s. Hướng dẫn 2) Nếu số ‘đẹp ’ x1 0;
45
Dựa vào trục phân bố thời gian ta tính được thời gian ngắn nhất đi từ x = A/2 đến x = A là T/6. T Do đó: 0, 2 T 1, 2 s Chọn D. 6 Chú ý: Khoảng thời gian trong một chu kì vật cách vị trí cân bằng một khoảng x 1 + Nhỏ hơn x1: t 4t1 4 arcsin 1 A x 1 + Lớn hơn x1 là: t 4t 2 4 arccos 1 A x1 O A x1 A
arcsin
x1 A
arcsin
x1 A
x1 A
N
x1 A
arccos
U C TI O
arccos
U
YE
N
TH
AN
H
TU
PR
O
D
Ví dụ 4: Một chất điểm dao động điều hòa với chu kì 1 s với biên độ 4,5 cm. Khoảng thời gian trong một chu kỳ để vật cách vị trí cân bằng một khoảng nhỏ hơn 2 cm là A. 0,29 s. B. 16,80 s. C. 0,71 s. D. 0,15 s. Hướng dẫn x x 1 T 1 2 t 4. arcsin 1 4. arcsin 1 4. arcsin 0, 29 s Chọn A. A 2 A 2 4,5 Kinh nghiệm: Nếu x1 trùng với các giá trị đặc biệt thì nên dựa vào trục phân bố thời gian. Ví dụ 5: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật cách vị trí cân bằng một khoảng lớn hơn nửa biên độ là A. T/3. B. 2T/3. C. T/6. D. T/2. Hướng dẫn T T 6 6 0 A A A A T T 2 2 6 6
G
T 2T Chọn B. 6 3 Chú ý: Nếu cho biết quan hệ t1 và t2 thì ta có thể tính được các đại lượng khác như: T, A, x1... T t1 t 2 4 2t1 x A sin t2 1 T t1 2 x A cos t 2 1 T Ví dụ 6 : Một dao động điều hoà có chu kì dao động là T và biên độ là A. Tại thời điểm ban đầu vật có li độ x1 > 0. Thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí cân bằng gấp ba thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí biên x = +A. Chọn phương án đúng.
N
Dựa vào trục phân bố thời gian ta tính được: t 4.
46
B. x1 = 0,5A 3 .
A. x1 = 0,924A.
C. x1 = 0,5A 2 . Hướng dẫn
D. x1 = 0,021A.
t2
PR
O
D
U C TI O
N
T T t1 t 2 4 t 2 16 Chọn A. Ta có hệ: t1 3t 2 2 T x A cos 0,924A 2t 2 1 x1 A cos T 16 T Ví dụ 7: Một dao động điều hoà có chu kì dao động là T và biên độ là A. Tại thời điểm ban đầu vật có li độ x1 (mà x1 0; ±A), bất kể vật đi theo hướng nào thì cứ sau khoảng thời gian ngắn nhất t nhất định vật lại cách vị trí cân bằng một khoảng như cũ. Chọn phương án đúng. A. x1 0, 25A. B. x1 0,5A 3. C. x1 0,5A 2. D. x1 0,5A Hướng dẫn T T Theo yêu cầu của bài toán suy ra: t 2t1 2t 2 mà t1 t 2 nên t1 t 2 8 4 2t1 2 T A Do đó; x1 A sin A sin Chọn C. T T 8 2
t1
x1
TU
A
t1
AN
H
O
t1 t 2
x1
T 4
t2
2t1 x1 A sin T x A cos 2t 2 1 T
A
N
G
U
YE
N
TH
Chú ý: Bài toán tìm khoảng thời gian để vật đi từ li độ x1 đến x2 là bài toán cơ bản, trên cơ sở bài toán này chúng ta có thể làm được rất nhiều các bài toán mở rộng khác nhau như: * Tìm thời gian ngắn nhất để vật đi từ li độ x1 đến vận tốc hay gia tốc nào đó. * Tìm khoảng thời gian từ lúc bắt đầu khảo sát dao động đến khi vật qua tọa độ x nào đó lần thứ n . * Tìm khoảng thời gian từ lúc bắt đầu khảo sát dao động đến khi vật nhận vận tốc hay gia tốc nào đó lần thứ n . * Tìm vận tốc hay tốc độ trung bình trên một quỹ đạo chuyển động nào đó. * Tìm khoảng thời gian mà lò xo nén, dãn trong một chu kì chuyển động. * Tìm khoảng thời gian mà bóng đèn sáng, tối trong một chu kì hay trong một khoảng thời gian nào đó. * Tìm khoảng thời gian mà tụ điện C phóng hay tích điện từ giá trị q1 đến q2. * Các bài toán ngược liên quan đến khoảng thời gian,... 1.2. Thời gian ngắn nhất đi từ x1 đến x2 M2 M1 Phương pháp chung: Cách 1: Dùng VTLG t Cách 2: Khoảng thời gian ngắn nhất để vật đi từ điểm có li độ x1 x1 x2 đến điểm có li độ x2:
47
t arccos
x2 x x x arccos 1 arcsin 2 arcsin 1 A A A A x 1 arccos 2 A
x A cos t
x1 x2
O
t ?
A
x 1 arccos 1 A
x
U C TI O
N
shift cos x 2 A shift cos x1 A Qui trình bấm máy tính nhanh: shift sin x 2 A shift sin x1 A
Kinh nghiệm: Đối với dạng toán này cũng không nên dùng cách 1 vì mất nhiều thời gian! Ví dụ 1: Một vật dao động điều hoà có phương trình li độ x 8cos 7t / 6 cm. Khoảng thời
TU
PR
O
D
gian tối thiểu để vật đi từ li độ 7 cm đến vị trí có li độ 2 cm là A. 1/24 s. B. 5/12 s. C. 6,65 s. D. 0,12 s. Hướng dẫn x x 1 2 7 1 t arccos 2 arccos 1 arccos arccos 0,12 s Chọn D. A A 8 8 2
H
Qui trình bấm máy: shift cos 2 8 shift cos 7 8 7
T 12
T 24
O
T 12
A
A 2 T 12
2 T 24
A 3 A 2 T 24
T 12
G
U
YE
T 24
A 2
TH
A 3 A 2 2
N
A
A A A 3 ; ; thì dùng trục phân bố thời gian. 2 2 2
AN
Kinh nghiệm:Nếu số ‘đẹp ’ x1 0;
N
Ví dụ 2: Một vật dao động điều hoà có phương trình li độ x = 8cos(7πt + π/6) cm. Khoảng thời gian tối thiểu để vật đi từ li độ 4 2 cm đến li độ − 4 3 cm là A. 1/24 s. B. 5/12 s. C. 1/6 s. D. 1/12 s. Hướng dẫn A
A 3 A 2 2 T 24
T 24
A
A 2
2
O
T 12
T 12
Dựa vào trục phân bổ thời gian ta tính được:
48
T 24
A x
T T T T T 7T 7 2 1 s Chọn D. 24 24 12 12 24 24 24 12 Chú ý: Nếu vật chuyển động qua lại nhiều lần thì ta cộng các khoảng thời gian lại. Ví dụ 3: Một dao động điều hoà có chu kì dao động là T và biên độ là A. Thời gian ngắn nhất để vật đi từ điểm có li độ cực đại về điểm có li độ bằng một nửa biên độ cực đại mà véctơ vận tốc có hướng cùng với hướng của trục toạ độ là A. T/3. B. 5T/6. C. 2T/3. D. T/6. Hướng dẫn t
T 4
T 4
A
U C TI O
T 12
T 4
A 2
N
A
T T 5T Chọn B 4 12 6 Ví dụ 4: Một con lắc lò xo đang dao động điều hòa với biên độ A, thời gian ngắn nhất để con lắc di chuyển từ vị trí có li độ x1 = − A đến vị trí có li độ x2 = A/2 là 1 s. Chu kì dao động của con lắc là: A. 6 s. B. 1/3 s. C. 2 s. D. 3 s. Hướng dẫn Dựa vào trục phân bổ thời gian ta tính được: T T T t 1 s T 3 s Chọn B 4 12 3
A 2
O
A 2
A
N
TH
A
AN
H
TU
PR
O
D
Dựa vào trục phân bô thời gian ta tính được: t 3.
N
G
U
YE
T T 12 4 Chú ý: Li độ và tận tốc tại các điểm đặc biệt. 1) Cứ sau khoảng thời gian ngắn nhất T/6 thì vật lại đi qua M hoặc O hoặc N (tốc độ tại M và N khác 0 T T T T N M 12 2 6 12 0 6 A T 12
A 3 2
A 3 2
A 2
A 2
Tốc độ tại M và N đều bằng ωA/2.
49
T 12
A
2) Cứ sau khoảng thời gian ngan nhất T/8 thì vật lần lượt đi qua M1, M2, M0,M3,M4 (tốc độ tại M1 và M4 bằng 0) T T T T M4 M3 M2 8 M1 8 8 8 0 A
A
A
2
2
A 2
A 2
A
O
D
U C TI O
N
Tốc độ tại M1 và M3 đều bằng A / 2. 3) Cứ sau khoảng thời gian ngắn nhất T/12 thì vật ỉần lượt đi qua M1, M2, M3, M4, M4, M6, M7 (tốc độ tại M1 và M7 bằng 0) T T T T T T M4 M M M1 12 M 2 12 M 3 5 6 12 12 M 7 12 12 A A A O A A 3 A 3 2 2 2 2
PR
A 3 2
A 3 2
A 2
TU
A 2
TH
AN
H
Tốc độ tại M2 và M6 đều bằng ωA/2 Tốc độ tại M3 và Mô đều bằng A 3 / 2 . Ví dụ 5: Một chất điểm đang dao động điều hoà trên một đoạn thẳng xung quanh vị trí cân bằng O. Gọi M, N là hai điểm trên đường thẳng cùng cách đều O. Biết cứ 0,05 s thì chất điểm lại đi qua các điểm M, O, N và tốc độ của nó lúc đi qua các điểm M, N là 20π cm/s. Biên độ A bằng C. 4 2 cm. D. 4/3 cm. Hướng dẫn T 2 20 Dựa vào trục phân bố thời gian: 0, 05 T 0,3s rad / s 6 T 3 B. 6 cm.
N
G
U
YE
N
A. 4 cm.
T 12
M
T 6
T 6
T A 3 12 2
N A 3 2
A 2
T 12 T 12
A 2 Ví dụ 6: Một chất điểm đang dao động điều hoà trên một đoạn thẳng. Trên đoạn thẳng đó có bảy điểm theo đúng thứ tự M1, M2, M3, M4, M5, M6 và M7 với M4 là vị trí cân bằng. Biết cứ 0,05 s thì chất điểm lại đi qua các điểm M1, M2, M3, M4, M5, M6 và M7 (tốc độ tại M1 và M7 bằng 0). Tốc độ của nó lúc đi qua điểm M3 là 20π cm/s. Biên độ A bằng A. 4 cm. B. 6 cm. C. 12 cm. D. 4 /3 cm.
50
Hướng dẫn Dựa vào trục phân bố thời gian. T 2 10 0, 05 T 0, 6s rad / s 12 T 3 T
T
M1 12 A
M 2 12
M3
A 3 2
A 2
A 3 2
T 12
T 12
M4 O
A 2
T 12
M5
T
M 6 12 M 7
A 2
A 3 2
A 3 2
A 2
A
TH
AN
H
TU
PR
O
D
U C TI O
N
10 A 3 A A 3 x M3 v M3 20 3 A 4 3 cm Chọn D. 2 2 2 Ví dụ 7: Vật đang dao động điều hòa dọc theo đường thẳng. Một điểm M nằm cố định trên đường thẳng đó, phía ngoài khoảng chuyển động của vật, tại thời điểm t thì vật xa điểm M nhất, sau đó một khoảng thời gian ngắn nhất là Δt thì vật gần điểm M nhất. Độ lớn vận tốc của vật sẽ bằng nửa vận tốc cực đại vào thời điểm gần nhất là A. t t / 3. B. t t / 6. C. t t / 4. D. 0,5t 0, 25t. Hướng dẫn Thời gian ngắn nhất vật đi từ điểm M xa T nhất đến điểm M gần nhất là nửa chu kỳ 2 T M nên: t T 2t A 2 A T O A 3 v x2 v2 2 12 Khi v max thì từ 2 2 2 1 2 A A T A 3 A 3 . Thời gian ngắn nhất vật đi từ x = A đến x là 12 2 2 v max T t : t t Chọn B. Thời điểm gần nhất vật có v 2 12 6 1.3.Thời gian ngắn nhất liên quan đến vận tốc, động lượng Phương pháp chung: Dựa vào công thức liên hệ vận tốc, động lượng với li độ để quy về li độ. v x1 x1 ? v2 x 2 2 A2 v v2 x 2 ?
N
G
U
YE
N
suy ra x
p p1 x1 ? p mv p p 2 x 2 ? Ví dụ 1: Một chất điểm dao động điều hòa với chu kì T trên trục Ox với O là vị trí cân bằng. Thời gian ngắn nhất vật đi từ điểm có toạ độ x = 0 đến điểm mà tốc độ của vật bằng nửa tốc độ cực đại là A.T/8. B. T/16. C. T/6. D. T/12. Hướng dẫn
51
A
A 3 A 2 2
A 2
A
A 2
O
T 24
T 12
A 3 A 2
2
T 24
T 12
x
x1 0 3 x1 0 x 2 A v max 3 T Chọn C. 2 x2 A t v2 2 2 6 Chú ý: 1)Vùng tốc độ lớn hơn v1 nằm trong đoạn x1 ; x1 và vùng tốc độ nhỏ hơn v1 nằm ngoài đoạn
N
x1 ; x1
A
t1
v12 A2 2 a1 2 x1 x12
t2
PR
t1
x 1 t1 arcsin 1 A 1 t arccos x1 2 A
D
t2
x1
O
x1
A
U C TI O
2) Khoảng thời gian trong một chu kì tốc độ + lớn hơn v1 là 4t1. + nhỏ hơn v1 là 4t2.
TH
AN
H
TU
Ví dụ 2 : Một chất điểm dao động điều hòa với chu ki T. Khoảng thời gian trong một chu kỳ để vật có tốc độ nhỏ hơn 1/3 tốc độ cực đại là A. T/3. B. 2T/3. C. 0,22T. D. 0,78T. Hướng dẫn A 8 v2 A. Trong công thức x12 12 A 2 ta thay v1 suy ra x1 3 3 Vùng tốc độ nhỏ hơn v1 nằm ngoài đoạn x1 ; x1 . Khoảng thời gian trong một chu kì tốc độ
N
G
U
YE
N
nhỏ hơn v1 là 4t2. x 1 T 8 4t 2 4. arccos 1 4 arccos 0, 22T Chọn C A 2 3 Ví dụ 3 : Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật có tốc độ lớn hơn 0,5 tốc độ cực đại là A. T/3. B. 2T/3. C. T/6. D. T/2. Hướng dẫn T v2 T Trong công thức x12 12 A 2 ta thay A 3 A 3 6 6 O 2 2 A A 3 v1 suy ra x1 . T T 3 2 6
6
Vùng tốc độ lớn hơn v1 nằm ngoài đoạn x1 ; x1 . Khoảng thời gian trong một chu kì tốc độ nhỏ hơn v1 là 4t1. T 2T 4t1 4. Chọn B 6 3
52
Chú ý: Trong các đề thì trắc nghiệm thường là sự chồng chập của nhiều bài toán dê nên để đi đến bài toán chính ta phải giải quyết bài toán phụ. Ví dụ 4: (ĐH − 2012) Một chất điểm dao động điều hòa với chu kì T. Gọi vtb là tốc độ trung bình của chất điểm ữong một chu kì, v là tốc độ tức thời cùa chất điểm. Trong một chu kì, khoảng thời gian mà v 0, 25v tb là: A. T/3. B. 2T/3. C. T/6. D. T/2. Hướng dẫn x1
T 6
A 3 2
O
T 6
T 6
t2
N
t1
t1
v12 A2 2 a1 2 x1 x12
A 3 2
T 6
D
t2
x1 1 t1 arcsin A t 1 arccos x1 2 A
A
U C TI O
x1
A
O
4A A A 3 T 0, 25.4A. x1 t1 T 2 2 2 6 2T Chọn B. + Vùng tốc độ v1 nằm trong x1 ; x1 t 4t1 t 4t1 3 Chú ý: Đối với bài toán ngược ta làm theo các bước sau: Bước 1: Dựa vào vùng tốc độ lớn hơn hoặc bé hơn vì ta biểu diễn t1 hoặc t2 theo . Bước 2: Thay vào phương trình x1 A sin t1 A cos t 2
AN
H
TU
PR
v1 0, 25v tb 0, 25.
v12 A2 . . 2 Ví dụ 5 : Một vật nhỏ dao động điều hòa với chu kì T và biên độ 8 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ có độ lón vận tốc không vượt quá 16 cm/s là T/3. Tần số góc dao động của vật là A. 4 rad/s. B. 3 rad/s. C. 2 rad/s. D. 5 rad/s. Hướng dẫn Để tốc độ không vượt /v1/ = 16 cm/s thì vật phải ở ngoài đoạn [ − x1; x1]
N
G
U
YE
N
TH
Bước 3: Thay vào phương trình x12
T T A 3 t 2 x1 4 3 cm 3 12 2 Thay số vào phương trình: 4t 2
x1
A
v12 256 A 2 48 2 64 4 rad / s 2 Chọn A. Kinh nghiệm: Nếu ẩn số ω nằm cả trong hàm sin hoặc hàm cos và cả nằm độc lập phía ngoài thì nên dùng chức năng giải phương trình SOLVE của máy tính cầm tay. x12
53
t2
t1
t1
T 12 T 12
x1
t2
T 12
O x1
A
x1
T 12
Ví dụ 6 : Một vật dao động điều hòa với biên độ 10 cm. Biết trong một chu kì khoảng thời gian để tốc độ dao động không nhỏ hơn π (m/s) là 1/15 (s). Tính tần số góc dao động của vật có thể là. A. 6,48 rad/s. B. 43,91 rad/s. C. 6,36rad/s. D. 39,95 rad/s. Hướng dẫn Vùng tốc độ lớn hon v1 nằm trong đoạn [ − x1; x1]. Khoảng thời gian trong một chu kì tốc đô 1 1 lớn hơn v1 là 4t1, tức là: 4t1 s t1 s 15 60 Tính được: x1 A sin t1 10sin cm 60
100 v2 2 2 102 Thay vào phương x 12 A 2 ta được: 10 sin 2 60 2
2 1
sin 60 10 1 39,95 rad / s Chọn D. 2
N
2
sin 60 10 2
2
U C TI O
Chú ý: Khi dùng máy tính cầm tay Casio fx − 570ES để giải phương trình 1 thì phải nhớ đơn vị là rad, để có kí tự x ta bấm ALPHA )
PR
O
D
để có dấu “=” thì bấm ALPHA CALC và cuối cùng bấm SHIFT CALC . Đợi một lúc thì trên màn hình hiện ra kết quả là 39,947747. Vì máy tính chỉ đưa ra một trong số các nghiệm của phương trình đó! Ví dụ còn có nghiệm 275,89 chẳng hạn. Vậy khi gặp bài toán trắc nghiệm cách nhanh nhất là thay bốn phương án vào phương trình sin 60 10 1 2
2
YE
N
TH
AN
H
TU
Ví dụ 7: (CĐ − 2012) Con lắc lò xo gồm một vật nhỏ có khối lượng 250 g và lò xo nhẹ có độ cứng 100 N/m dao động điều hòa dọc theo trục Ox với biên độ 4 cm. Khoảng thời gian ngắn nhất để vận tốc của vật có giá trị từ − 40 cm/s đến 40 3 cm/s là A. π/40 (s). B. π/120 (s). C. π/20 (s). D. π/60 (s). Hướng dẫn v A 3 v1 max x1 2 2 k v max A A 80 cm / s m v max 3 A x2 v2 2 2
G
U
T T T 1 m .2 s 12 6 4 4 k 40
N
t
A A 3 2 2
T / 12 T/6
T
A
T T T 12 6 4
1.4. Thời gian ngắn nhất liên quan đến gia tốc, lực, năng lượng Phương pháp chung: Dựa vào công thức liên hệ gia tốc, lực với li độ để quy về li độ.
54
N
a a 1 x1 ? 2 a x a a 2 x 2 ? F kx m2 x F F1 x1 ? F F2 x 2 ? Ví dụ 1: Một vật dao động điều hòa với chu kì T, trên một đoạn thẳng, giữa hai điểm biên M và N. Chọn chiều dương từ M đến N, gốc tọa độ tại vị trí cân bằng O, mốc thời gian t = 0 là lúc vật đi qua trung điểm I của đoạn MO theo chiều dương. Gia tốc của vật bằng không lần thứ nhất vào thời điểm A.T/8. B. T/16. C. T/6/ D. T/12. Hướng dẫn x1 0,5A T x1 0,5A x 2 0 t Chọn D. 12 a 2 0 x 2 0
U C TI O
T 12
AN
H
TU
PR
O
D
N O I M Ví dụ 2: Một con lắc lò xo dao động theo phương ngang. Lực đàn hồi cực đại tác dụng vào vật là 12 N. Khoảng thời gian giữa hai lần liên tiếp vật chịu tác dụng của lực kéo lò xo 6 3 N là 0,1 (s). Chu kỳ dao động của vật là A. 0,4 (s). B. 0,3 (s). C. 0,6 (s). D. 0,1 (s) Hướng dẫn F1 kx1 6 3 Fmax A 3 x1 F kA 12 A 2 max
A 3 A 3 đến x A rồi đến x 2 2
T T T 0,1 T 0, 6 s Chọn C 12 12 6
N
Thời gian sẽ là: t
TH
Vật đi xung quanh vị trí biên từ x
YE
T
U
A
N
G
A 3 2
T
12
A
12
Ví dụ 3: Vật dao động điều hòa với vận tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π (m/s2). Lúc t = 0 vật có vận tốc v1 = +1,5 m/s và thế năng đang giảm. Hỏi sau thời gian ngắn nhất là bao nhiêu thì vật có gia tốc bằng − 15π (m/s2)? A. 0,05 s. B. 0,15 s. C. 0,10 s. D. 1/12 s. Hướng dẫn 2 Từ các công thức: a max A và v max A suy ra a max / v max 10 rad / s
55
T 12
T 6 A
A 3 2
O
A
A 2
U C TI O
N
A v1 1,5 2 T T 1 2 0, 05 s Chọn A. t A 3 A . Wt dang giam 6 12 4 2 2 a A a 2 15 max x 2 2 2 Chú ý: 1) Vùng |a| lớn hơn |a1| nằm ngoài đoạn [ − x1; x1] và vùng |a| nhỏ hơn |a1| nằm trong đoạn [ − x1; x1]. 2) Khoảng thời gian trong một chu kì |a| + lớn hơn a1 là 4t2.
D
+ nhỏ hơn a1 là 4t1.
T 6
O
T 6
A 3 2
AN
A 3 2
t2
v12 A2 2 a1 2 x1 x12
TU
t1
t1
x1 1 t1 arcsin A t 1 arccos x1 2 A
H
t2
A
O
x1
PR
x1
A
N
G
U
YE
N
TH
Ví dụ 4: Một con lắc lò xo dao động điều hòa với chu kì π/2 (s), tốc độ cực đại của vật là 40 (cm/s). Tính thời gian trong một chu kì gia tốc của vật không nhỏ hon 96 (cm/s2). A. 0,78 s. B. 0,71 s. C. 0,87 s. D. 0,93 s. Hướng dẫn Tần số góc ω = 2π/T = 4 (rad/s) a Từ các công thức v max A suy ra A v max / 10 cm Ta có: x1 12 6 cm x 1 Vùng a1 lớn hơn 96 (cm/s2) nằm ngoài x x t1 arcsin 1 A A 1
đoạn x1 ; x1
t2
Khoảng thời gian trong một chu kỳ |a| lớn hơn 96 (cm/s2) là 4t2 tức là: x 1 1 6 4t 2 4. arccos 1 4. arccos 0,93 s A 4 10 Chọn D.
A 3 2
1
t1
t1 T 6 T 6
O
t2
T 6
A t 1 arccos x1 2 A
A 3 2
T 6
Ví dụ 5: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật có độ lớn gia tốc bé hơn 1/2 gia tốc cực đại là A. T/3. B. 2T/3. C. T/6. D. T/2. Hướng dẫn
56
T 12
T 12
A 2
A
O
T 12 a1
A 2 A
T 12
A 2 Vùng |a| nhỏ hơn |a1|. Khoảng thời gian trong một chu kỳ |a| nhỏ hơn |a1| là 4t1 tức là T T 4t1 4. Chọn A. 12 3 Chú ý: Đối với bài toán ngược ta làm theo các bước sau: Bước 1: Dựa vào trong |a| lớn hơn hoặc bé hơn |a1| ta biểu diễn t1 hoặc t2 theo ω. Bước 2: Thay vào phương trình x1 A sin t1 A cos t 2 2
U C TI O
N
Ta có: x1
Bước 3: Thay vào phương trình a1 2 x1
a1 x1
2 f
1 Hz Chọn D. 2
TH
Tần số góc:
AN
H
TU
PR
O
D
Ví dụ 6: (ĐH−2010) Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 5 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s2 là T/3. Lấy π2= 10. Tần số dao động của vật là A. 4 Hz. B. 3 Hz. C. 2 Hz. D. 1 Hz. Hướng dẫn Để độ lớn gia tốc không vượt quá 100 cm/s2 thì vật nằm trong đoạn [−x1; x1]. Khoảng thời gian trong một chu kì |a| nhỏ hơn 100 cm/s2 là 4t1, tức là 4t1 = T/3 => t1 = T/12 2 T Thay vào phương trình x1 A sin t1 5sin . 2,5 cm T 12
N
G
U
YE
N
Chú ý: Nếu khoảng thời gian liên quan đến Wt, Wd thì ta quy về li độ nhờ các công thức độc kx 2 mv 2 kA 2 lập với thời gian và : W Wt Wd 2 2 2 Ví dụ 7: Một vật dao động điều hòa với tần số 2 Hz. Tính thời gian trong một chu kì Wt 2Wd A. 0,196 s. B. 0,146 s. C. 0,096 s. D. 0,304 s. Hướng dẫn Qui về li độ: Wt 2Wd x1 x1 A A 1 W 3 W t2 t1 t2 t1 2 2 x 1 W 2 W kx1 2 kA x 2 A t1 arcsin 1 1 t 3 2 3 2 3 A x1 1 Vùng Wt 2Wd nằm trong đoạn [−x1; x1].
Khoảng thời gian trong một chu kì Wt 2Wd là 4t1 tức là:
4t1 4.
1 2 arcsin 0,304 s Chọn D. 2.2 3
57
t2
arccos
A
MỤC LỤC
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
2. Thời điểm vật qua x1 .......................................................................55 2.1. Thời điểm vật qua x1 theo chiều dương (âm) ...............................55 2.2. Thời điểm vật qua x1 tính cả hai chiều .........................................57 2.3.Thời điểm vật cách vị trí cân bằng một đoạn b .............................59 2.4. Thời điểm liên quan đến vận tốc, gia tốc, lực... ...........................61 BÀI TẬP TỰ LUYỆN.........................................................................62 Dạng 3. BÀI TOÁN LIÊN QUAN ĐẾN QUÃNG ĐƯỜNG .............73 1. Quãng đường đi được tối đa, tối thiểu.............................................73 2. Quãng đường đi ...............................................................................81 2.1 Quãng đường đi được từ t1 đến t2 ..................................................81 2.2 Thời gian đi quãng đường nhất định .............................................91 Phương pháp chung .............................................................................91 BÀI TẬP TỰ LUYỆN.........................................................................93 Dạng 4. BÀI TOÁN LIÊN QUAN ĐẾN VỪA THỜI GIAN VỪA QUÃNG ĐƯỜNG .................................................................................100 1. Vận tốc trung bình và tốc độ trung bình........................................100 1.1. Tính vận tốc trung bình và tốc độ trung bình .............................100 1.2. Biết vận tốc trung bình và tốc độ trung bình tính các đại lượng khác Phương pháp chung:......................................................................107 2. Các bài toán liên quan vừa quãng đường vừa thời gian ................108 BÀI TẬP TỰ LUYỆN.......................................................................111 BÀI TẬP TỰ LUYỆN.......................................................................118
Ví dụ 8: Vật dao động điều hòa có vận tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π (m/s2). Thời điểm ban đầu vật có vận tốc −1,5 m/s và thế năng đang giảm. Hỏi vào thời điểm nào sau đây vật có gia tốc bằng 15 π (m/s2)? A. 0,10 s. B. 0,15 s. C. 0,20 s. D. 0,05s. Hướng dẫn a max 2 v 10 rad / s T 0, 2 s v A max max 2 v2 a max A A max a max
A 3 2
U C TI O
x1
v max A 3 x1 vì lúc này thế năng đang giảm nên 2 2
N
Thời điểm ban đầu v1 1,5 m / s
a max A thì x 2 2 2 Thời điểm lần 1, lần 2, lần 3, lần 4 vật có gia tốc a 15 m / s 2 lần lượt là:
Khi a 2 15 m / s 2
O
PR
2 3
Mở rộng:
6
H
TU
(1)
AN TH
A 2
YE
N
2 3 6 0, 05 s t1 4 t 2 3 6 7 s 60 t t T 0, 25 s 3 1 19 t 4 t 2 T s 60
D
4 3
(2)
2013 1006 dư 1 nên: t 2013 1006T t1 2 2014 2) Thời điểm lần thứ 2014: 1006 dư 2 nên: t 2012 1006T t 2 2 2. Thời điểm vật qua x1 2.1. Thời điểm vật qua x1 theo chiều dương (âm) Phương pháp chung: Cách 1: Giải hệ phương trình: t t 01 kT x A cos t x1 t 01 , t 02 0 k, 0,1, 2.... v A sin t v1 t t 02 T Cách 2: Dùng VTLG Tìm vị trí xuất phát: 0 t1
N
G
U
1) Thời điểm lần thứ 2013:
Xác định vị trí cần đến. Tìm góc quét: .
55
A 3 2
Cách 3: Chỉ dùng VTLG để xác định thời điểm đầu tiên. Tìm vị trí xuất phát : 0 .0 Thời gian: t
* Tìm: cac thoi diem t t1 kT k 0,1, 2.... + Thời điểm đầu tiên vật đến x1 theo chiều dương t1 : cac thoi diem t t1 kT k 0,1, 2.... Thời điểm đầu tiên vật đến x2 theo chiều âm t1 :
Lần thứ 1 vật đến x = x1 theo chiều dương (âm) là : t1 Lần thứ 2 vật đến x = x1 theo chiều dương (âm) là : t 2 t1 T .
N
……………….. Lần thứ n vật đến x = x1 theo chiều dương (âm) là t n t1 n 1 T .
O
D
U C TI O
Ví dụ 1: Một vật dao động điều hòa theo phương trình x = 4cos(π/2 − π/3), trong đó x tính bằng xentimét (cm) và t tính bằng giây (s). Thời điểm vật đi qua vị trí có li độ x 2 3 cm theo chiều âm lần thứ 2 là A. t = 6,00s. B. t = 5,50 s. C. t = 5,00s. D. t = 5,75 s. Hướng dẫn Cách 1: Dùng PTLG
TU
PR
t 3 t cos x 4 cos 2 3 2 3 t 2 3 2 n.2 2 3 6 x v ' 2 t 0 sin t 0 2 3 2 3
TH
AN
H
t 1 n.4 0 n 0,1, 2,3.... Lần thứ 2 ứng với n = 1 nên t = 5(s) Chọn C. Cách 2: Dùng VTLG
3
6
M T
A 3 2
A 3 2 A 2
N
G
U
YE
N
N
0
3
12
T 6 0 3
Vị trí xuất phát trên VTLG là điểm M, điểm cần đến là N. Lần thứ 2 đi qua N cần quét một góc 2 t 2 5 s 2 , tương ứng với thời gian: t 2 2 2 4 s Cách 3: Chỉ dùng VTLG để xác định thời điểm đầu tiên: T
56
.0 Vị trí xuấ phát: 0 3 2 3 Vị trí cần đến là điểm M trên VTLG.
Thời điểm vật đến x1 2 3cm theo chiều âm là: t1
T T T 1 s 6 12 4
Thời điểm lần 2 vật đến x1 2 3 cm theo chiều âm là t 2 t1 T 5 s Chọn C.
AN
H
TU
PR
O
D
U C TI O
N
Kinh nghiệm: 1) Bài toán tìm các thời điểm vật qua x1 theo chiều dương (âm) thì nên dùng cách 1. 2) Bài toán tìm thời điểm lần thứ n vật qua x1 theo chiều dương (âm) thì nên dùng cách 2, 3. Ví dụ 2: Một chất điểm dao động điều hòa theo phương trình x = 6cos(2πt + π/4), trong đó x tính bằng xentimét (cm) và t tính bằng giây (s). Chỉ xét các thời điểm chất điểm đi qua vị trí có li độ x = −3 cm theo chiều dương. Thời điểm lần thứ 10 là A. t = 245/24 s. B. t = 221/24 s. C. t = 229/24 s. D. t = 253/24 s. Hướng dẫn 2 T 1 s 4 Lần 1 vật đến x = −3 cm theo chiều dương: T T T T T T T 13T 13 t1 6 s 12 8 8 12 6 6 24 24 A Lần 10 vật đến x = −3 cm theo chiều dương: A T 2 13 229 2 6 t t1 9T 9.1 s Chọn C. 24 24
t1 ? x1 t k2 cos A t .2 t 2 ?
U
YE
cos t
N
TH
2.2. Thời điểm vật qua x1 tính cả hai chiều Phương pháp chung: Cách 1: Giải phương trình: x A cos t x1
N
G
Trong một chu kì vật qua mỗi vị trí biên một lần và các vị trí khác hai lần. Để tìm hai thời điểm đầu tiên (t1 và t2) có thể dùng PTLG hoặc VTLG. Để tìm thời điểm ta làm như sau: du1: t nT t1 (Số lần)/2 = n du 2 :t nT t 2 Cách 2: Dùng VTLG: + Tìm vị trí xuất phát: 0 .0 + Tìm vị trí cần đến. + Tìm góc quét .
Ví dụ 1: (ĐH−2011) Một chất điểm dao động điều hòa theo phương trình x = 4cos(2πt/3) (x tính bằng cm; t tính bằng s). Kể từ t = 0, chất điểm đi qua vị trí có li độ x = −2 cm lần thứ 2011 tại thời điểm + Thời gian: t
57
A. 3015 s.
B. 6030 s.
Cách 1: Giải PTLG: T
C. 3016 s. Hướng dẫn
D. 6031 s.
2 3s
2 3
M
PR
O
D
U C TI O
N
2t 2 3 3 2t 2t 1 t1 1 s 4 cos 2 cos 2 t 2 3 3 2 t 2 s 2 2 3 3 2011 1005 dư 1 t 2.1005 1 1005T t1 1005.3 1 3016 s Chọn C 2 Cách 2: Dùng VTLG Quay một vòng đi qua li độ x = −2 cm là hai lần. Để có (1) lần thứ 2011 = 2.1005 + 1 thì phải quay 1005 vòng và quay thêm một góc 2π/3, tức là tổng góc quay: 1005.2 2 / 3 2 Thời gian: 2 1005.2 3 3016 s Chọn C. t 2 3 (2)
TU
Ví dụ 2: Một vật dao động có phương trình li độ x = 4cos(4πt/3 + 5π/6) . Tính từ lúc t = 0 vật đi qua li độ x 2 3 cm lần thứ 2012 vào thời điểm nào? A. t = 1508,5 s. B. t = 1509,625 s. C. t = 1508,625 s. Hướng dẫn Cách 1: Giải PTLG 5 2 6 T 1,5 s ;
AN
H
D. t = 1510,125 s.
TH
(2)
N
3 4t 5 x 2 3 cos 6 2 3 4 t 5 3 6 6 2 t 2 1 s 4t 5 2 t 0, 75 s 1 3 6 6 t 2012 t 2.1005 2 1005T t 2
U
YE
A 3 2
N
G
4 3
(1)
t 2012 . 1005.1,5 1 1508,5 s
Cách 2: Dùng VTLG Quay một vòng đi qua li độ x 2 3 cm là hai lần. Để có lần thứ 2012 = 2.1005 + 2 thì phải quay 1005 vòng và quay thêm một góc 4π/3, tức là tổng góc quay: 1005.2 4 / 3
58
Thời gian: t
1005.2
4 3 1508,5 s Chọn A.
N
4 3 Ví dụ 3: (THPTQG − 2017) Một vật daọ động theo phương trình x = 5cos(5πt − π/3) (cm) (t tính bằng s). Kể từ t = 0, thời điểm vật qua vị trí có li độ x = −2,5 cm lần thứ 2017 là A. 401,6 s. B. 403,4 s. C. 401,3 s. D. 403,5 s. Hướng dẫn * Vì 2017 = 2.1008+ 1 T nên t 1008T 403, 4 s Chọn B. 2
3
O
D
U C TI O
2,5
N
G
U
YE
N
TH
AN
H
TU
PR
2.3.Thời điểm vật cách vị trí cân bằng một đoạn b Phương pháp chung: Trong một chu kì vật qua mỗi vị trí biên một lần và các vị trí khác hai lần. Vì vậy nếu b = 0 hoặc b = A thì trong một chu kì có 2 lần |x| = b, ngược lại trong một chu kì có 4 lần |x| = b (hai lần vật qua x = +b và hai lần qua x = −b). Để tìm bốn thời điểm đầu tiên t1, t2, t3 và u có thể dùng du1: t nT t1 du 2 : t nt t 2 PTLG hoặc VTLG. Để tìm thời điểm tiếp theo ta làm như sau: (Số lần)/4 = n: du 3 nT t 3 du 4 nt t 4 Ví dụ 1: Một vật dao động điều hòa với phương trình x = 6cos(10π/3 + π/6) cm. Xác định thời điểm thứ 2015 vật cách vị trí cân bằng 3 cm. A. 302,15 s. B. 301,85s. C. 302,25 s. D. 301,95 s. Hướng dẫn (1) 2 (2) T 0, 6 s . Ta nhận thấy: T T T 2015 6 6 t 503T t dư 3 nên ta chỉ cần tìm 503 4 4 t3 A A A 3 T 2 T T T 7T 7T 2 2 t3 t 503T 302,15 s 6 6 4 6 12 12 Chọn A. (3)
(4)
Chú ý: Nếu khoảng thời gian liên quan đến Wt, Wđ thì ta quy về li độ nhờ các công thức độc kx 2 mv 2 kA 2 lập với thời gian: W Wt Wd 2 2 2
59
Ví dụ 2: Một vật dao động điều hòa với phương trình x = 4cos(5π/3 + π/3) cm. Xác định thời điểm thứ 2012 vật có động năng bằng thế năng. A. 60,265 s. B. 60,355 s. C. 60,325 s. D. 60,295 s. Hướng dẫn
2 0,12 s . Từ điều kiện:
(1)
1 A Wt Wd W x . 2 2
Ta nhận thấy:
(4) T 4
2012 502 dư 4 4
t 502T t 4 nên ta chỉ cần tìm t4.
A T 2
4
T T T T T 23T t4 12 4 4 4 8 24
T A 4 2
U C TI O
(2)
T 12
N
T
T 8
A 2
(3)
17T 60,355 s Chọn B. 24 Ví dụ 3: Một vật dao động điều hòa với phương trình x = 6cos(10πt + 2π/3) cm. Xác định thời điểm thứ 100 vật có động năng bằng thế năng và đang chuyển động về phía vị trí cân bằng. A. 19,92 s. B. 9,96 s. C. 20,12 s. D. 10,06 s. Hướng dẫn Chu kì T = 2π/ω = 0,2 (s). Trong một chu kì chì có 2 hai thời điểm động năng bằng thế năng và vật đang 3 chuyển động về phía vị trí cân bằng. Hai thời điểm (2) đầu tiên là t1 và t2. Để tìm các thời điểm tiếp theo ta làm như sau: T T du1: t nT t1 So lan 8 6 n du 2 : t nT t 2 2
TH
AN
H
TU
PR
O
D
t 502T
100 49 dư 2 t 49T t 2 nên 2
T 6
N
YE
Ta nhận thấy:
(1)
N
G
U
ta chỉ cần tìm t2 T T T 19T 19T t2 t100 49T 9,96 s 6 2 8 24 24
Ví dụ 4: Một vật nhỏ dao động mà phương trình vận tốc v = 5πcos(πt + π/6) cm/s. Tốc độ trung bình của vật tính từ thời điểm ban đầu đến vị trí động năng bằng 1/3 thế năng lần thứ hai là A. 6,34 cm/s. B. 21,12 cm/s. C. 15,74 cm/s. D. 3,66 cm/s. Hướng dẫn 2 T Đối chiếu với phương trình tống quát ta suy ra phương trình li độ
x A cos t với v 5 cos t suy ra: 6 v A sin t A cos t 2
60
rad / s A 5 cm x 5cos t cm 3 3 1 Wd 4 W 1 Từ điều kiện: Wd Wt 3 W 3 W x A 3 t 4 2
(2)
A 2 T 6
T 12 A 3 2
(1)
3
D
S 6,34 cm / s Chọn A. t
O
gian đó là: v tb
U C TI O
N
Thời điểm lần thứ 2 động năng bằng một phần ba thế năng thì vật đi được quãng đường và thời A A 3 S A 3,17 cm 2 2 gian tương ứng là: nên tốc độ trung bình trong khoảng thời T T t 6 12 0,5 s
N
G
U
YE
N
TH
AN
H
TU
PR
2.4. Thời điểm liên quan đến vận tốc, gia tốc, lực... Phương pháp chung: Cách 1: Giải trực tiếp phương trình phụ thuộc t của v, a, F... Cách 2: Dựa vào các phương trình độc lập với thời gian để quy về li độ. Ví dụ 1: Một vật dao động điều hoà mô tả bởi phương trình: x = 6cos(5πt − π/4) (cm) (t đo bằng giây). Thời điểm lần thứ hai vật có vận tốc −15π (cm/s) là A. 1/60 s. B. 11/60 s. C. 5/12 s. D. 13/60 s. Hướng dẫn 5 2 5t k.2 t k 0 k 0,1, 2... 4 6 60 5 v x ' 30 sin 5t 15 4 5t 5 n.2 t 13 n 2 0 n 0,1, 2.... 4 6 60 5 5 k 0 t 60 s Lan1 k 0 t 13 s Lan 2 60 Ví dụ 2: Một vật dao động với phương trình x = 6cos(10πt/3) (cm). Tính từ t = 0 thời điểm lần thứ 2013 vật có tốc độ 10π cm/s là A. 302,35 s. B. 301,85 s. C. 302,05 s. D. 302,15 s. Hướng dẫn
61
2 0, 6 s . Thay tốc độ 10π cm/s vào phương trình: v2 x 2 2 A 2 x 3 3 cm 2013 Ta nhận thấy: 503 dư 1 4 T
(2)
(1)
A 3 2 (3)
(4)
A 3 2
t 503T t1 nên ta chỉ cần tìm t1 t1
T T t 503T 301,85 s Chọn B 12 12
N
BÀI TẬP TỰ LUYỆN
AN
H
TU
PR
O
D
U C TI O
Bài 1 : Một chất điểm dao động điều hòa với biên độ 10 (cm) và tần số góc 10 (rad/s). Khoảng thời gian ngắn nhất để nó đi từ vị trí có li độ +3,5 cm đến vị trí có li độ +10 cm A. 0,036 s. B. 0,121 s. C. 2,049 s. D. 6,951 s. Bài 2: Một chất điểm dao động điều hòa với biên độ 4 (cm) và chu kì 0,9 (s). Khoảng thời gian ngắn nhất để nó đi từ vị trí có li độ +3 cm đến vị trí cân bằng là A. 0,1035 s. B. 0,1215 s. C. 6,9601 s. D. 5,9315s. Bài 3 : Một chất điểm dao động điều hòa với biên độ 4 (cm) và chu kì 0,9 (s). Khoảng thời gian ngắn nhất để nó đi từ vị trí có li độ +3 cm đến li độ +4 cm là A. 0,1035 s. B. 0,1215 s. C. 6,9601s. D.5,9315s. Bài 4 : Một chất điểm dao động điều hòa với chu kì T trên trục Ox với O là vị trí cân bằng. Thời gian ngắn nhất vật đi từ điểm có toạ độ x = 0 đến điểm có toạ độ x = A/2 là A. T/24. B. T/16. C. T/6. D. T/12. Bài 5 : Một chất điểm dao động điều hòa với chu kì T trên trục Ox với O là vị trí cân bằng. Thời
N
G
U
YE
N
TH
gian ngắn nhất vật đi từ toạ độ x = 0 đến toạ độ x A / 2 là A. T/8. B. T/16. C. T/6. D. T/12. Bài 6 : Một chất điểm dao động điều hòa trên trục Ox với chu kỳ T. Vị trí cân bằng của chất điểm trùng với gốc tọa độ, khoảng thời gian ngắn nhất để nó đi từ vị trí có li độ x = A đến vị trí có li độ x = −A/2 A. T/8. B. T/6. C. T/4. D. T/3. Bài 7 : Một dao động điều hòa có chu kì dao động là 4 s. Thời gian ngắn nhất để vật đi từ điểm có li độ cực đại về điểm có li độ bằng một nửa biên độ cực đại là: A. 1/3 s. B. 2/3 s. C. 1 s. D. 2 s. Bài 8 : Một dao động điều hòa với biên độ 4 cm. Khoảng thời gian giữa hai lần liên tiếp tốc độ của vật cực đại là 0,05 s. Khoảng thời gian ngắn nhất để nó đi từ vị trí có li độ +2 cm đến li độ +4 cm là: A. 1/120 s. B. 1/60 s. C. 1/80 s. D. 1/100 s. Bài 9 : Một chất điểm dao động điều hòa trên đoạn đường PQ, thời gian vật đi từ P đến Q là 0,25 S. Gọi O, E lần lượt là trung điểm của PQ và OQ. Thời gian ngắn nhất vật đi từ E đến Q là A. 1/24 (s). B. 1/16 (s). C. 1/6 (s). D. 1/12 (s). Bài 10 : Một điểm dao động điều hòa vạch ra một đoạn thẳng AB có độ dài 1 cm, thời gian mỗi lần đi hết đoạn thẳng từ đầu nọ đến đầu kia là 0,5 s. Gọi O là điểm chính giữa AB, P là điểm chính giữa OB. Tính thời gian mà điểm ấy đi hết đoạn thẳng OP và PB. A. tOP = 1/12 s; tPB = 1/6 s. B. tOP = 1/8 s; tPB = 1/8 s. C. tOP = 1/6 s; tPB = 1/12 s. D. tOP = 1/4 s; tPB = 1/6 s.
62
Bài 11: Vật dao động điều hoà, thời gian ngắn nhất vật đi từ vị trí cân bằng đến vị trí có li độ cực đại là 0,1 s. Chu kì dao động của vật là A. 0,05 s. B. 0,1 s. C. 0,2 s. D. 0,4 s. Bài 12: Một chất điểm dao động điều hòa với chu kì 1 s với biên độ 4,5 cm. Khoảng thời gian trong một chu kỳ để vật cách vị trí cân bằng một khoảng lớn hơn 2 cm là A. 0,29 s. B. 16,80 s. C. 0,71 s. D. 0,15 s. Bài 13: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật cách vị trí cân bằng một khoảng nhỏ hơn nửa biên độ là A.T/3. B. 2T/3. C. T/6. D. T/2. Bài 14: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
N
cách vị trí cân bằng một khoảng nhỏ hơn 0,5 2 biên độ là A. T/3. B. 2T/3. C. T/6. D. T/2. Bài 15: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
U C TI O
cách vị trí cân bằng một khoảng nhỏ hơn 0,5 3 biên độ là A. T/3. B. 2T/3. C. T/6. D. T/2. Bài 16: Một chất đièm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỷ để vật
O
D
cách vị trí cân bằng một khoảng lớn hơn 0,5 2 biên độ là A. T/3. B. 2T/3. C. T/6. D. T/2. Bài 17 : Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
N
G
U
YE
N
TH
AN
H
TU
PR
cách vị trí cân bằng một khoảng lớn hơn 0,5 3 biên độ là A.T/3. B. 2T/3. C. T/6. D. T/2. Bài 18 : Một chất điểm dao động điều hòa. Khoảng thời gian trong một chu kỳ để vật cách vị trí cân bằng một khoảng nhỏ hơn nửa biên độ là 1 s. Chu kì dao động là A. 3s. B. 1,5s. C. 6s. D. 2s Bài 19 : Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật có tọa độ âm là A. T/3. B. 2T/3. C. T/6. D. T/2. Bài 20: Một con lắc lò xo có vật nặng với khối lượng m = 100 g và lò xo có độ cứng k = 10 N/m đang dao động điều hòa với biên độ 2 cm. Trong mỗi chu kì dao động, thời gian mà vật nặng ở cách vị trí cân bằng lớn hơn 1 cm là bao nhiêu? A 0,32 s B. 0,22 s. C. 0,42 s. D. 0,52 s. Bài 21: Một dao động điều hòa có chu kì dao động là T và biên độ là A. Tại thời điểm ban đầu vật có li độ x0 > 0. Thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí cân bằng gấp bốn thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí biên x = +A. Chọn phương án đúng. A. x0 = 0,924A. B. x0 = 0 5A 3 C. x0 = 0,95A. D. x0 = 0,022A. Bài 22: Một dao động điều hòa có chu kì dao động là T và biên độ là A. Tại thời điểm ban đầu vật có li độ x0 > 0. Thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí cân bằng gấp đôi thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí biên x = +A. Chọn phương án đúng. A. x0 = 0,25A. B. x0 = 0,5A 3 . C. x0 = 0,5A 2 . D. x0 =0.5A. Bài 23: Một dao động điều hòa có chu kì dao động là T và biên độ là A. Tại thời điểm ban đầu vật có li độ x0 > 0. Thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí cân bằng chỉ bằng một nửa thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí biên x = +A. Chọn phương án đúng. A. x0 = 0,25A
C. x0 = 0,5A 2 .
B. x0 = 0,5A 3 .
63
D. x0 = 0,5A
Bài 24: Một dao động điều hòa có chu kì dao động là T và biên độ là A. Tại thời điểm ban đầu vật có li độ x0 > 0. Thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí cân bằng cũng bằng thời gian ngắn nhất để vật đi từ vị trí ban đầu về vị trí biên x = +A. Chọn phương án đúng. B. x0 = 0,5A 3 .
A. x0 = 0,25A 1.B 11.D 21.C
2.B 12.C 22.B
3.A 13.A 23.D
4.D 14.D 24.C
C. x0 = 0,5A 2 .
5.A 15.B
6.D 16.D
7.B 17.A
D. x0 = 0,5A 8.B 18.A
9.D 19.D
10.A 20.C
PHẦN 2 Bài 1: Một vật dao động điều hòa có phương trình li độ x = 8cos(7πt + π/6)cm. Khoảng thời gian
U C TI O
N
tối thiểu để vật đi từ li độ 4cm đến vị trí có li điị 4 3 cm là? A. 1/24 s. B. 5/12 s. C. 1/14 s. D. 1/12 s. Bài 2: Một chất điểm dao động điều hòa với chu kì T trên trục Ox với O là vị trí cân bằng. Thời
PR
O
D
gian ngắn nhất vật đi từ li độ x = A / 2 đến li độ x = A/2 là A.T/24. B. T/16. C. T/6. D. T/12. Bài 3: Một vật dao động điều hòa với biên độ A, chu kỳ T. Thời gian ngắn nhất vật đi từ vị trí x = −0,5 A đến vị trí có x = +0,5A là A. T/2. B. T/12. C. T/4. D. T/6. Bài 4: Vật dao động điều hòa theo phương trình: x = Asinωt (cm) (t tính bằng s). Sau khi dao động được 1/8 chu kỳ dao động vật có li độ 2 2 cm. Biên độ dao động là
TH
AN
H
TU
A. 4 2 cm B. 2cm. C. 2 2 cm. D. 4 cm. Bài 5: Một vật dao động điều hòa với chu kì T trên đoạn thẳng PQ. Gọi O, E lần lượt là trung điểm của PQ và OQ. Thời gian để vật đi từ O đến Q rồi đến E là A. 5T/6. B. 5T/12. C. T/12. D. 7T/12. Bài 6: Một vặt dao động điều hòa với chu kì T trên đoạn thẳng PQ. Gọi O là trung điểm của PO và
N
G
U
YE
N
E là điểm thuộc OQ sao cho OE = OQ/ 2 . Thời gian để vật đi từ O đến Q rồi đến E là A. 3T/8. B. 5T/8. C. T/12. D. 7T/12. Bài 7: Một vật dao động điều hòa với chu kì T trên đoạn thẳng PQ. Gọi O, E lần lượt là trung điểm của PQ và OQ. Thời gian để vật đi từ O đến P rồi đến E là A. 5T/6. B. 5T/8. C. T/12. D. 7T/12. Bài 8: Một vật dao động điều hòa với phương trình x = 8cos2πt (cm), t đo bằng giây. Vật phải mất thời gian tối thiểu bao nhiêu giây để đi từ vị trí x = +8 cm về vị trí x = 4 cm mà véctơ vận tốc cùng hướng với hướng của trục toạ độ A. 1/3 s. B. 5/6 s. C. 1/2 s. D. 1/6 s. Bài 9: Một chất điểm đang dao động điều hòa trên một đoạn thẳng xung quanh vị trí cân bằng O. Gọi M, N là hai điểm trên đường thẳng cùng cách đều O. Biết cứ 0,05 s thì chất điểm lại đi qua các điểm M, O, N và tốc độ tại M và N khác 0. Chu kì bằng A. 0.3 s. B. 0,4 s. C. 0,2 s. D. 0,1 s. Bài 10: Một chất điểm đang dao động điều hòa trên một đoạn thẳng. Trên đọạn tham đó có năm điểm theo đúng thứ tự M, N, O, P và Q với O là vị trí cân bằng. Biết cứ 0,05 s thì chất điểm lại đi qua các điểm M, N, O, P và Q (tốc độ tại M và Q bằng 0). Chu kỳ bằng A. 0,3 s. B. 0,4 s. C. 0,2 s. D. 0,1 s. Bài 11: Một chất điểm đang dao động điều hòa trên một đoạn thẳng. Trên đoạn thẳng đó có năm điểm theo đúng thứ tự M, N, O, P và Q với O là vị trí cân bằng. Biết cứ 0,05 s thì chất điểm lại đi
64
qua các điểm M, N, O, P và Q (tốc độ tại Mvà Q bằng 0). Tốc độ của nó lúc đi qua các điểm N, P là 20π cm/s. Biên độ A bằng A. 4 cm. B. 6 cm. C. 4 2 cm. D. 4 3 cm. Bài 12: Một chất điểm đang dao động điều hòa trên một đoạn thẳng. Trên đoạn thẳng đó có bảy điểm theo đúng thứ tự M1, M2, M3, M4, M5, M6 và M7 với M1 là vị trí cân bằng. Biết cứ 0,05 s thì chất điểm lại đi quạ các điểm M1, M2, M3, M4, M5, M6 và M7 (tốc độ tại M1và M2 bằng 0). Chu kì bằng A. 0,3 s. B. 0,4 s. C. 0,2 s. D. 0,6 s. Bài 13: Một chất điểm đang dao động điều hòa trên một đoạn thẳng. Trên đoạn thẳng đó có bảy điểm theo đúng thứ tự M1, M2, M3, M4, M5, M6 và M7 với M4 là vị trí cân bằng. Biết cứ 0,05 s thì chất điểm lại đi qua các điểm M1, M2, M3, M4, M5, M6 và M7 và M7 (tốc độ tại M1 và M7 bằng 0). Tốc độ của nó lúc đi qua điểm M4 là 20π cm/s. Biên độ A bằng
U C TI O
N
A. 4cm. B. 6cm. C. 4 2 cm. D. 4 3 cm. Bài 14: Một chất điểm đang dao động điều hòa trên một đoạn thẳng. Trên đoạn thẳng đó có bảy điểm theo đúng thứ tự M1, M2, M3, M4, M5, M6 và M7 với M4 là vị trí cân bằng. Biết cứ 0,05 s thì chất điểm lại đi qua các điểm M1, M2, M3, M4, M5, M6 và M7 (tốc độ tại M1 và M7 bằng 0). Tốc độ của nó lúc đi qua điểm M2 là 20nπ cm/s. Biên độ A bằng
YE
N
TH
AN
H
TU
PR
O
D
A. 4cm. B. 6 cm. C. 12 cm. D. 4 2 cm Bài 15: Vật đang dao động điều hòa dọc theo đường thẳng. Một điểm M nằm cố định trên đường thẳng đó, phía ngoài khoảng chuyển động của vật, tại thời điểm t thì vật xa điểm M nhất, sau đó một khoảng thời gian ngắn nhất là Δt thì vật gân điểm M nhất. Độ lớn vận tốc của vật sẽ đạt được cực đại vào thời điểm gần nhất là A. t + Δt. B. t + 0,5Δt. C. 0,5(t + Δt). D. 0,5t + 0,25Δt. Bài 16: Vật đang dao động điều hòa với biên độ A dọc theo đường thẳng. Một điểm M nằm cố định trên đường thẳng đó, phía ngoài khoảng chuyển động của vật, tại thời điểm t thì vật xa điểm M nhất, sau đó một khoảng thời gian ngắn nhất là Δt thì vật gần điểm M nhất. Vật cách vị trí cân bằng một khoảng 0,5A vào thời điểm gân nhất là A. t + Δt/3. B. t + Δt/6, C. 0,5(t + Δt). D. 0,5t + 0,25Δt. Bài 17: Vật đang dao động điều hòa với biên độ A dọc theo đường thẳng. Một điểm M nằm cố định trên đường thẳng đó, phía ngoài khoảng chuyển động của vật, tại thời điểm t thì vật gần điểm M nhất, sau đó một khoảng thời gian ngắn nhất là Δt thì vật xa điểm M nhất. Vật cách vị trí cân
N
G
U
bằng một khoảng A/ 2 vào thời điểm gần nhất là A. t + Δt/3. B. t + Δt/6. C. t + Δt/4. D. 0,5t+ 0,25Δt. Bài 18: Khoảng thời gian ngắn nhất mà một vật dao động điều hòa với chu kì T, biên độ A thực hiện khi di chuyển giữa hai vị trí có li độ x1 = A/2 và x2 = 0,5A 3 là A.T/6. B. T/8. C. 0,5T( 3 −1). D. T/12. Bài 19: Khoảng thời gian ngắn nhất để vật dao động điều hòa chuyển động từ li độ x1 = −A/2 đến x2 = 0,5A 3 là A. T/4. B. T/3. C. T/2. D. T/6. Bài 20: Một chất điểm dao động điều hòa theo quỹ đạo thẳng có chiều dài 8 cm. Thời gian ngắn nhất để vật đi từ vị trí có li độ x1 = 4 cm đến x2 2 3 cm là 2 s. Tốc độ cực đại của vật trong quá trình dao động là: A. T/8 B. T/16 C. T/6 D. T/12
65
1.C 11.C
2.A 12.D
3.D 13.B
4.D 14.C
5.B 15.B
6.A 16.A
7.D 17.C
8.B 18.D
9.A 19.A
10.B 20.C
PHẦN 3 Bài 1: Một chất điểm dao động điều hòa với chu kỳ T với vận tốc cực đại vmax. Thời gian ngắn nhất vật đi từ điểm mà tốc độ của vật bằng 0 đến điểm mà tốc độ của vật bằng 0,5v max 3 là: A. T/8. B. T/16. C. T/6. D. T/12. Bài 2: Một chất điểm dao động điều hòa với chu kì T với tốc độ cực đại vmax. Thời gian ngắn nhất vật đi từ điểm mà tốc độ của vật bằng 0 đến điểm mà tốc độ của vật bằng 0,5v max 2 là:
U C TI O
N
A. T/8. B. T/16. C. T/6. D. T/12. Bài 3: Một con lắc đơn có quả cầu khối lượng 100 g, dây treo dài 5 m. Đưa quả cầu sao cho sợi dây lệch so với vị trí cân bằng một góc 0,05 rad rồi thả không vận tốc. Chọn gốc thời gian là lúc buông vật, chiều dương là chiều khi bắt đầu dao động. Lấy g = 10 m/s2. Vận tốc của con lắc sau khi buông một khoảng 2 /12 s là
PR
O
D
A. −8 m/s. B. 1/8 m/s. C. − 2 /8 m/s. D. 2 /8 m/s. Bài 4: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật có tốc độ nhỏ hơn 1/2 tốc độ cực đại là A. T/3 B. 2T/3. C. T/6. D. T/12. Bài 5: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
H
TU
có tốc độ nhỏ hơn 1 / 2 tốc độ cực đại là A.T/8. B. T/16. C. T/6. D. T/2. Bài 6: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
TH
AN
có tốc độ nhỏ hơn 0,5 3 tốc độ cực đại là A. 2T/3. B. T/16. C. T/6. D. T/12. Bài 7: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
YE
N
có tốc độ lớn hơn 1 / 2 tốc độ cực đại là A.T/3. B. 2T/3. C. T/4. D. T/2. Bài 8: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
N
G
U
có tốc độ lớn hơn 0,5 3 tốc độ cực đại là A. 173. B. 2T/3. C. T/4. D. T/2. Bài 9: Một vật dao động điều hòa với tần số 2 Hz, biên độ A. Khoảng thời gian trong một chu kỳ để vật có tốc độ nhỏ hơn 1/2 tốc độ cực đại là A. 1/12 (s). B. 124 (s). C. 1/3 (s). D. 1/6 (s). Bài 10: Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 10 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn vận tốc không nhỏ hơn 10 2 cm/s là 0,5T. Lấy π2 = 10. Tần số dao động của vật là A. 3 Hz. B. 2 Hz. C. 4 Hz. D. 1 Hz. Bài 11: Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 5 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có tốc độ dao động không vượt quá 20πcm/s là T/3. Chu kì dao động của vật là A. 0,433 s. B. 0,250 s. C. 2,31 s. D. 4,00 s.
66
Bài 12: Một vật nhỏ dao động điều hòa với chu kì T và biên độ 8 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ có độ lớn vận tốc lớn hơn 16 cm/s là T/2. Tần số góc dao động của vật là A. 2 2 rad/s B. 3 rad/s C. 2 rad/s. D. 5 rad/s. Bài 14: Con lắc lò xo gồm một vật nhỏ có khối lượng 250 g và lò xo nhẹ có độ cứng 100 N/m dao động điều hòa dọc theo trục Ox với biên độ 4 cm. Khoảng thời gian ngắn nhất để vận tốc của vật có giá trị từ −40 cm/s (lúc này vật có li độ âm) đến lúc vận tốc 40 3 cm/s là A. π/40 (s). B. π/24 (s). C. 7π/120 (s). D. π/60 (s). Bài 15: Một chất điểm dao động điều hòa với chu kì T. Gọi vtb là tốc độ trung bình của chất điểm trong thời gian dài, v là vận tốc tức thời của chất điểm. Trong một chu kì, khoảng thời gian mà v 0, 25v tb là B. 2T/3.
C. T/3.
D. T/2.
1.C 11.B
2.A 12.A
3.D 13.C
4.A 14.A
5.D 15.C
6.A
U C TI O
N
A.T/6.
7.D
8.A
9.D
10.D
N
TH
AN
H
TU
PR
O
D
PHẦN 4 Bài l: Vật dao động điều hòa với vận tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π (m/s2). Lúc t = 0 vật có vận tốc v1 = −1,5 m/s và thế năng đang tăng. Hỏi sau thời gian ngắn nhất là bao nhiêu thì vật có gia tốc bằng −15π (m/s2)? A 0,05 s. B. 1/12 s. C. 0,10 s. D. 0,20 s. Bài 2: Vật dao động điều hòa với vận tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π(m/s2). Lúc t = 0 vật có vận tốc v1 = +1,5 m/s và thế năng đang tăng. Hỏi sau thời gian ngắn nhất là bao nhiêu thì vật có gia tốc bằng −15π (m/s2)? A. 0,05 s. B. 0,15 s. C. 0,10s. D. 0,20 s. Bài 3: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật có độ lớn gia tốc lớn hơn 1/2 gia tốc cực đại là A. T/3. B. 2T/3. C. T/6. D. T/12. Bài 4: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
U
YE
có độ lớn gia tốc lớn hơn 1 / 2 gia tốc cực đại là A. T/3. B. 2T/3. C. T/6. D. T/2. Bài 5: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật
N
G
có độ lớn gia tốc lớn hơn 0,5 3 gia tốc cực đại là A. T/3. B. 2T/3. C. T/6. D. T/2. Bài 6: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật có độ lớn gia tốc bé hơn 1 / 2 gia tốc cực đại là Á.T/3. B. 2T/3. C. T/6. D. T/2. Bài 7: Một chất điểm dao động điều hòa với chu kì T. Khoảng thời gian trong một chu kỳ để vật có độ lớn gia tốc bé hơn 0,5 3 gia tốc cực đại là Á.T/3. B. 2T/3. C. T/6. D. T/2. Bài 8: Một con lắc lò xo dao động điều hòa với chu kì π/2 (s), tốc độ cực đại của vật là 40 (cm/s). Tính thời gian trong một chu kì độ lớn gia tốc không nhỏ hơn 0,8 (m/s2). A. 0,78 s. B. 0,71 s. C. 0,87 s. D. 1,05 s.
67
Bài 9: Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 8 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s2 là T/3. Tần số góc dao động của vật A. 4 rad/s. B. 3 rad/s. C. 2 rad/s. D. 5 rad/s. Bài 10: Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 6 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 30 2 cm/s2 là T/2. Lấy π2 = 10. Giá trị của T là A. 4 s. B. 3 s. C. 2s. D. 5 s. Bài 11: Vật nhỏ có khối lượng 200 g trong một con lắc lò xo dao động điều hòa với chu kì T và biên độ 4 cm. Biết trong một chu kì, khoảng thời gian để vật nhỏ có độ lớn gia tốc không nhỏ hơn
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
500 2 cm/s2 là T/2. Độ cứng của lò xo là A. 20 N/m. B. 50 N/m. C. 40N/m. D. 30 N/m. Bài 12: Một vật dao động điều hòa với tần số 2 Hz. Tính thời gian trong một chu kì thế năng không nhỏ hơn 2 lần động năng. A. 0,196s. B. 0,146 s. C. 0,096 s. D. 0,304s Bài 13: Một vật dao động điều hòa với tân số 2 Hz, biên độ A. Thời gian trong một chu kì vật có Wđ ≥ 8Wt là A. 0,054 (s). B. 0,108 (s). C. 0,392 (s). D. 0,196 (s). Bài 14: Chọn phương án sai. Trong một chu kì T của dao động điều hoà, khoảng thời gian mà A. tốc độ tăng dần là T/2. B. vận tốc và gia tốc cùng chiều là T/2. C. tốc độ nhỏ hơn một nửa tốc độ cực đại là T/3. D. động năng nhỏ hơn một nửa cơ năng là T/4. Bài 15: Một vật dao động điều hoà, nếu tại một thời điểm t nào đó vật có động năng bằng 1/3 thế năng và động năng đang giảm dần thì 0,5 s ngay sau đó động năng lại gấp 3 lần thế năng. Hỏi bao lâu sau thời điểm t thì vật có động năng cực đại? A, 1 s. B. 2 s. C. 2/3 s. D. 3/4 s. Bài 16: Một con lắc lò xo dao động điều hòa với chu kì T và biên độ 10 cm. Biết trong một chu kì T, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 8 m/s2 là T/3. Lấy π2 = 10. Tần số dao động của vật là A. 8 Hz. B. 6 Hz. C. 2 Hz. D. 1 Hz. Bài 17: Vật dao động điều hòa có vận tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π (m/s2). Thời điểm ban đầu vật có vận tốc 1,5 m/s và thế năng đang tăng. Hỏi vào thời điểm nào sau đây vật có gia tốc bằng 15π (m/s2)? A. 0,10 s. B. 0,15 s. C. 0,20 s. D. 0,05 s. Bài 18: Vật dao động điều hòa có vận tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π (m/s2). Thời điểm ban đầu vật có vận tốc 1,5 m/s và thế năng đang tăng. Vật có gia tốc bằng 15π (m/s2) vào thời điểm lần thứ 2013 là A. 201,317 s. B. 201,283 s. C. 201,350 s. D. 201,25 s. Bài 19: Vật dao động điều hòa có vận tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π (m/s2). Thời điểm ban đầu vật có vận tốc 1,5 m/s và thế năng đang tăng. Vật có gia tốc bằng 15π (m/s2) vào thời điểm lần thứ 2014 là A. 201,317 s. B. 201,283 s. C. 201,350 s. D. 201,25 s. Bài 20: Vật dao động điều hòa có vận. tốc cực đại bằng 3 m/s và gia tốc cực đại bằng 30π (m/s2). Thời điểm ban đầu vật có vận tốc −1,5 m/s và thế năng đang tăng. Vật có gia tốc bằng 15π (m/s2) vào thời điểm lần thứ 2013 là? A. 201,317 s. B. 201,283 s. C. 201,350 s. D. 201,25 s.
68
Bai 21: Vật dao động điều hòa có vận tốc cực đại bằng 3m/s và gia tốc cực đại bằng 30π (m/s2). Thời điểm ban đầu vật có vận tốc −1,5 m/s và thế năng đang tăng. Vật có gia tố bằng 15π (m/s2) vào thời điểm lần thứ 2014 là: A. 201,383 s. B. 201,283 s. C. 201,350 s. D. 201,317 s. 1.B 2.A 3.B 4.D 5.A 6.D 7.B 8.D 9.D 10.C 11.B 12.A 13.B 14.D 15.C 16.C 17.B 18.B 19.C 20.D 21.A
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
PHẦN 5 Bài 1: Một vật dao động điều hòa theo phương trình x = Acos(2πt/T − π/3). Thời điểm lần đầu tiên vật có toạ độ −A là A. 5T/6. B. 5T/8. C. 2T/3. D. 7T/12. Bài 2: Một vật dao động điều hòa theo phương trình x = 4sin(4πt − π/6) (t đo bằng giây). Thời điểm lần đầu tiên kể từ t = 0 mà vật trở lại vị trí ban đầu là A. 1/3 (s). B. 1/12 (s). C. 1/6 (s). D. 2/3 (s). Bài 3: Một chất điểm dao động điều hòa theo phương trình x = 6cos(2πt + π/4), trong đó x tính bằng xentimét (cm) và t tính bằng giây (s). Chỉ xét các thời điểm chất điểm đi qua vị trí có li độ x = −3 cm theo chiều âm. Thời điểm lần thứ 10 là A. t = 245/24 s. B. t = 221/24 s. C. t = 229/24 s. D. t = 253/24 s. Bài 4: Một vật dao động điều hòa theo phương trình x = 2cos(2πt + π/6), trong đó x tính bằng xentimét (cm) và t tính bằng giây (s). Chỉ xét các thời điểm vật đi qua vị trí có li độ x = −1 cm theo chiều âm. Thời điểm lần thứ 20 là A. t= 19,25 s. B. t = 20,5 s. C. t = 235/12 s. D. t = 247/12 s. Bài 5: Một vật dao động điều hòa theo phương trình x = 2cos(2πt + π/6), trong đó x tính bằng xentimét (cm) và t tính bằng giây (s). Chỉ xét các thời điểm vật đi qua vị trí có li độ x = −1 cm theo chiều dương. Thời điểm lần thứ 20 là A. t = 19,5 s. B. t = 20,5 s. C. t = 235/12 s. D. t = 247/12 s. Bài 6: Một vật dao động điều hòa với biên độ 4 cm và chu kì 2 s. Chọn gốc thời gian lá lúc nó đi qua vị trí cân bằng theo chiều dương. Chỉ xét vật đi qua điểm có li độ 2 cm theo chiều âm. Thời diêm lần thứ 2 là A. 1/8 (s). B. 3/8 (s). C. 5/6 (s). D. 17/6 (s). Bài 7: Vật dao động điều hòa với phương trình x = 4cos4πt (cm) (t đo bằng giây). Kể từ thời điểm t = 0, vật đi qua vị trí cân bằng theo chiều dương lần thứ hai ở thời điểm A. 5/8 s B. 3/8 s. C. 7/8 s. D. 1/8 s. Bài 8: Một chất điểm dao động điều hòa với tần số 2 Hz. Chọn gốc thời gian là lúc vật đạt li độ cực đại. Thời điểm nào trong số các thời điểm sau, chất điểm không đi qua vị trí cân bằng theo dương? A. 1/8 (s). B. 3/8 (s). C. 7/8 (s). D. 11/8 (s). Bài 9: Một chất điểm dao động điều hòa theo phương trình x = 6cos2πt, trong đó x tính bằng xentimét (cm) và t tính bằng giây (s). Chỉ xét các thời điểm chất điểm đi qua vị trí có li độ x = +3 cm theo chiều dương. Thời điểm lần thứ 2 là A. t = 1/24 s. B. t = 11/6 T C. t = 1/24 s. D. t = 1/6 s. Bài 10: Một chất điểm dao động điều hòa theo phương trình x = 6cos(πt + π), trong đó x tính bằng xentimét (cm) và t tính bằng giây (s). Chỉ xét các thời điểm chất điểm đi qua vị trí có li độ
x 3 2 cm theo chiều âm. Thời điểm lần thứ 3 là A. t = 15/4 s. B. t = 11/6 s. C. t = 23/4 s.
69
D. t = 1/6 s.
N
Bài 11: Một con lắc lò xo có khối lượng m và có độ cứng k. Từ vị trí cân bằng kéo vật một đoạn 6 cm rồi thả nhẹ thì vật dao động điều hòa với tần số góc 10 rad/s theo phương trùng với trục của lò xo. Tính thời gian ngắn nhất vật đi từ vị trí có li độ −3 cm theo chiều dương đến vị trí có li độ +3 cm lần thứ 2. A. 7π /60 s. B. π/10s. C. π/15s. D. π/60 s. Bài 12: Ở vị trí cân bằng của một con lắc lò xo treo theo phương thẳng đứng, lò xo dãn 10 cm. Cho g = 10 m/s2. Khi con lắc dao động điều hòa, thời gian vật nặng đi từ lúc lò xo có chiều dài cực đại đến lúc vật qua vị trí cân bằng lần thứ hai là A. 0,1π (s). B. 0,15π (s). C. 0,2π (s). D. 0,3 (s). Bài 13: Một vật dao động điều hòa với phương trình x = 10cos(πt/2 − π/3) (cm). Thời gian từ lúc vật bắt đầu dao động đến lúc vật qua vị trí x = −5 cm lần thứ hai theo chiều dương là A. 9 s. B. 7 s. C. 11s. D. 4s. Bài 14: Một vật dao động điều hòa với phương trình li độ: x = 4cos(0,5πt – 5π/6) cm trong đó t
PR
O
D
U C TI O
Tính bằng giây (s). Vào thời điểm nào sau đây vật đi qua vị trí x 5 3 cm theo chiều dương của trục toạ độ? A. t = 5/3 s. B. t = 1 s. C. t = 4/3 s. D. t= 1/3 s. Bài 15: Vận tốc tức thời của một vật dao động là v = 30πcos(5πt + π/6) cm/s. Vào thời điểm nào sau đây vật sẽ đi qua điểm có li độ 3 cm theo chiều âm của trục toạ độ? A, 1/15 s. B. 0,2 s. C. 2/15 s. D. 0,4 s. 1.C 2.A 3.B 4.A 5.C 6.D 7.C 8.A 9.B 10.C 11.B 12.B 13.B 14.C 15.C
N
G
U
YE
N
TH
AN
H
TU
PHẦN 6 Bài 1: Một chất điểm dao động điều hòa với phương trình x = Acos(2πt – 2π/3) cm (t đo bằng giây). Thời gian chất điểm đi qua vị trí có li độ x = A/2 lần thứ hai kể từ lúc bắt đầu dao động là A, 0,5 s. B. 1/6 s. C. 1,5 s. D. 0,25 s. Bài 2: Một chất điểm dao động điều hòa với phương trình x = Acos(2πt – 2π/3) cm (t đo bằng giây). Thời gian chất điểm đi qua vị trí có li độ x = A/2 lần thứ 231 kể từ lúc bắt đầu dao động là A. 115,5 s. B. 691/6 s. C. 151,5 s. D. 31,25 s. Bài 3: Một chất điểm dao động điều hòa với phương trình x = Acos(2πt – 2π/3) cm (t đo bằng giây). Thời gian chất điểm đi qua vị trí có li độ x A / 2 lần thứ 232 kể từ lúc bắt đầu dao động là A 115,5 s. B. 691/6 s. C. 151,5 s. D. 31,25 s. Bài 4: Một vật dao động theo phương trình li độ x = 4cos(4πt/3 + 5π/6) (cm, s). Tính từ lúc t = 0 vật đi qua li độ x = − 2 cm lần thứ 7 vào thời điểm nào? A. t = 6,375 s B. t = 4,875 s. C. t = 5,875 s. D. t= 7,375 s. Bài 5: Một vật dao động theo phương trình li độ x = 4cos(4πt/3 + 5π/6) (cm, s). Tính từ lúc t = 0 vật đi qua li độ x = − 2 cm lần thứ 8 vào thời điểm nào? A. t = 6,375 s. B. t = 4,875 s. C. t = 5,875 s. D. t = 7,375 s. Bài 6: Một chất điểm dao động điều hòa với phương trình x = 4sin(2πt + π/2) cm. Chất điểm đi qua vị trí x = 3 cm lần thứ 2012 vào thời điểm A. 1006,885 s. B. 1004,885 s. C. 1005,885 s. D.1007,885 s. Bài 7: Một vật dao động theo phương trình li độ x = 4cos(4πt/3 + 5π/6) (cm, s). Tính từ lúc t = 0 vật đi qua li độ x = − 2 cm lần thứ 2010 vào thời điểm nào? A. t= 1507,375 s. B. t = 1507,475 s. C. t = 1507,875 s. D. t= 101/24 s. Bài 8: Một chất điểm dao động điều hòa theo phương trình x = 6cos(2πt + π/4), trong đó x tính bằng xen ti mét (cm) và t tính bằng giây (s). Thời điểm lần thứ 10 chất điểm đi qua vị trí có li độ x = −3 cm là
70
3.A 13.C
4.B
5.C
6.C
7.A
PR
2.B 12.A
8.A
9.D
10.A
TU
1.A 11.C
O
D
U C TI O
N
A. t = 109/24 s. B. t = 221/24 s. C. t = 229/24 s. D. t = 101/24 s. Bài 9: Một chất điểm dao động điều hòa theo phương trình x = 6cos(2πt + π/4), trong đó x tính bằng xen ti mét (cm) và t tính bằng giây (s). Thời điểm lần thứ 9 chất điểm đi qua vị trí có li độ x = −3 cm là A t = 109/24 s. B. t = 221/24 s. C. t = 229/24 s. D. t = 101/24 s. Bài 10: Một vật dao động điều hòa theo phương trình x = 2cos(2πt + π/6), trong đó x tính bằng xen ti mét (cm) và t tính bằng giây (s). Hỏi lần thứ 2009 vật đi qua vị trí có li độ x = −1 cm là thời điểm nào? A. t = 1004,25 s. B. t = 1004,45 s. C. t = 2008,25 s. D. t = 208,25 s. Bài 11: Một chất điểm dao động điều hòa theo phương trình x = 6cosl0πt, trong đó x tính bằng xen ti mét (cm) và t tính bằng giây (s). Thời điểm lần thứ 8 chất điểm đi qua vị trí có li độ x = +3 cm là A. t = 1/24 s. B. t = 47/30 s. C. t = 23/30 s. D. t = 5/6 s. Bài 12: Một chất điểm dao động điều hòa với phương trình x = Acos(ωt – 2π/3) cm. Thời gian chất điểm đi qua vị trí có li độ x = A/2 lần thứ hai kể từ lúc bắt đầu dao động là 0,5 s. Giá trị bằng A. 2π (rad/s). B. π(rad/s). C. 3π (rad/s). D. 4π (rad/s). Bài 13: Một con lắc dao động điều hòa với li độ x = Acos(πt − π/2) (cm) (t đo bằng giây). Thời gian ngắn nhất từ lúc bắt đầu khảo sát đen khi vật có li độ x = − A/2 (cm) là A. 1/6 s. B. 5/6 s. C. 7/6 s. D. 1 s.
H
PHẦN 7 Bài 1: Một vật dao động điều hòa với phương trình x 6 cos 10t / 3 / 6 cm. Xác định thời
N
G
U
YE
N
TH
AN
điểm thứ 2013 vật cách vị trí cân bằng 3cm. A. 302,15 s. B. 301,85 s. C. 302,25 s. D. 301,95s. Bài 2: Một vật dao động điều hòa với phương trình x = 6cos(10πt/3 + π/6) cm. Xác định thời điểm thứ 2014 vật cách vị trí cân bằng 3 cm. A. 302,15 s. B. 301,85 s. C. 302,25 s. D. 301,95s. Bài 3: Một vật dao động điều hòa với phương trình x = 4cos(50πt/3 + π/3) cm. Xác định thời điểm thứ 2011 vật có động năng bằng thế năng. A. 60,265 s. B. 60,355 s. C. 60,325 s. D. 60,295s. Bài 4: Một vật dao động điều hòa với phương trình x = 6cos(10πt/3 + π/6) cm. Xác định thời điểm thứ 2016 vật cách vị trí cân bằng 3 cm. A. 302,15 s. B. 301,85 s. C. 302,25 s. D. 301,95s. Bài 5: Một vật dao động điều hòa với phương trình x = 6.cos(10πt + π/6) cm. Xác định thời điểm thứ 300 vật cách vị trí cân bằng 3 cm. A. 30,02 s. B. 28,95 s. C. 14,85 s. D. 14,95 s. Bài 6: Một dao động điều hòa với li độ x = Acos(2πt/T). Tính từ thời điểm t = 0s, thì thời điểm lần thứ 3 mà |x| = 0,5A là A. 6031.T/6. B. 12055.T/6. C. 7T/6. D. 4T/6. Bài 7: Một dao động điều hòa với li độ x = Acos(2πt/T). Tính từ thời điểm t = 0 s, thì thời điểm lần thứ 5 mà |x| = 0,5A là A. 6031.T/6. B. 12055.T/6. C. 7T/6. D. 4176.
71
Bài 8: Một dao động điều hòa với li độ x = Acos(2πt/T). Tính từ thời điểm t = 0 s, thì thời điểm lần thứ 201 mà |x| = 0,5 A là A. 301.T/6. B. 302.T/6. C. 304.T/6. D. 305T/6. Bài 9: Một dao động điều hòa với li độ x = Acos(2πt/T). Tính từ thời điểm t = 0 s, thì thời điểm lần thứ 202 mà |x| = 0,5A là A. 301.T/6. B. 302.T/6. C. 304.T/6. D. 305T/6. Bài 10: Một dao động điều hòa với li độ x = Acos(2πt/T). Tính từ thời điẽm t = 0 s, thì thời điểm lần thứ 203 mà |x| = 0,5A là A. 301.T/6. B. 302.T/6. C. 304.T/6. D. 305T/6. Bài 11: Một dao động điều hòa với li độ có dạng x = Acos(100πt − π/3) (A) (t đo bằng giây). Thời
N
điểm thứ 3 mà |x| = A / 2 là A. t = 7/1200 (s). B. t = 13/1200 (s). C. t = 19/1200 (s). D. t = 1/48 (s). Bài 12: Một dao động điều hòa với li độ có dạng x = Acos(100πt − π/3) (A) (t đo bằng giây). Thời
U C TI O
điểm thứ 5 mà |x| =A/ 2 là A. t = 7/1200 (s). B. t = 13/1200 (s). C. t = 19/1200 (s). D. t = l/48(s). Bài 13: Một dao động điều hòa với li độ có dạng x = Acos(100πt − π/3) (A) (t đo bằng giây). Thời
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
điểm thứ 2010 mà |x| = A/ 2 là A. 12043/12000 (s). B. 9649/1200 (s). C. 2411/240 (s). D. 1/48 (s). Bài 14: Một vật dao động điều hòa với phương trình x = 6.cos(10πt + 2π/3) cm. Xác định thời điểm thứ 2021 vật có động năng bằng thế năng. A. 50,53s B. 202,l s. C. 101,01 s. D. 100,75 s. Bài 15: Một vật dao động điều hòa với phương trình x = 4cos(2πt + π/3) cm. Xác định thời điểm thứ 2012 vật có động năng bằng thế năng. A. 502,58 s. B. 502,71 s. C. 502,96 s. D. 502,33 s. Bài 16: Một vật dao động điều hòa với phương trình x = 6.cos(10πt + π/6) cm. Xác định thời điểm thứ 300 vật cách vị trí cân bằng 3 cm và có động năng đang giảm. A. 30,02 s. B. 28,95 s. C. 29,45 s. D. 29,95 s. Bài 17: Một vật dao động điều hòa với phương trình x = 6cos(10πt + 2π/3) cm. Xác định thời điểm thứ 200 vật có động năng bằng thế năng và chuyển động về phía biên. A. 20,1 s. B. 18,97 s. C. 19,9 s D. 21,03 s. Bài 18: Một vật nhỏ dao động mà phương trình vận tốc v = 5πcos(πt + π/6) cm/s. Vận tốc trung bình của vật tính từ thời điểm ban đầu đến vị trí động năng bằng 1/3 thế năng lần thứ hai là A. 6,34 cm/s. B. 21,12 cm/s. C. 15,74 cm/s. D. 3,66 cm/s. Bài 19: Một vật dao động với phương trình x = 9cos(10πt/3) (cm). Tính từ t = 0 thời điểm lần thứ 2014 gia tốc của vật có độ lớn 50π2 cm/s là A. 302,35 s. B. 301,85 s. C. 302,00 s. D. 302,15 s. Bài 20: Một vật dao động điều hòa với phương trình x = 4cosl0πt (cm) (t đo bằng giây). Thời điểm lần đầu tiên vật có vận tốc +20π 2 cm/s là: A. 1/40 (s). B. 1/8 (s). C. 3/40 (s). D. 1/20 (s). Bài 21: Một vật dao động điều hòa có chu kì là T. Nếu chọn gốc thời gian t = 0 là lúc vật qua vị trí cân bằng, thì trong nửa chu kì đầu tiên, vận tốc của vật có độ lớn bằng nửa giá trị cực đại O thời điểm A. t = T/4. B. t = T/6. C. t = T/8. D. t = T/2. Bài 22: Một chất điểm dao động điều hòa có chu kì T. Nếu chọn gốc thời gian lúc có li độ cực đại thì trong một chu kì đầu tiên vận tốc có độ lớn cực đại vào các thời điểm A. 176 và T/4. B. T/4 và 3T/4. C. T/4 và T/2. D. 3T/4 và T/12.
72
Bài 23: Một vật dao động điều hòa với chu kì T. Thời gian ngắn nhất kể từ lúc vật có vận tốc bằng không đến lúc vật có gia tốc có độ lớn bằng một nửa giá trị cực đại lần thứ 3 là A. 7T/6. B. 2T/3. C. T/2. D. 4T/3. 1.B 2.D 3.C 4.C 5.D 6.D 7.C 8.A 9.B 10.C 11.B 12.D 13.C 14.C 15.C 16.D 17.C 18.D 19.C 20.B 21.B 22.B 23.B Dạng 3. BÀI TOÁN LIÊN QUAN ĐẾN QUÃNG ĐƯỜNG Chúng ta sẽ nghiên cứu các bài toán: + Quãng đuờng đi được tối đa, tối thiểu. + Quãng đuờng đi được từ t1 đến t2. 1. Quãng đường đi được tối đa, tối thiểu. 1.1 Trường hợp Δt < T/2 t
U C TI O
N
Trong dao động điều hòa, càng gần vị trí biên thì tốc độ càng bé. Vì vậy trong cùng một khoảng thời gian nhất định muốn đi đuợc quãng đuờng lớn nhất thì đi xu quanh vị trí cân bằng và muốn đi được quãng đuờng bé nhất thì đi xung quanh vị biên. Cách 1: Dùng PTLG x A sin t
D
x A sin t
X1
t2
0
TU
A
PR
O
x A cos t
TH
X1
x1
A
Smin 2 A x1
t Smax 2A sin t1 2A sin 2 2
+ Quãng đường cực tiểu: t 2
t Smin 2 A A cos t 2 2A 2A cos 2 2
Cách 2: Dùng VTLG
Smax 2
A sin
A
x1 A sin t1 A cos t 2
Smax 2x1
YE U
G
+ Quãng đường cực đại: t1
N
t2
0
N
A
x1
t1
AN
H
t1
x A cos t
2
A cos
73
2
Quy trình giải nhanh: + t + Smax sin đi xung quanh VTCB.
Smax 2A sin 2 t Smin 2A 1 cos 2
+ Smin cos đi xung quanh VT biên.
0
12
T
12
T
0
A 2
A A
8
A
2
AN
A 3 2
8
H
A 2
T
T
6
T
0
6
A 3 2
A
6
A
x x
x
U
YE
N
T
TH
A 2
TU
PR
O
D
U C TI O
N
Ví dụ 1: Một chất điểm dao động điều hòa trên trục Ox với tần số góc 10 (rad/s) và biên độ 10 (cm). Trong khoảng thời gian 0,2 (s), quãng đường lớn nhất và nhỏ nhất mà vật có thể đi được lần lượt là A. 16,83 cm và 9,19 cm. B. 0,35 cm và 9,19 cm. C. 16,83 cm và 3,05 cm. D. 0,35 cm và 3,05 cm. Hướng dẫn Smax 2A sin 2 2.sin1 16,83 cm t 2 rad Smin 2A 1 cos 2.10 1 cos1 9,19 cm 2 Chọn A (Vì đơn vị tính là rad nên khi bấm máy cần cẩn thận đơn vị!) T T T Chú ý: Đối với các khoảng thời gian đặc biệt: ; ; ..... để tìm Smax ,Smin nhanh ta sử dụng 3 4 6 sự phân bổ thời gian và lưu ý Smax đi quanh VTCB, Smin đi quanh VT biên.
A 2
0
T
N
G
T A
0
2
6 T T
A
8
x
8
A 3 T 2 12
0
x
T
A
x
12
Ví dụ 2: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Gọi S1, S2 lần lượt là quãng đường nhỏ nhất mà vật có thể đi được trong khoảng thời gian T/3 và quãng đường lớn nhất mà vật có thề đi được trong khoảng thời gian T/6 thì A. S1>S2.
C. S1 = S2 = A 3 .
B. S1 = S2 = A.
74
D. S1 < S2.
Hướng dẫn Trong khoảng thời gian T/3 để đi được quãng đường nhỏ nhất thì vật đi xung quanh vị trí biên mỗi nửa một khoảng thời gian T/6 tương ứng với quãng đường A/2. Vì vậy: S1 = A. A 2
0
T T
6
A
x
6
Trong khoảng thời gian T/6 để đi được quãng đường lớn nhất thi vật đi xung quanh vị trí cân bằng mỗi nửa một khoảng thời gian T/12 tương ứng với quãng đường A/2. Vì vậy: S2 = A. T
T
0
12
A 2
12
A
N
A 2
U C TI O
x
D
Chọn B Kinh nghiệm: Kết quả bài toán này được đề cập khá nhiều trong các đề thi. Để dễ nhớ ta viết dưới dạng: + S T A : Đi xung quanh VTCB mỗi nửa A/2 T min 3
A : Đi quanh VT biên mỗi nửa A/2Đi quanh VT biên mỗi nửa A/2
PR
+S
O
max 6
TU
Ví dụ 3: Một vật dao động điều hòa với biên độ 6 cm. Quãng đường lớn nhất mà vật đi được
U
YE
N
TH
AN
H
trong 0,2 s là 6 3 cm. Tính tốc độ của vật khi nó cách vị trí cân bằng 3 cm. A. 53,5 cm/s. B. 54,9 cm/s. C. 54,4 cm/s. D. 53,1 cm/s. Hướng dẫn t .0, 2 10 Smax 2A sin 2A sin 6 3 2.6sin rad / s 2 2 2 3 10 2 2 v A2 x 2 6 3 54, 4 cm / s Chọn C. 3 Ví dụ 4: Một vật dao động điều hoà cứ trong mỗi chu kì thì có 1/3 thời gian vật cách vị trí cân bằng không quá 10 cm. Quãng đường lớn nhất mà vật có thể đi được trong 1/6 chu kì dao động là B. 10 cm.
N
G
C. 20 cm. D. 10 3 cm Hướng dẫn Khoảng thời gian trong một chu kì vật cách vị trí cân bằng một khoảng nhỏ hơn x1 là: x 1 T T 10 10 t 4 arcsin 1 4 arcs sin A 20 cm A 3 2 A A 6 Quãng đường lớn nhất có thể đi được trong T/6 là Smax = A = 20 cm => Chọn C. Chú ý: Đối với bài toán tìm thời gian cực đại và cực tiểu để đi được quãng đường S thì cần lưu ý: Thời gian cực đại ứng với công thức quãng đường cực tiểu. Thời gian cực tiểu ứng với công thức quãng đường cực đại. t min Smin 2A sin 2 t min t t t max t t max Smin 2A 1 cos 2 A. 5 cm.
75
PR
O
D
U C TI O
N
Ví dụ 5: Một vật dao động điều hòa với biên độ 10 cm, với tần số góc π rad/s. Thời gian ngắn nhất để vật đi được quãng đường 16,2 cm là A. 0,25 (s). B. 0,3 (s). C. 0,35 (s). D. 0,45 (s). Hướng dẫn Thời gian cực tiểu ứng với công thức quãng đường cực đại: 2t Smax 2A sin 16, 2 2.10sin t 0,3 s Chọn B. 2 2 Ví dụ 6: Một vật dao động điều hòa với biên độ 10 cm, với tần số góc 2π rad/s. Thời gian dài nhất để vật đi được quãng đường 10,92 cm là A. 0,25 (s). B. 0,3 (s). C. 0,35 (s). D. 0,45 (s). Hướng dẫn Thời gian cực đại ứng với công thức quãng đường cực tiểu: t Smin 2A 1 cos 10,92 2.10 1 cos 2 t 0,35 s Chọn C. 2 2 Ví dụ 7: Một vật dao động điều hòa với biên độ 10 cm, với chu kì 0,1 s. Thời gian dài nhất để vật đi được quãng đường 10 cm là A. 1/15 (s). B. 1/40 (s). C. 1/60 (s). D. 1/30 (s). Hướng dẫn Thời gian dài nhất ứng với vật đi chậm nhất. Muốn vậy vậy đi xung quanh vị trí biên (VD: x = A) từ x = A/2 đến x = A rồi đến x = A/2. T 6
TU
A 2
H
T 6
O
AN
A
T 6 A 2
A
T 6
N
G
U
YE
N
TH
T T T 1 s Chọn D. 6 6 3 30 T T 1.2 Trường hợp Δt’ > T/2 t ' n t với 0 t 2 2 T Vì quãng đường đi được trong khoảng thời gian n luôn luôn là n.2A nên quãng đường lớn 2 nhất hay nhỏ nhất là do Δt quyết định. Thời gian sẽ đi là: t
Smax n.2A Smax n.2A 2A sin
: Đi xung quanh VTCB. 2
Smin n.2A Smin n.2A 2A 1 cos : Đi quanh VT biên. 2
Hai
trường hợp đơn giản T T ' t ' n 2 6 Smax n.2A A n.2A Smin A t ' n T T S' n.2A A min 2 3 n.2A Smin
xuất
76
hiện
nhiều
trong
các
đề
thi:
Ví dụ 1: Một vật dao động điều hoà với chu kỳ T và biên độ A. Quãng đường vật đi được tối đa trong khoảng thời gian 5T/3 là A. 5A. B. 7A C. 3A. D. 6,5A. Hướng dẫn Nhận diện đây là trường hợp đơn giản nên có thể giải nhanh: 5T T T t ' 3 S'max 3.2A A 7A Chọn B. 3 2 6 3.2A
Smax A
O
A 2
H
O
D. 30 3 cm
C. 45 cm. Hướng dẫn
PR
B. 48,66 cm.
TU
A. 42,5 cm.
D
U C TI O
N
t ' n, m Quy trình giải nhanh: 0,5T t t ' n .0,5T Smax 2A sin 2 S'max n.2A Smax t ' Smin n.2A Smin S 2A 2A cos min 2 Ví dụ 2: Một chất điểm dao động điều hoà theo phương trình x = 5cos4πt (cm) (với t đo bằng giây). Trong thời gian 7/6 (s), quãng đường nhỏ nhất mà vật có thể đi được là
T 6
A
x
AN
T 6
TH
2 T t ' 7 0,5 s 0, 25 s 0, 25 4, 66667 T 2 6 2 7 1 T T T T t ' 6 s 4.0, 25 6 4. 2 3 4. 2 3 Chọn C. 4.2A Smin A ' Smin 4.2A A 45 cm Ví dụ 3: Một vật nhỏ dao động điều hòa với biên độ 4 cm. Trong 2 s quãng đường dài nhất mà vật đi được là 12 cm. Tìm chu kì dao động A. 3 (s). B. 4,2 (s). C. 7,5 (s). D. 1 (s). Hướng dẫn T T S'max 12cm 8cm 4cm 2A A 2 6 2 T 3 s Chọn A T/2 T/6 1) Để tìm thời gian để đi được quãng đường dài nhất là S' ta phân tích như sau: T T 0,5S S' n.2A S t n arcsin 2 A nT / 2 1 0,5S T 0,5S
N
G
U
YE
N
T
2. arcsin arcsin A A
77
2) Để tìm thời gian để đi được quãng đường ngắn nhất là S’ ta phân tích như sau: T T A 0,5S S' n.2A S t n arcsin 2 A nT / 2 1 A 0,5S T 0,5S 2. arcsin
A
arcsin A
Ví dụ 4: Một vật nhỏ dao động điều hòa với biên độ 4 cm. Trong 3,2 s quãng đường dài nhất mà vật đi được là 18 cm. Hỏi trong 2,3 s thì quãng đường ngắn nhất vật đi được là bao nhiêu? A. 17,8 (cm). B. 14,2 (cm). C. 17,5 (cm). D. 10,8 (cm). Hướng dẫn S' 18 cm 16 cm 2 cm 2.2A 2 cm T T 0,5.2 arcsin 4
T 1 arcsin 3, 2 2,9618 s 4 T t ' 2,3s 0,8191 S'min 8 2,834 10,8 cm 2 2 0,8191 Smin 2A 1 cos . T
2
U C TI O
2A 8
N
t T
2,834
T 4 0,5.2 arcsin 4
TU
T
PR
O
D
Ví dụ 5: Một vật nhỏ dao động điều hòa với biên độ 4 cm. Trong 3,2 s quãng đường ngắn nhất mà vật đi được là 18 cm. Hỏi trong 2,3 s thì quãng đường dài nhất vật đi được là bao nhiêu? A. 15,5 (cm). B. 15,2 (cm). C. 17,5 (cm). D. 10,8 (cm). Hướng dẫn S' 18 cm 16cm 2cm 2.2A 2cm
T 3 arccos 3, 2 T 2, 6015 s 4 T t ' 2,3s 0,999 S'max 8 7, 475 15,5 cm 2 2 0,099 Smax 2A sin
.
7,475
TH
2A 8
AN
H
tT
T
2
U
YE
N
Kinh nghiệm: Đề thi trắc nghiệm thường liên quan đến các trường hợp đặc biệt: T T 1) Trong thời gian Δt' quãng đường đi được tối đa là S' = n.2A + A thì t ' n 2 6 Đồng thời khi bắt đầu và kết thúc quãng đường đó chỉ có thể ở 1 trong 2 vị trí:
G
A A 3 v 2 2
N
x
T T . 2 3 Đồng thời khi bắt đầu và kết thúc quãng đường đó chỉ có thể ở 1 trong 2 vị trí: 2) Trong thời gian Δt' quãng đường đi được tối thiểu là S' = n.2A + A thì t ' n
x
A A 3 v 2 2
T T . 2 4 Đồng thời khi bắt đầu và kết thúc quãng đường đó vật chỉ có thể ở một trong hai vị trí: A A x v 2 2
3) Trong thời gian Δt' quãng đường đi được tối đa là S' = n.2A + A 2 thì t ' n
78
4) Trong thời gian Δt' quãng đường đi được tối thiểu là S'= n.2A +
2A A 2
thì
T T . Đồng thời khi bắt đầu và kết thúc quãng đường đó vật chỉ có thể ở một trong hai 2 4 A A vị trí: x v 2 2 T T 5) Trong thời gian Δt' quãng đường đi được tối đa là S' = n.2A + A 3 thì t ' n 2 3 Đồng thời khi bắt đầu và kết thúc quãng đường đó vật chỉ có thể ở một trong hai vị trí: t ' n
x
A 3 A v 2 2
U C TI O
t ' n
N
6) Trong thời gian Δt' quãng đường đi được tối thiểu là S' n.2A 2A A 3 thì
T T . Đồng thời khi bắt đầu và kết thúc quãng đường đó vật chỉ có thể ở một trong 2 6
A 3 A v 2 2 Ví dụ 6: Một chất điểm dao động điều hoà với biên độ 6 cm. Trong khoảng thời gian 1 (s), quãng đường nhỏ nhất mà vật có thể đi được là 18 cm. Tính tốc độ của vật ở thời điểm kết thúc quãng đường. A. 42,5 cm/s. B. 48,66 cm/s. C. 27,2 cm/s. D. 31,4 cm/s. Hướng dẫn T T S'min 18cm 2A A 2 3 1 T 1, 2 s T/2 T /3
AN
H
TU
PR
O
D
hai vị trí: x
O
A 2
A 2
T 6
A
x T 6
N
G
U
YE
N
TH
Khi kết thúc quãng đường vật ở li độ x
A 3 2 3 v v max A 27, 2 cm / s Chọn C. 2 2 T 2 Chú ý: Một số bài toán là sự chồng chập của nhiều bài toán dễ. Chúng ta nên giải quyết lần lượt các bài toán nhỏ. Ví dụ 7: (ĐH−2012) Một con lắc lò xo dao động điều hòa theo phương ngang với cơ năng dao động là 1 J và lực đàn hồi cực đại là 10 N. Mốc thế năng tại vị trí cân bằng. Gọi Q là đầu cố định của lò xo, khoảng thời gian ngắn nhất giữa 2 lần liên tiếp Q chịu tác dụng lực kéo của lò xo có độ
Khi x
lớn 5 3 N là 0,1 s. Quãng đường lớn nhất mà vật nhỏ của con lắc đi được trong 0,4 s là A. 40 cm. B. 60 cm. C. 80 cm. D. 115 cm. Hướng dẫn
79
T
O
A
A 3 2
A
12
Vì là lực kéo nên lúc này lò xo dãn. Vật đi từ x
U C TI O
N
5 3 x F A 3 F k x x Fmax A 2 10 Fmax kA 1 W A A 20 cm 2 W kA 10 Fmax 2 2
T
12
A 3 A 3 đến x = A rồi đến x . 2 2
T T T 0,1 T 0, 6 s 12 12 6 T T t 0, 4s 0,3 0,1 S'max 3A 60 cm Chọn B 2 6
A
A T 2 12
T
O
AN
x1
TU
Smax A
H
2A
PR
O
D
Thời gian đi sẽ là: t
A
x1
TH
Smax A
12
A 2
N
G
U
YE
N
Chú ý: Đối với bài toán tìm thời gian cực đại và cực tiểu để đi được quãng đường S thì cần lưu ý: Thời gian cực đại ứng với công thức quãng đường cực tiểu. Thời gian cực tiểu ứng với công thức quãng đường cực đại. ' T ' ' t min Smax n.2A 2A sin 2 t min n. 2 t t t ' n. T t t 'max S'max n.2A 2A 1 cos max 2 2
T ' ' ' t max t min n. t min Smax n.2A S 2 T t n 2 t ' S' n.2A S t ' n. T t min min max max 2 T t n 2 T T ' t min n. 2 6 Trường hợp xuất hiện nhiều trong các đề thi: S n.2A A t ' n. T T max 2 3 T T Smax Smin A 6 3
80
Ví dụ 8: Một vật dao động điều hòa với biên độ A và chu kì T. Thời gian dài nhất để vật đi được quãng đường có độ dài 7A là A. 13T/6. B. 13T/3. C. 11T/6. D. T/4. Hướng dẫn T T 11T ' t 'max S'min 7A 3.2A t max 3. 2 3 6 Chọn C. A T T 3.
3
2
T 6
A 2
O
A
x T
6
U C TI O
N
Smin A
1005
2
PR
O
D
Ví dụ 9: Một chất điểm dao động điều hòa với biên độ A và tần số f. Thời gian dài nhất để vật đi quãng đường 2011A là A. 3017/(6f). B. 4021/(8f). C. 2001/(4f). D. 1508/(3f). Hướng dẫn T T 3017 ' t 'max S'min 2011A 1005.2A t max 1005 2 3 6f Chọn A. A T T 3
TH
AN
H
TU
2. Quãng đường đi 2.1 Quãng đường đi được từ t1 đến t2 Phương pháp chung t 2 t1 n, q * Nếu biểu diễn: t 2 t1 nT t T t t 2 t1 nT
N
G
U
YE
N
Quãng đường đi được: S = n.4A + Sthêm, với Sthêm là quãng đường đi được từ thời điểm t1 + nT đến thời điểm t2. t 2 t1 0,5T m, q T * Nếu biểu diễn t 2 t1 m t 2 t t t m T 2 1 2 Quãng đường đi được: S = m.2A + Sthêm, với Sthêm là quãng đường đi được từ thời điểm t1 + mT/2 đến thời điểm t2. Để tìm Sthêm thông thường dùng ba cách sau: Cách 1: Dùng trục thời gian để xác định quãng đường dịch chuyển từ trạng thái 1 đến trạng thái 2. Cách 2: Dùng vòng tròn lượng giác để xác định quãng đường dịch chuyển từ trạng thái 1 đến trạng thái 2. Cách 3: Dùng tích phân xác định. Cơ sở phương pháp:
81
v
dx ds dx v ds v dt ( trong đó ds là quãng đường đi được trong thời gian dt) dt dt dt t2
Quãng đường chất điểm đi được từ thời điểm t1 + mT/2 đến t2: Sthêm
v dt
t1 mT / 2
(chính là diện tích phần tô màu): v
t
2T
t
N
0
t2
U C TI O
t1
Nếu phương trình li độ x A cos t thì phương trình vận tốc v A sin t
O
D
Để tính tích phân này ta có thể dùng máy tính cần tay CASIO fx−570ES, 570ES Plus. Các bước thực với máy tính cầm tay CASIO fx−570ES, 570ES Plus
PR
Nút lệnh Bấm SHIF MODE 1
Ý nghĩa – Kết quả Màn hình xuất hiện Math.
Chọn đơn vị đo góc là Rad (R) Thực hiện phép tính tích phân
Bấm SHIF MODE 4
Màn hình hiển thị chữ R.
H
AN
Nhập hàm và các cận lấy tích phân
Bấm SHIFT
Màn hình hiển thị:
Màn hình hiểu thị:
Bấm ALPHA )
Màn hình hiển thị X
Bấm: hàm và các cận
Hiển thị: t2
N
G
U
Bấm phím
TH
YE
Biến t thay bằng X
N
Dùng hàm trị tuyệt đối (Abs)
TU
Chọn chế độ Chỉ định dạng nhập/ xuất toán
dx dx
A sin x dx
t1 mT / 2
Bấm dầu bằng (=)
Bấm Ví dụ 1: Một vật dao động điều hoà dọc theo trục Ox với phương trình: x = 3cos(4πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 13/6 (s) đến thời điểm t2 = 23/6 (s) là: A. 40 cm. B. 57,5 cm. C. 40,5 cm. D. 56 cm. Hướng dẫn 2 0,5 s Cách 1: T t t Vì 2 1 3.333 = 3,333 nên có thể viết t 2 t1 3T t T
82
với t t 2 t1 3T
7 s (s) 6
Sthem 1,5 3 4,5 cm 3
O
3
1,5
x
13 4.2 6 3 3 23 13 Góc cần quét: t 2 t1 4 3.2 6 6 3x 4A 12A
PR
O
D
Vị trí bắt đầu quét: 1 t1 4.
U C TI O
N
Quãng đường đi được: S = 3.4A + Sthêm = 36 + Sthêm. Vì Sthêm < 4A = 12 cm => 36 cm < S < 48 cm nên phương án cần chọn chỉ còn A hoặc C. 23 13 x1 3cos 4. 6 3 1,5cm x 2 3cos 4. 6 3 3cm 13 23 v 4.3sin 4. v 4.3.sin 4. 0 0 1 2 6 3 6 3 Quãng đường đi được: S = 36 + Sthêm = 40,5 (cm)=>Chọn C. Cách 2: Từ phương trình x = 3cos(4πt − π/3) cm, pha dao động: 4t / 3
TH
AN
1 4.2
2 3
3
YE
N
Sthem A cos 600 A 1,5A
TU
H
S 12A 1,5A 13,5A 40,5 cm
2 3
N
G
U
A 2
Cách 3: Vì
t 2 t1 6, 667 nên m = 6 0,5T
Quãng đường đi: S m.2A
t2
A sin t dt
t1 mT / 2
S 6.2.3
23 6
13 6.0,5/ 2 6
81 4.3sin 4t dt 40,5 cm 2 2
Dùng máy tính nhập số liệu như sau (Để có dấu tuyệt đổi bấm SHIFT hyp Sau đó bấm dấu “=” sẽ được kết quả như trên.
83
(Bài này bấm máy tính chờ khoảng 3 giây sẽ có kết quả) Chú ý: Tốc độ tính nhanh hay chậm của máy tính phụ thuộc vào cận lấy tích phân pha ban đầu. Quy trình giải nhanh: t2 x A cos t S m.2A A sin t dt t1 mT / 2 t t m 2 1 t2 0,5T x A sin t S m.2A A cos t dt t1 mT / 2
AN
H
TU
PR
O
D
U C TI O
N
t2 x A cos t S m.4A A sin t dt t1 mT / 2 t t m 2 1 t2 T x A sin t S m.4A A cos t dt t1 mT / 2 Ví dụ 2: Một vật dao động điều hoà dọc theo trục Ox với phương trình: x = 2cos(4πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 1/12 (s) đến thời điểm t2 = 2 (s) là: A. 40 cm. B. 32,5 cm. C. 30,5 cm. D. 31 cm. Hướng dẫn 1 t2 2 t 2 t1 12 7, 67 7 S m.2A m A sin t dt 0,5T 0,5.0,5 t1 mT / 2
1 7.0,5/ 2 12
4.2sin 4t dt 31 cm Chọn D. 3
TH
2
7.2.2
N
G
U
YE
N
Bài này bấm máy tính chờ khoảng 5 giây sẽ có kết quả ngay Ví dụ 3: Một vật dao động điều hòa x = 6cos(4πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 13/6 (s) đến thời điểm t2 = 37/12 (s) là: A. 44 cm. B. 40 cm. C. 69 cm. D. 45 cm. Hướng dẫn 1 4.2 Cách 1: Pha dao động: 4t 3 3 13 A Vị trí bắt đầu quét: 1 t1 4. 4.2 . O 6 3 3 2 37 13 Vị trí bắt đầu quét: t 2 t1 4 12 6
1.2 1.4A
5 3
S 4A 3,5A 45 cm Chọn D.
Sthem 0,5A 3A
84
5 3
37 13 t2 t 2 t1 12 6 3, 76 3 S m.2A Cách 2: m A sin t dt 0,5T 0,5.0,5 t1 mT / 2 37 12
S 3.2.6
13 3x 0,5/ 2 6
4.6sin 4t dt 45 cm 3
U C TI O
N
(Bài này bấm máy tính chờ khoảng 5 giây sẽ thấy kết quả) Ví dụ 4: Vật dao động điều hoà với tần số f = 0,5 Hz. Tại t = 0, vật có li độ x = 4 cm và vận tốc v = − 4π cm/s. Quãng đường vật đi được sau thời gian t = 2,5 s kể từ khi bắt đầu chuyển động là? A. 25,94 cm. B. 26,34 cm. C. 24,345 cm D. 30,63 cm. Hướng dẫn Cách 1:
v2 2f rad / s A x 02 2 0
Sthem A 2
4 2 cm
Dùng vòng tròn lượng giác xác định quãng đường đi: Vị trí bắt đầu quét: 1 4 Góc cần quét: t 2 t1
A 2
A 2
H
TU
2
D
2
O
4
PR
A 4 2
4
AN
1x 4A
S 4A A 2 30, 63 cm Chọn D. 4 4
TH
2, 25 0 1.2
Sthem A 2
t
YE
N
2 t t 2,5 0 2,5 2 S m.2A Cách 2: m 2 1 A sin t dt 0,5T 0,5.2 t1 mT / 2
2,5
.4 2 sin t dt 30, 63 cm 4 0 2.2/ 2 (Bài này bấm máy tính chờ khoảng 5 giây sẽ thấy kết quả) Ví dụ 5: Một vật dao động điều hoà xung quanh vị trí cân bằng O với biên độ A và chu kì T. Ban đầu vật đi qua O theo chiều dương. Đến thời điểm t = 19T/12 vật đi được quãng đường là A. 4,5A. B. 6,5A. C. 7,5A. D. 6,2A. Hướng dẫn Cách 1: 2 7 x A cos t 2 6 T 2 A Vị trí bắt đầu quét 1 .0 2 T 2 2
N
G
U
S 2.2.4 2
1
85
2
Góc cần quét : t 2 t1
2 19T 0 1.2 T 12 6 4A
Sthem
S 4A A A 0,5A 6,5A Chọn B Cách 2: 19 T 0 t 2 t1 12 n 1 T T
A sin t dt 1.4.A
0 1.T
2 2 A sin t dt 6,5 A T 2 T
U C TI O
t1 nT
19 T 12
N
S n.4A
t2
4A 2 lan
3 2
AN
Sthem va them1lan
Sthem
3,5 0
1,5
TH
S 20 600 5 5 5cos 300 36,8 cm 5cos 4A
600 30
H
1.2
TU
PR
O
D
Ví dụ 6: Một vật dao động điều hoà có phương trình dao động: x = 5cos(4πt + π/3) (x đo bằng cm, t đo bằng s). Trong khoảng thời gian từ t = 0 đến t = 0,875 s, quãng đường vật đi được và số lần đi qua điểm có li độ x = 3,5 cm lần lượt là A. 36,8 cm và 4 lần. B. 32,5 cm và 3 lần. C. 32,5 cm và 4 lần. D. 36,8 cm và 3 lần. Hướng dẫn 1 Vị trí bắt đầu góc quét: 1 t1 4.0 3 3 3 t t 4 0,875 0 Góc cần quét: 2 1
t 2 t1 kt S k.4A
U
YE
N
Tổng số lần đi qua x = 3,5 cm là 3 lần Chọn D. Chú ý: Đối với đề thi trắc nghiệm thông thường liên quan đến các trường hợp đặc biệt sau đây: + Bất kể vật xuất phát từ đâu, quãng đường vật đi sau một chu kì luôn luôn là 4A.
G
+ Bất kể vật xuất phát từ đâu, quãng đường vật đỉ sau nửa chu kì luôn luôn là 2A.
N
t 2 t1 m
T S m.2A. 2
+ Nếu vật xuất phát từ vị trí cân bằng (x(t1) = 0) hoặc từ vị trí biên (x(t1) = ± A) thì quãng đường vật đi sau một phần tư chu kì là A.
t 2 t1 n + Căn cứ vào tỉ số:
T S nA 4
t 2 t1 q 0,5T
− Số nguyên S q.2A. − Số bán nguyên và x t1 0; A S q.2 A
86
D
U C TI O
N
Ví dụ 7: (ĐH−2014) Một vật dao động điều hòa với phương trình x = 5cosωt (cm). Quãng đường vật đi được trong một chu kì là A. 10cm. B. 5 cm. C. 15 cm. D. 20 cm. Hướng dẫn Quãng đường đi được trong 1 chu kì: S = 4A = 20 cm => Chọn D. Ví dụ 8: Một vật nhỏ dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình dao động x = 2.cos(2πt − π/12) (cm) (t tính bằng giây) thì đường mà vật đi được từ thời điểm t1 = 13/6 (s) đến thời điểm t2 = 11/3 s là bao nhiêu? A. 9 cm. B. 27 cm. C. 6 cm. D. 12 cm. Hướng dẫn t t 11 / 3 13 / 6 So nguyen q 2 1 3 S q.2A 4.2A 12 cm Chọn D. 0,5T 0,5.1 Ví dụ 9: Một con lắc lò xo dao động với phương trình: x = 4cos(4πt − π/8) cm (t đo bằng giây). Quãng đường vật đi được từ t1 = 0,03125 (s) đến t2 = 2,90625 (s) là A. 116 cm. B. 80 cm. C. 64 cm. D. 92 cm. Hướng dẫn t t 2,9025 0, 03125 So ban nguyen q 2 1 11,5 x t1 A cos 4 .0,03125 A 0,5T 0,5.0,5 8
PR
O
S q.2A 92 cm Chọn D.
H
TU
Chú ý: Có thể dùng phương pháp “Rào”: để loại trừ các phương án. t t + Quãng đường đi được ‘trung bình’ vào cỡ: S 2 1 .2A 0,5T
AN
S Smin + Độ chênh lệch với giá trị thực vào cỡ: A max 2 t t A sin cos 1 A 2 1 0, 4A 2 2
t t 2A 1 cos 2 2 2
N
TH
2A sin
N
G
U
YE
+ Quãng đường đi được vào cỡ: S S 0, 4A Ví dụ 10: Một vật nhỏ dao động điều hoà dọc theo trục Ox (O là vị trí cân bằng) theo phương trình x = 10sinπt (cm) (t tính bằng giây). Quãng đường mà vật đi được từ thời điểm ban đầu đến thời điểm 2,4 s là A. 49,51 cm. B. 56,92 cm. C. 56,93 cm. D. 33,51 cm. Hướng dẫn Cách 1: t 2 t1 2, 4 0 .2A .4A 4,8A 48 cm S 0,5T 2 Chọn A. A 0, 4A 4 cm 44cm S 52cm max
t t 2, 4 0 Cách 2: n 2 1 1 T 2
S n.4A
t2
t1 nT
t sin t dt 1.4.10
2,4
0 1x 2
.10sin t dt 49,51 cm 2
(Bài này bấm máy tính chờ khoảng 5 giây sẽ thấy kết quả)
87
Ví dụ 11: Một chất điểm dao động điều hoà dọc theo trục Ox với phương trình: x = 8cos(4πt + π/6) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 2,375 đến thời điểm t2 = 4,75 (s) là A. 149 cm. B. 127 cm. C. 117 cm. D. 169 cm. Hướng dẫn Cách 1: t 2 t1 4, 75 2,375 .2A .4A 152cm S 0,5T 0,5A Chọn A. A 0, 4A 3, 2cm 148,8 S 155, 2 max
t t 4, 75 2,375 Cách 2: n 2 1 4 0,5 T
A sin t dt 128
t1 nT
4,75
32 sin 4t dt 149 cm 6 2,375 4.0,5
N
t2
U C TI O
S n.4A
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
(Bài này bẩm mảy tính chờ khoảng 3 phút sẽ thấy kết quả) Ví dụ 12: Một vật nhỏ dao động điều hòa x = 4.cos3ωt (cm) (t tính bằng giây). 1) Quãng đường mà vật đi được từ thời điểm t1 = 2/3 (s) đến thời điểm 13/3 s là bao nhiêu? A. 108 cm. B. 54 cm. C. 88 cm. D. 156 cm. 2) Quãng đường mà vật đi được từ thời điểm ban đầu đến thời điểm 4,5 s là bao nhiêu? A. 108 cm B. 54 cm. C. 80 cm. D. 156 cm. 3) Quãng đường mà vật đi được từ thời điểm ban đầu đến thời điểm 20/9 s là bao nhiêu? A. 48 cm. B. 54 cm. C. 72 cm. D. 60 cm. Hướng dẫn 13 2 t 2 t1 1) q 5 3 11 S q.2A 88cm Chọn C 2 0,5T 0,5. 3 t 2 t1 4,5 0 2) q 13,5 mà x t1 A S q.2A 108cm Chọn A. 2 0,5T 0,5. 3 20 0 t t q.2A 0, 4A S q.2A 0, 4A 20 3) q 2 1 9 Chọn B. 2 0,5T 3 51,17cm S 54, 49cm 0,5. 3 Cách 2: 20 0 t 2 t1 9 n 3 T 2 3
S n.4A
t2
t1 nT
A sin t dt 3.4.4
20 9
0 3.
3.4sin 3t dt 54 cm 2 3
(Bài này bấm máy thính chờ khoảng 3 phút sẽ thấy kết quả)
88
Ví dụ 13: Một chất điểm dao động điều hoà dọc theo trục Ox với phương trình: x = 2cos(2πt − π/12) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 17/24 đến thời điểm t2 = 25/8 (s) là A. 16,6 cm. B. 18,3 cm. C. 19,27 cm. D. 20 cm. Hướng dẫn Vị trí bắt đầu quét: 17 4 1 t1 2. 24 12 3 Góc cần quét: t 2 t1 0 O
B
25 17 2 2.2 6 2 6 8 24 2.4A
30
60
Sthem
U C TI O
N
S 2.4A A cos 609 A A A cos 300 19, 27 cm Chọn C.
1
C
0
4 3
5 6
TU
PR
O
D
Chú ý: Một số bài toán chưa cho biết T hoặc A thông qua bài toán phụ để ta xác định được các đại lượng đó rồi mới tính quãng đường. Ví dụ 14: Vật dao động điều hòa với phương trình li độ: x = 8cos(ωt + π/2) (cm) (t đo bằng giây). Sau thời gian 0,5 s kể từ thời điểm t = 0 vật đi được quãng đường 4 cm. Hỏi sau khoảng thời gian 12,5 s kể từ thời điểm t = 0 vật đi được quãng đường bao nhiêu? A. 100 cm. B. 68 cm. C. 50 cm. D. 132 cm. Hướng dẫn
AN
H
T 0,5 T 6 s 12
0
TH
4
YE
N
8
2T
2x 4A 64 cm
T S 64 4 68 cm Chọn B 12 4cm
G
U
t 12,5 s 2.6 0,5
8
S 4 cm
N
Chú ý: Một số bài toán chưa cho biết vị trí xuất phát thì thông qua bài toán phụ để ta xác định được vị trí xuất phát rồi mới tính quãng đường. Ví dụ 15: Một vật dao động điều hòa với biên độ 10 cm và tần số 2 Hz. Tại thời điểm t = 0 vật chuyển động theo chiều dương và đến thời điểm t = 2 s vật có gia tốc 802 2 (cm/s2). Quãng đường vật đi từ lúc t = 0 đến khi t = 2,625 s là A. 220,00cm. B. 210,00 cm. C. 214,14cm. D. 205,86 cm. Hướng dẫn 1 Chu kì và tần số góc: T 0,5 s ; 2f 4 rad / s . f Thời điểm t = 2 s = 4T vật trở lại trạng thái lúc t = 0. Như vậy, tại t = 0 vật chuyển động theo a A chiều dương và có gia tốc 802 2 (cm/s2) suy ra li độ lúc đầu: x 0 02 5 2 cm 2
89
5 2
0
10
5 2
T 8
10
T 8
Quãng đường vật đi tù lúc t = 0 đến khi t = 2,625 s: T t = 2,625(5) = 5.0,5 + 0,125= 5T 4 5x 4A 200 10 2
S 200 10 2 214,14 cm Chọn C.
U C TI O
N
Ví dụ 16: Một con lắc lò xo dao động điều hoà với biên độ 4 cm. Vật có khối lượng 250 g và độ cứng lò xo là 100 N/m. Lấy gốc thời gian lúc vật đi qua vị trí cân bằng theo chiều dương quy ước. Quãng đường vật đi được sau π/20 s đầu tiên và vận tốc của vật khi đó là A. 8 cm;−80 cm/s. B. 4 cm; 80 cm/s. C. 8 cm; 80 cm/s. D. 4 cm; −80 cm/s. Hướng dẫn
m s k 10 Lúc t = 0, vật đi qua vị trí cân bằng theo chiều dương sau π/20 s = T/2 đầu tiên vật qua vị trí cân bằng theo chiều âm với vận tốc là v A 80(cm / s) và quãng đường vật đã đi được là S = 2A = 8 cm => Chọn A. Ví dụ 17: Một vật dao động điều hoà với biên độ 4 cm và trong thời gian 5 s vật thực hiện được 10 dao động. Lúc t = 0 vật đi qua li độ x = −2 cm theo chiều dương quy ước. Quãng đường vật đi được sau 0,75 s đầu tiên và vận tốc của vật khi đó là
TU
PR
O
D
Chu kỳ: T 2
AN TH
t 5 0,5 s n 10
YE
N
Chu kỳ: T
B. 8 cm; 8 3 cm/s. D. 4 cm; −8π cm/s. Hướng dẫn
H
A. 24 cm; 8 3 cm/s. C. 8 cm; 8π cm/s.
N
G
U
A x 0,5A 2 cm T x 0 2 t 0,75 s 3. 2 Lúc t 0 : v 0,5A 3 8 3 cm / s Chọn A. v A 3 0 S 3.2A 24 cm 2 Chú ý: Nếu cho nhiều thời điểm khác nhau thì cần phải xử lý linh hoạt và phối họp nhiều thông tin của bài toán để tìm nhanh li độ, hướng chuyển động, vận tốc, gia tốc... Ví dụ 18: Một chất điểm dao động điều hoà trên trục Ox. Tại thời điểm t = 0 vật đi qua vị trí cân bằng O với tốc độ vmax. Đến thời điểm t1 = 0,05 s vật chưa đổi chiều chuyển động và tốc độ giảm
2 lần, đến thời điểm t2 =10t1 thì chất điểm đi được quãng dđường là 24 cm. Vận tốc cực đại của chất điểm là A. 4,8π cm/s. B. 30π cm/s. C. 12π cm/s. D. 24πcm/s. Hướng dẫn T A A Khi v thì x và t1 0, 05 T 0, 4 s 8 2 2
90
A 2
0 A
A
T 8
TU
PR
O
D
U C TI O
N
T 4 Đến thời điểm t2 =10t1 = 0,5 s = T + T/4 thì chất điểm đi được quãng đường 24cm 2 24cm S 4A A A 4,8 cm v max A 24 cm / s Chọn D. T Ví dụ 19: Một dao động điều hòa x = Acos(ωt − π/3), sau thời gian 2/3 s vật trở lại vị trí ban đầu và đi được quãng đường 8 cm. Tìm quãng đường đi được trong giây thứ 2013. A. 16 cm. B. 32 cm. C. 3228 cm. D. 8 cm. Hướng dẫn Vì sau thời gian 2/3 s vật trở lại vị trí ban đầu và đi được T T 3 T 2 s quãng đường 8 cm nên: 6 6 A A 8 A 8 cm 2 2 A/2 * Trong giây thứ 2013 (t = T/2) quãng đường đi được là: O S = 2A = 16 cm Chọn A.
2.2 Thời gian đi quãng đường nhất định
TH
AN
H
Phương pháp chung + Các trường hợp riêng: Quãng đường đi được sau nửa chu kỳ là 2A và sau nT/2 là n.2A.
3
N
G
U
YE
N
Quãng đường đi được sau một chu kỳ là 4A và sau mT là m.4A. Nếu vật xuất phát từ vị trí cân bằng (x(t1) = 0) hoặc vị trí biên (x(t1) = ±A) thì quãng đường đi được sau 1/4 chu kì là A và sau nT/4 là nA. + Các trường hợp khác: Phối hợp vòng tròn lượng giác với trục thời gian để xác định. Ví dụ 1: Một vật dao động điều hoà dọc theo phương trình: x = 5cos(2π/3 − π/3) (cm). Kể từ thời điểm t = 0, sau thời gian bao lâu thì vật đi được quãng đường 7,5 cm? A. 1,25 s. B. 1,5 s. C. 0,5 s. D. 0,25 s. Hướng dẫn Thời gian ngắn nhất đi từ x = A/2 đến x = A rồi đến x = 0 T T 5 2 1, 25 s Chọn A. là: t min . 9 4 12 Chú ý: + Nếu S < 4A thì t < T. 5cm + Nếu S > 4A thì t > T: A O 2,5cm S n.4A them nT T S 2 nT t T t them t nT S n.4A S 2A 1 2 T nT 3 l 2
91
Ví dụ 2: Một vật dao động điều hoà dọc theo trục Ox (O là vị trí cân bằng) có phương trình: x = 5cos(2πt/3 − π/3) (cm). Hỏi sau thời gian bao lâu thì vật đi được quãng đường 90 cm kể từ thời điểm ban đầu t = 0? A. 7,5 s. B. 8,5 s. C. 13,5 s. D. 8,25 s. Hướng dẫn S 90cm 4.20 10 4.4A 2A 4T
0,5T
2 13,5 s Chọn B Ví dụ 3: Một vật dao động điều hoà, cứ sau 1/8 s thì động năng lại bằng thế năng. Quãng đường vật đi được trong 0,5 s là 16 cm. Vận tốc cực đại của dao động là A. 8π cm/s. B. 32 cm/s. C. 32πcm/s. D. 16πcm/s. Hướng dẫn T 1 Khoảng thời gian giữa hai lần liên tiếp: Wt Wd : s T 0,5 s 4 8
U C TI O
N
t 4T 0,5T 4,5T 4,5
Quãng đường đi được trong 1 chu kỳ (0,5s) là 4A 16 A 4 cm
2 A 16 cm / s Chọn D. T Ví dụ 4: Một vật dao động điều hoà xung quanh vị trí cân bằng O. Ban đầu vật đi qua O theo chiều dương. Đến thời điểm t = π/15 (s) vật chưa đổi chiều chuyển động và tốc độ còn lại một nửa so với ban đầu. Đến thời điểm t = 0,3π (s) vật đã đi được quãng đường 12 cm. Tốc độ cực đại của vật là A. 20 cm/s. B. 25 cm/s. C. 30 cm/s. D. 40 cm/s. Hướng dẫn x1 0 T v2 x 2 2 A2 1 A 3 t1 6 15 T 0, 4 s v 2 A x 2 2 2 3T t 2 0,3 S 3 12 cm A 4 cm 4 2 v max A A 20 cm / s Chọn A. T Ví dụ 5: Một vật dao động điều hoà với phương trình x = Acos(2π/T + π/3) cm (t đo bằng giây). Sau thời gian 19T/12 kể từ thời điểm ban đầu vật đi được quãng đường 19,5 cm. Biên độ dao động là: A. 3 cm. B. 2 cm. C. 4 cm. D. 5 cm. Hướng dẫn Dùng vòng tròn lượng giác: 1 3 2 .0 Vị trí bắt đầu quét: 1 t1 7 T 3 3 6 2 19T Góc cần quét: t 2 t1 . 0 C O B T 12
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
v max A
92
6 2 12
1x2 1x 4A
Sthem BO OC CO A cos A A 3
S 4A Sthem 6,5A
19,5 6,5A A 3 cm Chọn A. Ví dụ 6: Một vật dao động điều hoà với phương trình x = Acos(ωt + π/3) cm (t đo bằng giây). Tính từ lúc t = 0 quãng đường vật đi được trong thời gian 1 s là 2A và trong 2/3 s là 9 cm. Giá trị của A và ω là A. 12 cm và π rad/s. B. 6 cm và π rad/s. C. 12 cm và 2π rad/s. D. 6 cm và 2π rad/s. Hướng dẫn Quãng đường đi được trong thời gian 0,5T luôn là 2A nên:
t
N
2 rad / s T
U C TI O
0,5 1 s T 2 s
2 T T T 3 3 12 4
T 4
O
O
3
T 12
A 2
PR
S 1,5A hay 9 1,5A A 6 cm Chọn B
D
Dựa vào vòng tròn lượng giác tính được:
1
TU
BÀI TẬP TỰ LUYỆN
H
Bài 1: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong khoảng thời gian T/3, quãng đường lớn nhất mà vật có thể đi được là
TH
AN
A. A B. 1,5.A. C. A 2 D. A. 3 Bài 2: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong khoảng thời gian T/3, quãng đường lớn nhất mà vật có thể đi được là
YE
N
A−A− B. 1,5A. C. A. 3 D. A 2 Bài 3: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong khoảng thời gian T/4, quãng đường nhỏ nhất mà vật có thể đi đươc là
N
G
U
A. ( 3 − 1)A. B. 1,5.A. C. A 3 D. A. (2 − 2 ). Bài 4: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Trong khoảng thời gian T/6, quãng đường nhỏ nhất mà vật có thể đi được là A. ( 3 − 1)A.
C. A 2 3
B. 1,5.A.
D. A. (2 −
2 ).
Bài 5: Một chất điểm dao động điều hòa trên trục Ox với chu kỳ T và biên độ A. Vị trí cân bằng của chất điểm trùng với gốc tọa độ. Trong khoảng thời gian Δt (0 < Δt < T/2), quãng đường lớn nhất và nhỏ nhất mà vật có thể đi được lần lượt là Smax và Smin. Lựa chọn phương án đúng. A. Smax = 2Asin(πΔt/T); Smin = 2Acos(πΔt/T). B. Smax = 2Asin(πΔt/T); Smin = 2A − 2Acos(πΔt/T). C. Smax = 2Asin(2πΔt/T); Smin = 2Acos(2 πΔt/T). D. Smax = 2Asin(2πΔt/T); Smin = 2A − 2Acos(2 πΔt/T). Bài 6: Một vật dao động điều hòa với phương trình x = 4cos(4πt + π/3) cm (với t đo bằng giây). Tính quãng đường lớn nhất mà vật đi được trong khoảng thời gian 1/6 (s). A.
3cm.
B. 3 3cm.
C. 2 3 cm.
93
D. 4 3cm.
U C TI O
N
Bài 7: Một chất điểm dao động điều hòa với biên độ A và chu kì T. Trong khoảng thời gian T/3 chất điểm không thể đi được quãng đường bằng: A. 1,6A. B. 1,7A. C. 1,5A. D. 1,8A. Bài 8: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A. Trong khoảng thời gian 1 (s), quãng đường nhỏ nhất mà vật có thể đi được là A. Chu kì dao động điều hòa là A. 5 (s). B. 3 (s). C. 4 (s). D. 2,5 (s). Bài 9: Một chất điểm dao động điều hòa dọc theo trục Ox. Trong khoảng thời gian 1/3 (s) vật đi được quãng đường lớn nhất bằng biên độ. Tần số dao động của vật là A. 2,00 Hz. B. 0,25 Hz. C. 0,75 Hz. D. 0,50 Hz. Bài 10: Một vật dao động điều hòa với biên độ 10cm. Quãng đường nhỏ nhất mà vật đi được trong 0,5 s là 10 cm. Tính tốc độ lớn nhất của vật. A. 39,95 cm/s. B. 41,9 cm/s. C. 40,65 cm/s. D. 41,2 cm/s. Bài 11: Một vật dao động điều hòa với biên độ A và chu kỳ T. Thời gian ngắn nhất để vật đi được
YE
N
TH
AN
H
TU
PR
O
D
quãng đường có độ dài A 2 là A. T/8. B. T/4. C. T/6. D. T/12. Bài 12: Một vật dao động điều hòa với biên độ A và chu kì T. Thời gian ngắn nhất để vật đi được quãng đường có độ dài A là A. T/6. B. T/4. C. T/3. D.T/8. Bài 13: Một vật dao động điều hòa với biên độ A và chu kì T. Thời gian dài nhất để vật đi được quãng đường có độ dài A là A.T/6. B. T/4. C. T/3. D. T/8. Bài 14: Chọn phương án sai khi nói về vật dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng), với biên độ A và chu kì T. A. Thời gian ngắn nhất vật đi từ vị trí có biên đến vị trí mà tại đó động năng bằng một nửa giá trị cực đại là T/8. B. Để đi được quãng đường A cần thời gian tối thiểu là T/6. C. Quãng đường đi được tối thiểu trong khoảng thời gian T/3 là A. D. Thời gian ngắn nhất vật đi từ vị trí có li độ cực đại đến vị trí mà tại đó vật đi theo chiều dương đồng thời lưc kéo về có độ lớn bằng nửa giá trị cực đại là T/6. Bài 15: Một vật dao động điều hòa trên trục Ox. Gọi t1 và t2 lần lượt là khoảng thời gian ngắn nhất và dài nhất để vật đi được quãng đường bằng biên độ. Tỉ số t1 /t2 bằng
N
G
U
A. 2. B. 1/2. C. 1/3. D. 0,5 2 . Bài 16: Một vật dao động điều hòa với chu kỳ T và biên độ A. Quãng đường vật đi được tối đa trong khoảng thời gian 2T/3 là A. 3A B. A C. 3 A. D. 1,5A 3 . Bài 17: Một vật dao động điều hòa với biên độ A = 6 cm và chu kỳ T = 1,2 s. Quãng đường lớn nhất mà vật đi được trong khoảng thời gian 2 s là A. 34,4 cm. B. 42 cm. C. 30 cm. D. 30 3 cm. Bài 18: Một vật dao động điều hòa với chu kỳ T và biên độ A. Quãng đường vật đi được tối đa trong khoảng thời gian 7T/6 là A. 5A B. A C. 3 A. D. 1,5A 3 . Bài 19: Một chất điểm dao động điều hòa theo phương trình x = 5cos4πt (cm) (với t đo bằng s). Trong khoảng thời gian 7/6 (s). Quãng đường lớn nhất vật có thể đi được là A. 42,5 cm.
B. 48,66 cm.
C. 45 cm.
94
D. 30 3 cm
Bài 20: Một vật dao động điều hòa với biên độ 4cm. Quãng đường nhỏ nhất mà vật đi được trong 1s là 20 cm. Hãy tính gia tốc lớn nhất của vật. Lấy π2 =10. A. 4,82 m/s2. B. 248,42 cm/s2. C. 3,96 m/s2. D. 284,44 cm/s2. Bài 21: Một vật dao động điều hòa với biên độ 6 cm. Quãng đường nhỏ nhất mà vật đi được trong một giây là 18 cm. Hỏi ở thời điểm kết thúc quãng đường đó thì tốc độ của vật là bao nhiêu? A. 31,4 cm/s. B. 26,5 cm/s. C. 27,2 cm/s. D. 28,1 cm/s. Bài 22: Một vật dao động điều hòa với biên độ A và chu kì T. Thời gian ngắn nhất để vật đi được quãng đường có độ dài 9A là A. 13T/6. B. 13T/3. C. T/6. D. T/4. Bài 23: Cho vật dao động điều hòa biên độ A, chu kì T. Quãng đường lớn nhất mà vật đi được trong khoảng thời gian 5T/4 là
TU
PR
O
D
U C TI O
N
A. 2,5A. B. 5A. C. A(4 + 3 ). D. A(4 + 2 ). Bài 24: Một vật dao động điều hòa với chu kì T và biên độ A. Quãng đường vật đi được tối đa trong khoảng thời gian 5T/3 là A. 3A. B. 5A. C. 6,5A. D. 7A. 1.C 2.C 3.D 4.C 5.B 6.D 7.D 8.B 9.D 10.B 11.B 12.A 13.C 14.D 15.B 16.A 17.B 18.A 19.B 20.D 21.C 22.A 23.D 24.D PHẦN 2 Bài 1: Nếu phương trình dao động x = 4.cos(3πt + π/3) (cm) (t tính bằng giây) thì đường mà vật đi được từ thời điểm ban đầu đến thời điểm 11/3 s là bao nhiêu? A. 36 cm. B. 44 cm. C. 40 cm. D. 88 cm. Bài 2: Một con lắc lò xo gồm lò xo có độ cứng k = 200 N/m và vật có khối lượng m = 200g. Con
N
G
U
YE
N
TH
AN
H
lắc dao động điều hòa với biên độ 4 cm. Tổng quãng đường vật đi được trong 0,04π 10 s đầu tiên là A. 16 cm. B. 24 cm. C. 48 cm. D. 32 cm. Bài 3: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 5cos(2πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 13,25 (s) đến thời điểm t2 = 16,75 (s) là: A. 125 cm. B. 45 cm. C. 70 cm. D. 35 cm. Bài 4: Một vật dao động điều hòa theo phương trình x = l,25cos(2πt − π/12) (cm) (t đo bằng giây). Quãng đường vật đi được sau thời gian t = 2,5 s kể từ t = 0 là A. 7,9 cm. B. 22,5 cm. C. 7,5 cm. D. 12,5 cm. Bài 5: Một vật nhỏ dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình dao động x = 3.cos(3πt) (cm) (t tính bằng giây) thì đường mà vật đi được từ thời điểm ban đầu đến thời điểm 3 s là A. 24 cm. B. 54 cm. C. 36 cm. D. 12 cm. Bài 6: Một con lắc lò xo gồm một lò xo có độ cứng k = 100 N/m và vật có khối lượng m = 250 g, dao động điều hòa với biên độ A = 6 cm. Chọn gốc thời gian t = 0 lúc vật qua vị trí cân bằng. Quãng đường vật đi được trong 0,1π (s) đầu tiên là A. 9 cm. B. 24 cm. C. 6 cm. D. 12 cm. Bài 7: Một con lắc lò xo gồm một lò xo có độ cứng k = 100 N/m và vật có khối lượng m = 250g, dao động điều hòa với biên độ A = 4 cm. Chọn gốc thời gian t = 0 lúc vật cách vị trí cân bằng 2 cm. Quãng đường vật đi được trong 0,1π (s) đầu tiên là A. 9 cm. B. 24cm. C. 16 cm. D. 12 cm. Bài 8: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 5cos(2πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 161/12 (s) đến thời điểm t2 = 103/6 (s) là A. 125 cm. B. 45 cm. C. 70 cm. D. 75 cm.
95
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
Bài 9: Một chất điểm dao động điều hòa trên trục Ox có phương trình x = 4cos(4πt − π/2) (cm). Trong 1,125 s đầu tiên vật đã đi được một quãng đường là: A. 32 cm. B. 36 cm. C. 48 cm. D. 24 cm. Bài 10: Một con lắc lò xo dao động với phương trình: x = 4cos4πt cm (t đo bằng giây). Quãng đường vật đi được trong thời gian 2,875 (s) kể từ lúc t = 0 là: A. 16 cm. B. 32 cm. C. 64 cm. D. 92 cm. Bài 11: Một vật dao động điều hòa với phương trình x = 5cosπt cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm ban đầu đến thời điểm t = 3,5 s là A. 35 cm. B. 2,5 cm. C. 1 cm. D. 0 cm. Bài 12: Một con lắc gồm một lò xo có độ cứng 100π (N/m) và một vật có khối lượng 250/π (g), dao động điều hòa với biên độ 6 cm. Khi t = 0 vật qua vị trí cân bằng thì quãng đường vật đi được trong 0,125 s đầu tiên là A. 24 cm. B. 12 cm. C. 6 cm. D. 30 cm. Bài 13: Một con lắc đơn gồm một hòn bi nhỏ khối lượng m, treo vào một sợi dây không dãn, khối lượng sợi dây không đáng kể. Khi con lắc đơn này dao động điều hòa với chu kì 3 s thì hòn bi chuyển động trên một cung tròn dài 4 cm. Thời gian 0,75 s kể từ lúc đi qua vị trí cân bằng hòn đi được một đoạn đường là A. 4 cm. B. 3 cm. C. 1 cm. D. 2 cm. Bài 14: Một vật nhỏ dao động điều hòa có biên độ A, chu kl dao động T, ở thời điểm ban đầu t = 0 vật đang ở vị trí biên. Quãng đường mà vật đi được từ thời điểm ban đầu đến thời điểm t = T/3 là A. A/2 B. 2A. C. 1,5A. D. A/4. Bài 15: Một con lắc lò xo gồm một lò xo có độ cứng 100 N/m và vật có khối lượng 250 g, dao động điều hòa với biên độ 6 cm. Chọn gốc thời gian t = 0 lúc vật qua vị trí cân bằng. Quãng đường vật đi được trong 0,7π/12 (s) đầu tiên là A. 9 cm. B. 27 cm. C. 6 cm. D. 15 cm. Bài 16: Một vật dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình: x = 5.sin(2πt + π/6) cm (t đo bằng giây). Xác định quãng đường vật đi được từ thời điểm t = 1 (s) đến thời điểm t = 13/6 (s). A. 32,5 cm. B. 5 cm. C. 22,5 cm. D. 17,5 cm. Bài 17: Một vật dao động điều hòa dọc theo trục Ox với phương hình: x = 6cos(4πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm ban đầu đến thời điểm t = 8/3 (s) là A. 134,5 cm. B. 126 cm. C. 69 cm. D. 21 cm. Bài 18: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 6cos(4πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 8/3 (s) đến thời điểm t2 = 37/12 (s) là A. 34,5 cm. B. 103,5 cm. C. 69 cm. D. 21 cm. Bài 19: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 6sin(4πt + π/6) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm ban đầu đến thời điểm t = 37/12 (s) là A. 34,5 cm. B. 103,5 cm. C. 147 cm. D. 121 cm. Bài 20: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 6cos(4πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 13/6 (s) đến thời điểm t2 = 37/12 (s) là A. 34,5 cm. B. 45 cm. C. 69 cm. D. 21 cm. Bài 21: Một vật dao động điều hòa với biên độ 10 cm và tần số 2 Hz. Tại thời điểm t = 0 vật chuyển động ngược chiều dương và đến thời điểm t = 2 s vật có gia tốc 80π2 2 (cm/s2). Quãng đường vật đi từ lúc t = 0 đến khi t = 2,625 s là A. 220,00 cm. B. 210,00 cm. C. 214,14 cm. D. 205,86 cm.
96
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
Bài 22: Một chất điểm dao động điều hòa dọc theo trục Ox với phương trình: x = 6cos(4πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 2/3 đến thời điểm t2 = 37/12 (s) là A. 121 cm. B. 117 cm. C. 96cm. D. 141 cm. Bài 23: Một chất điểm dao động điều hòa dọc theo trục Ox với phương trình: x = 12cos(50t − π/2) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 0 đến thời điểm t2 = π/12 (s) là A. 90 cm. B. 96 cm. C. 102 cm. D. 108 cm. Bài 24: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 7cos4πt cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 1/12 (s) đến thời điểm t2 = 0,125 (s) là A. 3,5 cm. B. 7 cm. C. 4,5 cm. D. 2,3 cm. Bài 25: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 7cos4πt cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 1/12 (s) đến thời điểm t2 = 0,625 (s) là A. 31,5 cm. B. 3,5 cm. C. 29,5 cm. D. 30,3 cm. Bài 26: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 7cos4πt cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 1/12 (s) đến thời điểm t2 = 1,225 (s) là A. 31,5 cm. B. 66,2 cm. C. 29,5 cm. D. 30,3 cm. Bài 27: Một vật dao động điều hòa theo phương trình x = 9cos(10πt − π/3) cm (t đo bằng giây). Trong khoảng thời gian 1/15 (s) kể từ lúc bắt đầu dao động vật đi được quãng đường là: A. 6 (cm). B. 12 (cm). C. 8 (cm). D. 9 (cm). Bài 28: Một vật dao động điều hòa theo phương trình x = 9cos(10πt − π/3) cm (t đo bằng giây). Trong khoảng thời gian 4/15 (s) kể từ lúc bắt đầu dao động vật đi được quãng đường là: A. 36 (cm). B. 50 (cm). C. 48 (cm). D. 45 (cm). Bài 29: Một vật dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình: x = 5.cos(2πt − π/3) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t1 = 1 (s) đến thời điểm t2 = 7/6 (s) là A. 2,5 cm. B. 5 cm. C. 3,3 cm. D. 7,5 cm. Bài 30: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 6cos(4πt + π/6) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm ban đầu đến thời điểm t = 37/12 (s) là: A. 148 cm. B. 149 cm. C. 147 cm. D. 121 cm. Bài 31: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 6sin(4πt + π /6) cm (t đo bằng giây). Quãng đường vật đi được từ thời điểm t = 0,5 s đến thời điểm t = 43/12 (s) là: A. 148 cm. B. 145 cm. C. 147 cm. D. 120 cm. Bài 32: Một vật nhỏ dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình dao động x = 5.cos2πt (cm) (t tính bằng giây). Quãng đường vật đi được từ thời điểm ban đầu đến thời điểm 7/6 (s) là A. 9 cm. B. 22,5 cm. C. 24 cm. D. 23,3 cm. Bài 33: Một vật nhỏ dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình dao động x = 4.sin3πt (cm) (t tính bằng giây). Quãng đường vật đi được từ thời điểm ban đầu đến thời điểm 41/18 s là A. 9 cm. B. 52 cm. C. 54,7 cm. D. 54 cm. Bài 34: Một vật nhỏ dao động điều hòa có biên độ A, chu kì dao động T, ở thời điểm ban đầu t0 = 0 vật đang ở vị trí biên. Quãng đường mà vật đi được từ thời điểm ban đầu đến thời điểm t = T/3 là A. 1,5A. B. 4A/3. C. 2A. D. 2,5A. Bài 35: Một con lắc lò xo gồm một lò xo có độ cứng 100 N/m và vật có khối lượng 250 g, dao động điều hòa với biên độ 6 cm. Chọn gốc thời gian t = 0 lúc vật qua vị trí cân bằng. Quãng đường vật đi được trong 0,7π /6 (s) đầu tiên là A. 28 cm. B. 15 cm. C. 29 cm. D. 27 cm.
97
Bài 36: Một vật dao động điều hòa theo phương trình x = 9.cos(2πt − π/3) cm (t đo bằng giây). Trong khoảng thời gian 5/12 (s) kể từ lúc bắt đầu dao động vật đi được quãng đường là A. 6(cm). B. 15 (cm). C. 13,5 (cm). D. 9 (cm). Bài 37: Một vật dao động điều hòa theo phương trình x = 4.cos(ωt – 2π/3) (cm) (t đo bằng giây). Trong khoảng thời gian 1/3 chu kì kể từ lúc bắt đầu dao động vật đi được quãng đường là: A. 6 (cm). B. 4 (cm). C. 8 (cm). D. 5,3 (cm). Bài 38: Một vật dao động điều hòa theo phương trình x = 4,5cos(10πt − π/3) cm (t đo bằng giây). Trong khoảng thời gian 1,25 (s) kể từ lúc bắt đầu dao động vật đi được quãng đường là: A. 126 (cm) B. 120 (cm). C. 112,5(cm). D. 110,85 (cm). Bài 39: Con lắc lò xo treo thẳng đứng, gồm lò xo độ cứng 100 (N/m) và vật nặng khối lượng 100
U C TI O
N
(g). Giữ vật theo phương thẳng đứng làm lò xo dãn 3 (cm), rồi truyền cho nó vận tốc 20π 3 (cm/s) hướng lên. Lấy π2 = 10; g = 10 (m/s2). Trong 1/4 chu kỳ kể từ lúc bắt đầu chuyển động quãng đường vật đi được là A. 5,46 (cm). B. 4,00 (cm). C. 4,58 (cm). D. 2,54 (cm).
4.D 14.C 24.A 34.A
5.B 15.D 25.A 35.C
AN
3.C 13.D 23.C 33.D
TH
2.D 12.D 22.B 32.B 42.A
6.B 16.C 26.B 36.C
7.C 17.B 27.D 37.A
8.D 18.D 28.D 38.D
9.B 19.C 29.A 39.A
10.D 20.B 30.B 40.C
N
1.D 11.A 21.D 31.C 41.B
H
TU
PR
O
D
Bài 40: Một vật dao động với phương trình x = 4 2 cos(5πt – 3π/4) (cm) (t đo bằng giây). Quãng đường vật đi từ thời điểm t1 = 0,ls đến t2 = 6 s là A. 84,4 cm. B. 333,8 cm. C. 331,4cm. D. 337,5 cm. Bài 41: Một vật dao động theo phương trình x = 4cos(3πt + π/3) (cm) (trong đó t tính bằng giây). Quãng đường mà vật đi được từ thời điểm ban đầu đến thời điểm 11/3 s là A. 44 cm. B. 88 cm. C. 36 cm. D. 132 cm. Bài 42: Một con lắc lò xo dao động điều hòa với biên độ 6 cm và chu kì 1 s. Tại thời điểm t = 0, vật đi qua vị trí cân bằng theo chiều âm của trục tọa độ. Tổng quãng đường đi được của vật trong khoảng thời gian 2,375 s kể từ thời điểm được chọn làm gốc là A. 55,76 cm. B. 48 cm. C. 42 cm. D. 50 cm.
N
G
U
YE
PHẦN 3 Bài 1: Một con lắc lò xo gồm một lò xo có độ cứng 100 N/m và vật có khối lượng 250g, dao động điều hoà. Quãng đường vật đi được trong 0,05π (s) là 12 cm. Tính biên độ. A. 4 cm. B. 6 cm. C. 16cm. D. 2 cm. Bài 2: Một chất điểm dao động điều hòa trên trục Ox. Tại thời điểm t = O vật đi qua vị trí cân bằng O với tốc độ v0, đến thời điểm t = 0,05 s vật chưa đổi chiều chuyển động và tốc độ đã giảm 2 lần, đến thời điểm t = 0,5 s thì chất điểm đã đi được quãng đường là 24 cm. Giá trị của v0 là A. 20π cm/s. B. 24π cm/s. C. 30π cm/s. D. 40π cm/s. Bài 3: Một vật dao động điều hòa xung quanh vị trí cân bằng O. Ban đầu vật đi qua O theo chiều dương. Đến thời điểm t = 1/3 (s) vật chưa đổi chiều chuyển động và tốc độ còn lại bằng 0,5 3 lần tốc độ ban đầu. Đến thời điểm t = 5/3 (s) vật đã đi được quãng đường 6 cm. Tốc độ cực đại của vật là A. 2π cm/s. B. 3π cm/s. C. π cm/s. D. 4π cm/s. Bài 4: Vật dao động điều hòa với tần số f = 0,5 Hz. Tại t = 0, vật có li độ x = 4 cm và vận tốc v = +4π cm/s. Quãng đường vật đi được sau thời gian t = 2,25 s kể từ khi bắt đầu chuyển động là A. 24,28 cm. B. 26,34 cm. C. 24,34 cm. D. 30,63 cm.
98
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
Bài 5: Con lắc lò xo dao động với phương trình x = Acos(2πt − π/2) cm (t đo bằng giây). Trong khoảng thời gian 5/12 s đầu tiên kể từ thời điểm ban đầu con lắc đi được quãng đường 6 cm. Biên độ dao động là A. 6 cm. B. 2 cm. C. 5 cm. D. 4 cm. Bài 6: Một vật dao động điều hòa với phương trình x = Acos(2πt/T + π/3) cm. Sau thời gian 7T/12 kể từ thời điểm ban đầu vật đi được quãng đường 10 cm. Biên độ là A. 30/7 cm. B. 6 cm. C. 4 cm D. 8 cm. Bài 7: Một vật dao động điều hòa với phương trình x = Acos(ωt + π/3) cm (t đo bằng giây). Kể từ thời điểm t = 0, quãng đường vật đi được trong thời gian 2 s là 4A và trong 2/3 s là 12 cm. Giá trị của A là: A. 7,2 cm. B. 8 cm. C. 12 cm. D. 6,4 cm. Bài 8: Vật dao động điều hòa theo phương trình x = 10cos(πt – 2π/3) cm (t đo bằng giây). Thời gian vật đi quãng đường 5 cm kể từ lúc bắt đầu chuyển động là A. 1/4 (s). B. 1/2 (s). C. 1/6 (s). D. 1/12 (s). Bài 9: Vật dao động điều hòa với phương trình x = 6cosωt (cm). Sau khoảng thời gian 1/30 (s) kể từ thời điểm ban đầu vật đi được quãng đường 9 cm. Tần số góc của vật là A. 20π (rad/s). B. 15π (rad/s). C. 25π (rad/s). D. 10π (rad/s). Bài 10: Vật dao động điều hòa theo phương trình x = 5sm(10πt − π/2) (cm) (t đo bằng giây). Thời gian vật đi quãng đường 12,5 cm kể từ lúc bắt đầu chuyển động là A. 1/15 s. B. 2/15 s. C. 1/30 s. D. 1/12 s. Bài 11: Một vật dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình: x = 2cos(2πt + π/2) (cm). Hỏi sau thời gian bao lâu thì vật đi được quãng đường 99 cm kể từ thời điểm ban đầu t = 0? A. 11,25 s. B. 12,25 s. C. 12,08 s. D. 12,42 s. Bài 12: Một vật dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình: x = 10cos(πt + π/3) (cm). Hỏi sau thời gian bao lâu thì vật đi được quãng đường 30 cm kể từ thời điểm ban đầu t = 0? A. 1,25 s. B. 1,5 s. C. 0,5 s. . D. 4/3 s. Bài 13: Một vật nhỏ nặng 1,6 kg dao động điều hòa với phương trình li độ x = 4sinωt (cm). Trong khoảng thời gian π/30 s đầu tiên kể từ thời điểm t =0, vật đi được 2 cm. Độ cứng của lò xo là A. 30 N/m. B. 40 N/m. C. 50 N/m. D. 6 N/m. Bài 14: Một chất điểm thực hiện dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng). Biết rằng tại thời điểm ban đầu t = 0, vật qua vị trí có động năng bằng thế năng và đang hướng về vị trí cân bằng theo chiều dương, đến thời điểm t = 0,025 s thế năng đạt giá trị cực tiểu lần thứ nhất và
N
vật đã đi được quãng đường 4 2 cm. Phương trình dao động của chất điểm là A. x = 8cos(10πt− 3π/4) cm. B. x = 8cos(10πt + π/4) cm. C. x = 4 2 cos(5πt – 2π/3) cm. D. x = 4 2 cos(5πt + 2π/3) cm. Bài 15: Vật dao động điều hòa theo phương trình li độ x = 4sin(20t − π/6) (cm). Tốc độ của vật sau khi đi quãng đường s = 2 cm (kể từ t = 0) là . A. 69,3 cm/s. B. 0 cm/s. C. 80 cm/s. D. 1 cm/s. Bài 16: Một vật dao động điều hòa trên trục Ox có phương trình x = Acos(πt + φ). Tại thời điểm ban đầu vật ở vị trí có toạ độ x = −A. Sau t1 = π/30 (s) vận tốc chưa một lần giảm và có độ lớn bằng1/2 vận tốc cực đại của nó. Sau t2 = 4π/15 (s) vật đã đi được 10 cm. Giá trị của A và ω là A. 5 cm và 10 rad/s. B. 5 cm và 5 rad/s. C. 4 cm và 10 rad/s. D. 4 cm và 5 rad/s. Bài 17: Chọn phương án sai. Một vật nhỏ đang dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) với biên độ A, với chu kì T. Quãng đường mà vật đi được trong khoảng thời gian A. T/4 kể từ khi vật ở vị trí cân bằng là A.
99
B. T/4 kể từ khi vật ở vị trí mà tốc độ dao động triệt tiêu là A. C. T/2 là 2A. D. T/4 không thế lớn hơn A. Bài 18: Một vật dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình: x = 2cos(2πt + π/2) (cm). Hỏi sau thời gian bao lâu thì vật đi được quãng đường 97 cm kể từ thời điểm ban đầu t = 0? A. 11,25 s. B. 12,25 s. C. 12,08 s. D. 12,42 s. Bài 19: Vật dao động điều hòa theo phương trình x = 10sin(πt − π/6) (cm) (t đo bằng giây). Thời gian vât đi quãng đường 5 cm kể từ lúc bắt đầu chuyển đông là: A. 0.25 s. B. 0.5 s C. 1/6 s. D. 1/12 s. 10.B 20.
TU
PR
O
D
U C TI O
N
1.B 2.B 3.A 4.A 5.D 6.C 7.B 8.C 9.A 11.D 12.D 13.B 14.A 15.C 16.D 17.D 18.C 19.C Dạng 4. BÀI TOÁN LIÊN QUAN ĐẾN VỪA THỜI GIAN VỪA QUÃNG ĐƯỜNG 1. Vận tốc trung bình và tốc độ trung bình 1.1. Tính vận tốc trung bình và tốc độ trung bình Phương pháp chung: Do doi x x 2 x1 x1 A cos t Vận tốc trung bình: v Thoi gian t t 2 t1 x 2 A cos t 2 Tốc độ trung bình: Quang duong S S v (Dùng vòng tròn LG hoặc PTLG để tính S ) Thoi gian t t 2 t1
N
G
U
YE
N
TH
AN
H
Vận tốc trung bình có thể âm, dương hoặc bằng 0 nhưng tốc độ trung bình luôn dương. Ví dụ 1: Một chất điểm dao động với phương trình: x = 3,8cos(20t − π/3) (cm) (t đo bằng s). Vận tốc trung bình của chất điểm sau 1,9π/6 (s) tính từ khi bắt đầu dao động là A. 500/π (m/s). B. 150/π (cm/s). C. 6/π (m/s). D. 6/π (cm/s). Hướng dẫn 1,9 x 0 3,8cos 23.0 1,9 cm ; x 1,9 / 6 3,8cos 20. 3,8 cm 3 6 3 x x 2 x1 3,8 1,9 6 Vận tốc trung bình: v cm / s Chọn D. 1,9 t t 6 Ví dụ 2: Một chất điểm dao động với phương trình: x = 3,8cos(20t − π/3) (cm) (t đo bằng s). Tốc độ trung bình của chất điểm sau 1,9π/6 (s) tính từ khi bắt đầu dao động là A. 500/π (m/s). B. 150/π (cm/s). C. 6/π (m/s). D. 6/π (cm/s). Hướng dẫn Cách 1: Dùng vòng tròn lượng giác để tính quãng đường đi được. Pha dao động: 20t / 3 A 2
Vị trí bắt đầu quét 1 20.0 3 3
O
Góc cần quét: 1,9 t 2 t1 20 0 6
1,9cm
1
100
3
3.2
3
3x 4A 12A 45.6
Sthem 0,5A 1,9
S 45, 6 1,9 47,5 cm Tốc độ trung bình: v
S 47,5 150 cm / s Chọn B. t 1,9 6
A sin t dt 3.4.3,8
1,9 6
0 3. 10
t1 nT
20.3,8sin 20t dt 3
U C TI O
S n.4A
t2
N
1,96 0 t 2 t1 6 n 3 2 T 20
S 47,5 150 cm / s Chọn B. t 1,9 6 Quy trình bấm máy tính giải nhanh t2 m.2A A sin t dt S t1 mT / 2 x A cos t v t t t 2 t1 2 1 t t m 2 1 t2 0,5T m.2A A cos t dt t1 mT / 2 x A sin t v S t 2 t1 t 2 t1
TH
AN
H
TU
PR
O
D
Tốc độ trung bình: v
N
G
U
YE
N
t2 n.4A A sin t dt S t1 nT x A cos t v t t t 2 t1 2 1 t t m 2 1 t2 T n.4A A cos t dt t1 nT x A sin t v S t 2 t1 t 2 t1 Ví dụ 3: Một vật dao động điều hoà x = 6cos(4πt − π/3) cm (t đo bằng giây). Tốc độ trung bình của vật từ thời điểm t1 = 13/6 (s) đến thời điểm t2 = 37/12 (s) là A. 49,09 cm/s. B. 40,54 cm/s. C. 54,59 cm/s. D. 45 cm/s. Hướng dẫn
t2
37 13 m.2A A sin t dt t 2 t1 12 6 t1 mT / 2 m 3, 67 3 v t 2 t1 0,5T 0,5.0,5
101
37 12
3.2.6
13 3x 0,5/ 2 6
4.6sin 4t dt 3
49, 09 cm / s Chọn A. 37 13 12 6 (Bài này bấm máy tính chờ khoảng 5 giây sẽ thấy kết quả) Chú ý: Cách dùng máy tính chiếm ưu thế vượt trội so với các truyền thống. Bài toán tìm quãng đường đi được hoặc tốc độ trung bình từ t1 đến t2 nếu giải theo cách truyền thống thì học sinh có học lực trung bình trở xuống thường “bị dị ứng", nhưng nếu giải theo cách mới thì mọi chuyện sẽ ổn. Tuy nhiên, đã nói xuôi thì cũng nói ngược lại, không có cách giải nào là vạn năng cả “cao nhân ắt có cao nhân trị". Ta sẽ thấy ở các ví dụ tiếp theo. Ví dụ 4: Một chất điểm dao động theo phương trình x = 14cos(4πt + π/3) (cm). Vận tốc trung bình và tốc độ trung bình trong khoảng thời gian kể từ t = 0 đèn khi vật đi qua vị trí cân bằng theo chiều dương lần thứ nhất lần lượt là A. – 24 cm/s và 120 cm.s B. 24 cm/s và 120 cm/s. C. 120 cm/s và 24 cm/s. D. −120 cm/s và 24 cm/s. Hướng dẫn Khoảng thời gian kể từ t = 0 đến khi vật đi qua vị trí cân bằng theo chiều dương lần thứ nhất là 3 7T 7 t s T T 12 24 12 4 14 Vận tốc trung bình và tốc độ trung bình lần lượt là: 14 x 2 x1 0 7 24 cm / s 7 t 2 t1 24
T 4
O
7
AN
H
v
TU
PR
O
D
U C TI O
N
v
S 7 14 14 120 cm / s 7 t 2 t1 24 Chọn A. Ví dụ 5. (ĐH – 2010). Một chất điểm dao động điều hòa với chu kỳ T. Trong khoảng thời gian ngắn nhất khi đi từ vị trí biên có li độ x = A đến vị trí x = −A/2, chất điểm có tốc độ trung bình là A. 6A/T. B. 4,5A/T. C. 1,5A/T. D. 4A/T. Hướng dẫn v
N
G
U
YE
N
TH
v
S 1,5A 9A Chọn B. T T t 2T 4 12
A
S 1,5A
A 2
A
O T 12
T 4
Ví dụ 6: Một vật dao động điều hòa với biên độ A, ở thời điểm t = 0 vật đi qua vị trí cân bằng theo chiều dương. Các thời điểm gần nhất vật có li độ +A/2 và –A/2 lần lượt là t1 và t2. Tính tỉ số vận tốc trung bình trong khoảng thời gian từ t = 0 và t = t1 và từ t = 0 đến t = t2 A. −1,4. B. – 7. C. 7 D. 1,4 Hướng dẫn x x 2 x1 Vận tốc trung bình: v t t
102
A
A 2
(1)
O
(2)
A
A 2
(1)
A
TU
A 2
H
(2)
O
PR
A 2
A
O
D
U C TI O
N
A 0 x 2 x1 2 6A v 1 T t T v1 12 7 Chọn B. A v2 0 6A v x 2 x1 2 2 7T t 7T 12 Ví dụ 7: Một vạt dao động điều hòa với biên độ A, ở thời điểm t = 0 vật qua vị trí cân bằng theo chiều dương. Các thời điểm gần nhất vật có li độ + A/2 và – A/2 lần lượt là t1 và t2. Tính tỉ số tốc độ trung bình trong khoảng thời gian từ t = 0 đến t = t1 và từ t = 0 đến t = t2. A. −1,4. B. −7. C. 7. D. 1,4. Hướng dẫn
N
G
U
YE
N
TH
AN
A 2 6A v1 T T v1 S 1, 4 Chọn D. Tốc độ trung bình: v 12 t v 2 2,5A 30A v2 7T 7T 12 Ví dụ 8: (ĐH−2011) Một chất điểm dao động điều hòa trên trục Ox với biên độ 10 cm, chu kì 2 s. Mốc thế năng ở vị trí cân bằng. Tốc độ trung bình của chất điểm trong khoảng thời gian ngắn nhất khi chất điểm đi từ vị trí có động năng bằng 3 lần thế năng đến vị trí có động năng bằng 1/3 lần thế năng là A. 26,12 cm/s. B. 7,32 cm/s. C. 14,64 cm/s. D. 21,96 cm/s. Hướng dẫn A 3 A 5 S 2 v 2 T T t 24 24
A 2
3 1 1 6
A
A 3 2
2
O
A
T 24
v 21,96 cm / s Chọn D.
Wd 3Wt
103
T 24
Wd Wt Wd 3Wt
Ví dụ 9: Một con lắc lò xo có khối lượng không đáng kể và có độ cứng 50 (N/m), vật M có khối lượng 200 (g) có thể trượt không ma sát trên mặt phẳng nằm ngang. Kéo M ra khỏi vị trí cân bằng một đoạn 4 (cm) rồi buông nhẹ thì vật dao động điều hoà. Tính tốc độ trung bình của M sau khi nó đi được quãng đường là 2 (cm) kể từ khi bắt đầu chuyển động. Lấy π2 = 10. A. 60 cm/s. B. 50 cm/s. C. 40 cm/s. D. 30 cm/s.
2cm
O
A
U C TI O
Hướng dẫn
T 2
A
N
0,5A
A x A x2 2
m 0, 2 T 2 0, 4 s t k 50 6
D
Quãng đường đi được: S 2 cm A / 2
S 2.6 cm 30 t 0, 4 s Ví dụ 10: (ĐH−2014) Một vật nhỏ dao động điều hòa theo một quỹ đạo thẳng dài 14 cm với chu kì 1 s. Từ thời điểm vật qua vị trí có li độ 3,5 cm theo chiều dương đến khi gia tốc của vật đạt giá trị cực tiểu lần thứ hai, vật có tốc độ trung bình là A. 27,3 cm/s. B. 28,0 cm/s. C. 27,0 cm/s. D. 26,7 cm/s. Hướng dẫn Biên độ A = 14/2 = 7 cm. Gia tốc của vật đạt giá trị cực tiểu (amin = −ω2A) khi x = +A. 7 T t 6 T 6 s S Thời gian và quãng đường đi được: v tb 27 cm / s t S A 4A 31,5 cm 2 Chú ý: Nếu bài toán liên quan đến pha dao động thì dựa vào vòng tròn lượng giác: + Tìm vị trí đầu và vị trí cuối trên đường tròn. ΔS = Chiều dài hình chiếu dịch chuyển. S 2 1 t S v t Ví dụ 11: Một chất điểm dao động điều hoà (dạng hàm cos) có chu kì T, biên độ A. Tốc độ trung bình của chất điểm khi pha của dao động biến thiên từ −π/2 đến +π/3 bằng A. 3A/T. B. 4A/T. C. 3,6A/T. D. 2A/T. Hướng dẫn
N
G
U
YE
N
TH
AN
H
TU
PR
O
v
104
S 1,5A 5T t S 3, 6 A Chọn C 2 12 v t T T Chú ý: Tốc độ trung bình lớn nhất và nhỏ nhất: Smin S'min v min t t ' S S' v max max t t ' max
3 A 2
2
D
U C TI O
2A sin Smax 2 v max t t T Nếu t t : 2 2A 1 cos Smin 2 v min t t
N
T 6
t
TH
3 1 A / T.
C. 3 3A / T.
B. 3A / T.
N
2 T 2 . Smin T 3 3
YE
A. 3
AN
H
TU
PR
O
n.2A 2A sin S'max n.2A Smin 2 v max t ' t ' t ' T Nếu t ' n t : 2 n.2A 2A 1 cos S'min n.2A Smin 2 v min t ' t ' t ' Ví dụ 12: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Tốc độ trung bình nhỏ nhất của vật thực hiện được trong khoảng thời gian T/3 là D.
3A / T.
Hướng dẫn 2A 1 cos 2A 1 cos A 2 3
G
N
min
U
Smin 3A Chọn B. t T Ví dụ 13: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Gọi v1 và v2 lần lượt là tốc độ trung bình nhỏ nhất của vật thực hiện được trong khoảng thời gian T/3 và tốc độ trung bình lớn nhất của vật thực hiện được ttong khoảng thời gian T/6. Tính tỉ số v1/v2. A. 1. B. 0,5. C. 2. D. 3. Hướng dẫn Smax 3A T 2 t t Smin 2A 1 cos A v1 3 3 2 t T v
t
S T 6A t Smax 2A sin A v 2 max 6 3 2 t T
105
v2 0,5 Chọn B. v1
D
U C TI O
N
Chú ý: Nếu liên quan đến ảnh của vật qua thấu kinh thì áp dụng công thức thấu kinh ở 1 1 1 Lớp 11: d d ' f k d ' d Ví dụ 14: Điểm sáng M trên trục chính của một thấu kính họi tụ có tiêu cự f = 10cm cách thấu kính 15cm. Cho M dao động điều hòa với chu kỳ T = 2s trên trục Ox vuông góc với trục chính của thấu kính quanh vị trí ban đầu biên độ dao động A = 5cm. Tính tốc độ trung bình của ảnh M’ của điểm sáng M trong 1 chu kỳ dao động? A. 16cm/s. B. 15 cm/s. C. 20cm/s. D. 25 cm/s. Hướng dẫn d' f 10 2 Độ phóng đại ánh: k d d f 15 10 Ảnh thật M’ dao động cùng phương cùng chu kì, ngược pha với M và với biên độ: A ' A k 10 cm
O
4A ' 4.10 20 cm / s T 2 Mở rộng: Nếu điểm sáng dao động dọc theo trục chính thì áp dụng công thức thấu kính để tìm d1f ' d1 d f 1 S d1' d '2 vị trí ảnh khi vật ở hai vị trí biên: d f d ' 2 2 d 2 f Ví dụ 15: Một thấu kính phân kì có tiêu cự f = −15 cm. M là một điểm nằm trên trục chính của thấu kính, P là một chất điểm dao động điều hòa quanh vị trí cân bằng trùng với M. Gọi P’ là ảnh của P qua thấu kính. Khi p dao động theo phương vuông góc với trục chính với biên độ 15 cm thì ảnh ảo dao động với biên độ 5 cm. Nếu P dao động dọc theo trục chính với tần số 5 Hz với biên độ 5 cm thì P’ có tốc độ trung bình trong khoảng thời gian 0,2 s bằng A. 1,25 m/s. B. 6,0 m/s. C. 0,1125m/s. D. 2,25 m/s. Hướng dẫn d' f 5 15 d 30 cm * Độ phóng đại ảnh: k d df 15 d 15 35 15 df 10,5 cm * Khi d1 30 5 35 cm d1' 1 d1 f 35 15
N
G
U
YE
N
TH
AN
H
TU
PR
Tốc độ trung bình trong 1 chu kì: v tb
* Khi d 2 30 5 25 cm d '2
25 15 d1f 9,375 cm d1 f 25 15
Trong nửa chu kì ảnh đi được: 10,5 − 9,375 = 1,125 cm. Trong 1 chu kì (T = l/f = 0,2 s) ảnh đi được: 2.1,125 = 2,25 cm = 0,0225 m. 0, 0225 * Tốc độ trung bình trong 1 chu kì: v tb 0,1125 m / s Chọn C. 0, 2
106
1.2. Biết vận tốc trung bình và tốc độ trung bình tính các đại lượng khác Phương pháp chung: Dựa vào định nghĩa để suy ngược: v 0 x 2 x1` Do doi x x 2 x1 Vận tốc trung bình: v v 0 x 2 x1 Thoi gian t t 2 t1 v 0 x 2 x1 Quang duong S S Tốc độ trung bình: v Thoi gian t t 2 t1 x A; x 2 A * Hai điểm liên tiếp trên quỹ đạo có v = 0 thì: 1 và thời gian đi ngắn nhất giữa x1 A; x 2 A
N
T 2
U C TI O
hai điểm này là: t 2 t1
A x1 2 ; x 2 thì: A 2 ; x2 x1 2
A
T 4
2
PR
nhất giữa hai điểm này là t 2 t1
2 và thời gian ngắn A
O
D
* Hai điểm liên tiếp trên quỹ đạo có: v
A
TH
AN
H
TU
A A x1 ; x 2 A 3 2 2 và thời gian ngắn * Hai điểm liên tiếp trên quỹ đạo có: v thì: A A 2 x ; x 1 2 2 2 T nhất giữa hai điểm này là t 2 t1 . 6 A 3 A 2 2
YE T 24
T 24
A 2
T 12
T 12
A
A
A 2
O
N
G
U
T 12
N
A
A 3 2
2 T 24
T 24
A 3 A 2 2
A x
T 12
A 2
Ví dụ 1: Một chất điểm dao động điều hòa trên trục Ox có vận tốc bằng 0 tại hai thời điểm liên tiếp t1 = 2,8s và t2 = 3,6 s và vận tốc trung bình trong khoảng thời gian đó là: A. 4cm. B. 5cm. C. 2cm D. 3cm. Hướng dẫn x 2 x1 v t 0 x 2 x1 x1 A x x1 2A v 2 10 A 4 cm Chọn A. v 0 x A t 0,8 x 2 A T t t 2 t1 2
107
Ví dụ 2: Một chất điểm dao động điều hoà trên trục Ox (với O là vị trí cân bằng) có tốc độ bằng nửa giá trị cực đại tại hai thời điểm liên tiếp t1 = 2,8 s và t2 = 3,6 s và vận tốc trung bình trong khoảng thời gian đó là 30 3 / (cm/s). Tốc độ dao động cực đại là A. 15 cm/s. B. 10π cm/s. C. 8 cm/s. Hướng dẫn T 6
T 6
A 3 2
D. 20 cm/s.
A 3 2
S A 3 v A x 2 2 A2 A 3 v x 2 2 t T T t t 0,8 s T 2, 4 s 2 1 6 6
U C TI O
x 30 3 A 3 24 2 A cm v max A 20 cm / s Chọn D. t 0,8 T
D
v
N
2
TU
PR
O
2. Các bài toán liên quan vừa quãng đường vừa thời gian Phương pháp chung: * Vật dao động điều hòa đi từ xM đến xN (lúc này đi theo một chiều) và đi tiếp một đoạn đường S đủ một chu kì thì: 4A s x N x M .
xM
O
xN
A
AN
H
A
s
T 2t1 t
t
x1 A sin
N
G
U
YE
N
TH
* Vật dao động điều hòa từ −x1 đến x1 trong thời gian 2t1 (lúc này đi theo một chiều) và đi tiếp một 2 thời gian Δt thì đủ một chu kỳ: T 2t1 t x1 A sin t1 . T x1 x1 A t1 O t1 A
2 t1 T
* Vật dao động điều hòa từ điểm M đi một đoạn đường s(lúc này đi theo một chiều) thì đến biên s A x1 2 x1 A sin t1 và đi tiếp T/n( với T/4 < T/n < T/2) thì trở về M: T T T x 1 n 4 A
T 4
O
t1
x1
A
108
M
A
x1 A sin
2 t1 T
* Vật dao động điều hòa từ điểm M đi một đoạn đường s( lúc này đi theo một chiều đến biên và đi s A x 2 x1 A sin t1 tiếp T/n ( với T/n < T/4) thì trở về M: T T T n 4 t1 A
t1
O
M
A
x1
x1 A sin
2 t1 T
T n
D
x1 A sin
O
T 2t1
U C TI O
N
* Vật dao động điều hòa trong T/n (với T/2 > T/n < T) vạt đi từ −x1 đến x1: T 2 T 2t1 x1 A sin t1 n T x1 x1 A O A t1 t1
2 t1 T
s xN xM
AN
H
TU
PR
Ví dụ 1: Một vật dao động điều hòa đi theo chiều dương từ vị trí M có li độ x = − 5cm đến N có li độ x = + 5cm. Vật đi tiếp 18 cm nữa thì quay lại M đủ một chu kỳ. Biên độ: A. 7cm. B. 6cm. C. 8cm. D. 9cm. Hướng dẫn xM xN A O A
A 5 2 cm
YE
N
TH
18 10 7 cm Chọn A. 4 4 Ví dụ 2: Một vật dao động điều hòa, đi theo chiều dương từ vị trí M có li độ x = − 2,5 cm đến N có li độ x = +2,5 cm trong 0,5 s. Vật đi tiếp 0,9 s nữa thì quay lại M đủ một chu kì. Biên độ dao động điều hòa là A
U
C. 5,000 cm. Hướng dẫn 2 x1 A sin t1 2 T T 2t1 t 0,5 0,9 1, 4 s 2,5 A sin .0, 25 1, 4
D. 2,275 cm.
N
G
B. 2,775 cm.
A 2, 775 cm Chọn B. A
x1
T 2t1 t
t1
O t
t1
x1
x1 A sin
A
2 t1 T
Ví dụ 3: Một vật dao động điều hòa từ điểm M trên quỹ đạo đi 9 (cm) thì đến biên. Trong 1/3 chu kì tiếp theo đi được 9 cm. Tính biên độ dao động. A. 15 cm. B. 6 cm. C. 16 cm. D. 12 cm.
109
Hướng dẫn s A x x 9 A 2 1 1 x1 A sin 2 T T 9 A A sin A 6 cm Chọn B T T T T 12 3 4 t1 t1 12 T 4
A
O
M
t1 x1
A
A
x1 A sin
2 t1 T
2 t1 T
2 2 t1 3 A sin .0,1T T T
H
A 5,1 cm Chọn D.
x1 A sin
PR
T 2t1 0,8T t1 0,1T x1 A sin
O
T n
TU
T 2t1
D
U C TI O
N
Ví dụ 4: Một vật dao động điều hòa trong 0,8 chu kì đầu tiên đi từ điểm M có li độ x = −3 cm đến điểm N có li độ x =3 cm. Tìm biên độ dao động. A. 6 cm. B. 273,6 cm. C. 9 cm. D. 5,1 cm. Hướng dẫn x1 x1 O A A t1 t1
YE
N
TH
AN
Ví dụ 5: Một vật dao động điều hoà trẽn trục Ox quanh vị trí cân bằng là gốc O. Ban đầu vật đi qua vị trí cân bằng, ở thời điểm t1 = π/6 (s) thì vật vẫn chưa đổi chiều và động năng của vật giảm đi 4 lần so với lúc đầu. Từ lúc ban đầu đến thời điểm t2 = 5π/12 (s) vật đi được quãng đường 12 cm. Tốc độ ban đầu của vật là A. 16 cm/s. B. 16 m/s. C. 8 cm/s. D. 24 cm/s. Hướng dẫn
U
T 6 0,5 3A
G N Wd
T 12
O
0,5A
Wmax T A A 3 ; t1 t 4 3 T v x 0 6 6 4 2 2 2
t2
5 5T T T S 1,5A 12 1,5A A 8 cm 12 12 4 6
v max
2 A 136 cm / s Chọn B. T
A
0,5A
110
T 6
BÀI TẬP TỰ LUYỆN
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
Bài 1: Một vật dao động điều hòa với phương trình: x = 0,05cos(20t + π/2) (m) (t đo bằng giây). Vận tốc trung bình trong 1/4 chu kỳ kể từ lúc t = 0 là A. −π (m/s). B. 2/π (m/s). C. −2/π (m/s). D. π (m/s). Bài 2: Một vật dao động điều hòa với phương trình: x = 0,04cosl0πt (m) (t đo bằng giây). Vận tốc trung bình trong 1/4 chu kỳ kể từ lúc t = 0 là A.−1,6 m/s. B. +1,6 m/s. C. −0,8 m/s. D. +0,8 m/s. Bài 3: Một chất điểm đang dao động với phương trình: x = 6cos(10πt) (cm) (t đo bằng giây). Tính vận tốc trung bình của chất điểm sau 1/4 chu kì tính từ t = 0 là A. +1,2 m/s. B. −l,2m/s. C. −2 m/s. D. +2 m/s. Bài 4: Một vật dao động với chu kỳ 4 s trên quỹ đạo có chiều dài 2 cm theo phương trình x = Acos(ωt + π/4) cm. Vận tốc trung bình của vật sau 3 s là A. 0,5 cm/s. B. −lcm/s. C. 0 cm/s. D. −1,4 cm/s. Bài 5: Một chất điểm dao động điều hòa với chu kì T. Trong khoảng thời gian ngắn nhất khi đi từ vị trí có li độ x = A/2 đến vị trí có li độ x = −A/2, chất điểm có tốc độ trung bình là A. 6A/T. B. 4,5A/T. C. 1,5A/T. D. 4A/T. Bài 6: Một chất điểm dao động điều hòa trên đoạn đường PQ = 20 cm, thời gian vật đi từ P đến Q là 0,5 s. Gọi O, E, F lần lượt là trung điểm của PQ, OP và OQ. Tốc độ trung bình của chất điểm trên đoạn EF là A. 1,2 m/s. B. 0,8 m/s. C. 0,6 m/s. p. 0,4 m/s. Bài 7: Một con lắc lò xo gồm lò xo có khối lượng không đáng kể và có độ cứng 50 (N/m), vật M có khối lượng 200 (g) có thể trượt không ma sát trên mặt phẳng nằm ngang. Kéo M ra khỏi vị trí cân bằng một đoạn 4 (cm) rồi buông nhẹ thì vật dao động điều hoà. Tính tốc độ trung bình của M sau khi nó đi được quãng đường là 6 (cm) kể từ khi bắt đầu chuyển động. Lấy π2 = 10. A. 60 cm/s. B. 45 cm/s. C. 40 cm/s. D. 30 cm/s. Bài 8: Một vật dao động điều hòa theo phương trình li độ x = 5cos(4πt + π/3) ( cm) (t đo bằng s). Tốc độ trung bình và vận tốc trung bỉnh của vật trong khoảng thời gian tính từ lúc t = 0 đến thời điểm vật đi qua vị trí cân bằng theo chiều dương lần thứ nhất lần lượt là A. 60 cm/s và 8,6 cm/s. B. 42,9 cm/s và −8,6 cm/s. C. 42,9 cm/s và 8,6 cm/s. D. 30 cm/s và 8,6 cm/s. Bài 9: Vật thực hiện dao động điều hòa với biên độ 6 cm, thời gian ngắn nhất mà vật đi từ vị trí cân bằng đến vị trí có động năng bằng 3 lần thế năng là 0,1 s. Tốc độ trung bình con lắc trong nửa chu kỳ là: A. 5 cm/s. B. 10 cm/s. C. 20 cm/s. D. 15 cm/s. Bài 10: Một chất điểm dao động điều hòa (dạng hàm cos) có chu kì T, biên độ A. Tốc độ trung bình của chất điểm khi pha của dao động biến thiên từ − π/2 đến 0 bằng A. 3A/T. B. 4A/T. C. 3,6A/T. D. 2A/T. Bài 11: Một chất điểm dao động điều hòa (dạng hàm cos) có chu kì T, biên độ A. Tốc độ trung bình của chất điểm khi pha của dao động biến thiên từ − π/2 đến − π/3 bằng A. 3A/T. B. 4A/T. C. 3,6A/T. D. 6A/T. Bài 12: Một chất điểm dao động điều hòa (dạng hàm cos) có chu kì T, biên độ A. Tốc độ trung bình của chất điểm khi pha của dao động biến thiên từ − π/3 đến + π/3 bằng A. 3A/T. B. 4A/T. C . 6A/T. D. 2A/T. Bài 13: Một chất điểm dao động điều hòa (dạng hàm cos) có chu kì T, biên độ A. Tốc độ trung bình của chất điểm khi pha của dao động biến thiên từ − 2π/3 đến + π/3 bằng A. 3A/T. B. 4A/T. C. 3,6A/T. D. 2A/T.
111
Bài 14: Một vật dao động điều hòa dọc theo trục Ox, quanh vị trí cân bằng O với biên độ A và chu kỳ T. Tốc độ trung bình lớn nhất của vật thực hiện được trong khoảng thời gian T/6 là A. 4,5A/T. B. 6A/T. C. 3 A/T. D. 1,5 3 A/T. Bài 15: Một vật dao động điều hòa với chu kỳ T và biên độ A. Tốc độ trung bình lớn nhất của vật thực hiện được trong khoảng thời gian 2T/3 là
N
G
U
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
N
A. 4,5A/T B. 6A/T C. 3 A/T D. 1,5 3 A/T Bài 16: Một chất điểm dao động điều hòa theo phương trình x = 8cos(2πt − π/6) (cm) (t đo bằng giây). Xác định tốc độ trung bình nhỏ nhất mà chất điểm đạt được trong khoảng thời gian 4/3 (s). A. 30 (cm/s). B. 36 (cm/s). C. 24 (cm/s). D. 6 (cm/s). Bài 17: Một chất điểm dao động điều hòa theo phương trình x = 5cos(20πt) (cm) (t đo bằng giây). Xác định tốc độ trung bình lớn nhất mà chất điểm đạt được trong khoảng thời gian 1/6 chu kì. A. 100 (cm/s). B. 50π (cm/s). C. 100π (cm/s). D. 300 (cm/s). Bài 18: Một vật dao động điều hòa với biên độ A = 10 cm và chu kì T = 0,2 s. Tốc độ trung bình lớn nhất của vật trong khoảng thời gian Δt = 1/15 s là A. 1,5 m/s. B. 1,3 m/s. C. 2,1 m/s. D. 2,6 m/s. Bài 19: Một vật dao động điều hòa với biên độ A và chu kì T = 0,4 s. Khi vật có li độ 1,2 cm thì động năng chiếm 96% cơ năng. Tốc độ trung bình trong 1 chu kì là A. 1,2 m/s. B. 0,3 m/s. C. 0,2 m/s. D. 0,6 m/s. Bài 20: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 3cos(4πt − π/3) cm (t đo bằng giây). Tốc độ trung bình của vật từ thời điểm t1 = 13/6 (s) đến thời điểm t2 = 23/6 (s) là A. 16,2 cm/s. B. 40,54 cm/s. C. 24,3 cm/s. D. 45 cm/s. Bài 21: Một vật dao động điều hòa dọc theo trục Ox với phương trình: x = 2cos(4πt − π/3) cm (t đo bằng giây). Tốc độ trung bình của vật từ thời điểm t1 = 1/12 (s) đến thời điểm t2 = 2 (s) là A. 16,2 cm/s. B. 40,54 cm/s. C. 24,3 cm/s. D. 45cm/s. Bài 22: Vật dao động điều hòa với tần số f = 0,5 Hz. Tại t = 0, vật có li độ x = 4 cm và vận tốc v = − 4π cm/s. Tốc độ trung bình của vật từ thời điểm t1 = 0 đến thời điểm t2 = 2,5 (s) gần nhất giá trị nào sau đây? A. 11 cm/s. B. 12 cm/s. C. 54 cm/s. D. 15 cm/s. Bài 23: Một vật nhỏ dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) có phương trình dao động x = 2.cos(2πt − π/12) (cm) (t tính bằng giây). Tốc độ trung bình của vật từ thời điểm t1 = 13/6 (s) đến thời điểm t2 = 11/3 (s) gần nhất giá trị nào sau đây? A. 11 cm/s. B. 12 cm/s. C. 54 cm/s. D. 7 cm/s. Bài 24: Một con lắc lò xo dao động với phương trình: x= 4cos(4πt − π/8) cm (t đo bằng giây). Tốc độ trung bình của vật từ thời điểm t1 = 0,03125 (s) đến thời điểm t2 = 2,90625 (s) gần nhất giá trị nào sau đây? A. 11 cm/s. B. 12 cm/s. C. 54 cm/s. D. 27 cm/s. Bài 25: Một chất điểm dao động điều hòa dọc theo trục Ox với phương trình: x = 8cos(4πt + π/6) cm (t đo bằng giây). Tốc độ trung bình của vật từ thời điểm t1 = 2,375 (s) đến thời điểm t2 = 4,75 (s) gần nhất giá trí nào sau đây? A. 49 cm/s. B. 4054 cm/s. C. 549 cm/s. D. 45 cm/s. Bài 26: Một chất điểm dao động điều hòa dọc theo trục Ox với phương trình: x = 2cos(2πt − π/12) cm (t đo bằng giây). Tốc độ trung bình của vật từ thời điểm t1 = 17/24 (s) đến thời điểm t2 = 25/8 (s) gần nhất giá trị nào sau đây? A. 9 cm/s. B. 4 cm/s. C. 5 cm/s. D. 11 cm/s. Bài 27: Một vật dao động điều hòa với biên độ 10 cm và tần số 2 Hz. Tại thời điểm t = 0 vật chuyển động theo chiều dương và đến thời điểm t = 2 s vật có gia tốc 80π2 2 (cm/s2). Tốc độ
112
trung bình của vật từ thời điểm t1 = 0,0625 (s) đến thời điểm T2 = 0,1875 (s) gần nhất giá trị nào sau đây? A. 99 cm/s. B. 40 cm/s. C. 80 cm/s. D. 65 cm/s. 2.C 12.A 22.B
3.B 13.B 23.D
4.C 14.B 24.D
5.A 15.A 25.A
6.C 7.B 8.B 9.C 10.B 16.A 17.D 18.D 19.D 20.C 26.A 27.C PHẦN 2 Bài 1: Một chất điểm dao động điều hòa trên trục Ox có vận tốc bằng 0 tại hai thời điểm liên tiếp t1 = 2,8 s và t2 = 3,6 s và vận tốc trung bình trong khoảng thời gian đó là 10 cm/s. Tốc độ dao động cực đại là A. 4πcm/s. B. 5πcm/s. C. 2πcm/s. D. 3π cm/s. Bài 2: Một chất điểm dao động điều hòa trên trục Ox (với O là vị trí cân bằng) có vận tốc bằng nửa giá trị cực đại tại hai thời điểm liên tiếp t1 = 2,8 s và t2 = 3,6 s và vận tốc trung bình trong
U C TI O
N
1.C 11.D 21.A
YE
N
TH
AN
H
TU
PR
O
D
khoảng thời gian đó là −10 3 cm/s. Biên độ dao động là A. 4cm. B. 5 cm. C. 8 cm. D. 10 cm. Bài 3: Một chất điểm dao động điều hòa trên trục Ox có vận tốc bằng 0 tại hai thời điểm liên tiếp t1 = 2,8 s và t2 = 3,6 s và vận tốc trung bình trong khoảng thời gian đó là 10 cm/s. Tọa độ chất điểm tại thời điểm t = 0 là A. 0 cm. B. −3 cm. C. 2 cm. D. 3 cm. Bài 4: Một chất điểm dao động điều hòa trên trục Ox có vận tốc bằng 0 tại hai thời điểm liên tiếp t1 = 1,75 s và t2 = 2,5 s và vận tốc trung bình trong khoảng thời gian đó là 16 cm/s. Tọa độ chất điểm tại thời điểm t = 0 là A. 0 cm. B. −3 cm. C. −4 cm. D.−8 cm. Bài 5: Một chất điểm dao động điều hòa trên trục Ox có vận tốc bằng 0 tại hai thời điểm liên tiếp cách nhau 0,25 s và khoảng cách giữa hai điểm đó là 36 cm. Biên độ dao động và tần số lần lượt là A. 36cm và 2Hz. B. 72 cm và 2Hz. C. 18 cm và 2Hz. D. 36cm và 4Hz. Bài 6: Một vật dao động điều hòa, đi từ M có li độ x = − 5 cm đến N có li độ x = +7 cm. Vật đi tiếp 18 cm nữa thì quay lại M đủ một chu kì. Biên độ dao động là A. 7 cm. B. 7,5 cm. C. 8 cm. D. 9 cm. Bài 7: Một vật dao động điều hòa, đi từ vị trí M có li độ x = − 5 cm đến N có li độ x = +5 cm trong 0,25 s. Vật đi tiếp 0,75 s nữa thì quay lại M đủ một chu kì. Biên độ dao động điều hòa là
N
G
U
A. 5 2 cm. B. 6 cm. C. 8 cm. D. 9 cm. Bài 8: Một vật dao động điều hòa, đi từ vị trí M có li độ x = − 5 cm đến N có li độ x = +5 cm trong 0,25 s. Vật đi tiếp 0,5 s nữa thì quay lại M đủ một chu kỳ. Biên độ dao động điều hòa là A. 5 2 cm. B. 6 cm C.10 cm D. 10 3 cm. Bài 9: Một vật dao động điều hòa từ điểm M trên quỹ đạo đi 9 (cm) thì đến biên. Trong 0,35 chu kì tiếp theo đi được 9 cm. Tính biên độ dao động. A. 15 cm. B. 5,685 cm. C. 16 cm. D. 5,668 cm. Bài 10: Một vật dao động điều hòa từ điểm M trên quỹ đạo đi 8 (cm) thì đến biên. Trong 1/3 chu là tiếp theo đi được 8 cm. Vật đi thêm 0,5 (s) thì đủ một chu kì. Tính chu kì và biên độ dao động. A. 12 cm và 2 s. B. 16/3 cm và 1,5 s. C. 16/3 cm và 2 s. D. 12 cm và 1,5 s. Bài 11: Một vật dao động điều hòa trong 5/6 chu kì đầu tiên đi từ điểm M có li độ x1 = −3 cm đến điểm N có li độ x2 = 3 cm. Tìm biên độ dao động. A. 6 cm. B. 8 cm. C. 9 cm. D. 12 cm.
113
Bài 12: Một vật dao động điều hòa lúc t = 0, nó đi qua điểm M trên quỹ đạo và lần đầu tiên đến vị trí cân bằng hết 1/3 chu kì. Trong 5/12 chu kì tiếp theo vật đi được 15 cm. Vật đi tiếp một đoạn s nữa thì về M đủ một chu kì. Tìm s. A. 13,66 cm. B. 10,00 cm C. 12,00 cm, D. 15,00 cm 1.B 11.A
2.C 12.A
3.A 13.
4.B 14.
5.C 15.
6.B 16.
7.A 17.
8.D 18.
9.D 19.
10.B 20.
U C TI O
N
Dạng 5. BÀI TOÁN LIẾN QUAN ĐẾN CHỨNG MINH HỆ DAO ĐỘNG ĐIỀU HÒA Phương pháp giải Muốn chứng minh vật dao động điều hoà, cần xác định được hợp lực tác dụng lên vật (theo phương chuyển động) ở li độ x và chứng minh được rằng hợp lực có dạng F = −kx . Các bước chứng minh hệ dao động điều hòa: Bước 1: Xét vật tại vị trí cân bằng để rút ra điều kiện. Bước 2: Xét vật tại vị trí có li độ x để rút ra biểu thức hợp lực: F = − Kx
k m 1 k ;T 2 ;f (với m = VD). m k 2 m Ví dụ 1: Một khối gỗ hình trụ có khối lượng riêng 0,64 (g/cm3), cao 0,1 (m) được thả nổi trên mặt nước (nước có khối lượng riêng 1 (g/cm3)). Từ vị trí cân bằng ấn khối gỗ xuống theo phương thẳng đứng một đoạn nhỏ rồi buông nhẹ. Lấy g = 10 (m/s2). Tính chu kì dao động. A. l1,6πs. B. 1,2 s. C. 0,80 s. D. 0,16πs. Hướng dẫn Vật chịu tác dụng của hai lực: Trọng lực P = mg và lực đẩy F A Acsimet FA = Vdg = Shdg. Tại vị trí cân bằng: mg = Shodg. Tại vị trí có li độ x, hợp lực tác dụng lên vật:
x
N
m ShD 2 0,16 s Chọn D. k Sdg
YE
Chu kỳ: T 2
TH
F mg S h 0 x dt Sdgx
AN
H
TU
PR
O
D
Bước 3:
G
U
mg
N
Ví dụ 2: Một lò xo có độ cứng k, một đầu gắn vào điểm treo cố định, đầu kia gắn vào một khối gỗ hình trụ có khối lượng m và tiết diện ngang là S nhúng một phần trong chất lỏng có khối lượng riêng d. Kích thích cho vật dao động điều hoà tại nơi có gia tốc trọng trường là g. Viết biểu thức tính chu kì dao động. A. T 2
m . k Sdg
B. T 2
m 2m Sm . C. T 2 . D. T 2 k 2Sdg k Sdg k dg Hướng dẫn
114
Vật chịu tác dụng của ba lực: Trọng lực P = mg, lực đàn hồi F = kΔl và lực đẩy Acsimate FA = Vdg = Shdg Tại vị trí cân bằng: mg =kΔl0 + Sh0dg Tại vị trí có li độ x hợp lức tác dụng lên vật: F mg k 0 x S h 0 x dt k sdg x
FA
Fdh
k
Chu kỳ: T 2
m m 2 Chọn A. k k Sdg
x
x
PR
O
D
U C TI O
Ví dụ 3: Hãy tưởng tượng rằng chúng ta có một cái giếng xuyên qua Trái Đất dọc theo trục quay của nó. Xem Trái Đất như một khối cầu đồng chất và bỏ qua lực cản của không khí. Hãy tính thời gian cần thiết để vật chuyển động đến miệng giếng phía đối diện? Biết gia tốc tại mặt đất là g =10 m/s2, bán kính Trái Đất R = 6400 km. A. 41,89 phút. B. 14,89 phút. C. 51,25 phút. D. 49,81 phút
N
mg
AN
H
TU
Hướng dẫn GM ' 3 2 F mg ' R2 M ' R2 V ' R2 x x mg x 2. 2 . 2 . F x GM Fmax mg R R x M x V x R R2
TH
Chứng tỏ vật dao động điều hòa với chu kỳ: T 2
m R 2 k g
Thời gian cần thiết để vật chuyển động đến miệng giếng phía đối diện là:
N
T R 6400.103 41,89 (phút) Chọn A. 2 g 10
YE
t
N
G
U
Chú ý: Tốc độ của vật tại tâm Trải Đất chính là tốc độ cực đại của dao động điều hòa: 2 v max A R gR 10.6400.103 8.103 m / s 8 cm / h (Vận tốc vũ trụ cấp 1 cũng là v1 gR ) Ví dụ 4: Một vật trượt không vận tốc ban đầu từ đình của mặt phẳng nghiêng góc 30°. Hệ số ma sát giữa vật và mặt phẳng nghiêng thay đổi theo quy luật 0,1x với x là quãng đường đi được. Khi đến chân mặt phẳng nghiêng thì vậy dừng lại. Thời gian từ lúc bắt đầu trượt cho đến khi dừng lại là A. 2,675 s. B. 3,376 s. C. 5,345 s. D. 4,378 s. Hướng dẫn
115
Theo phương Ox hợp lực tác dụng lên vật: F F1 Fmax mg sin N
x Fms
mg sin 0,1xmg cos
0,1mg cos x 10 tan Đặt X x 10 tan thì F 0,1mg cos .X
F1
F2
k
Chứng tỏ vật dao động điều hòa với chu kỳ:
m m 1 2 T 2 6, 752 s k 0,1mg cos 0,1.10.cos 300
Thời gian từ lúc bắt đầu trượt cho đến khi dừng lại là t
T 3,376 s 2
N
T 2
N
YE
N
TH
AN
H
TU
PR
O
D
U C TI O
Chọn B. Ví dụ 5: Một con lắc đơn được treo vào trần một toa của đoàn tàu hoả. Khi tàu đứng yên, con lắc dao động bé với chu kì T. Hãy tính chu kì dao động bé T’ của con lắc khi đoàn tàu này chuyển động với tốc độ v trên một đường ray nằm trên mặt phẳng nằm ngang có dạng một cung tròn bán kính cong R. Cho biết gia tốc trọng trường là g; bán kính cong R là rất lớn so với chiều dài con lắc và khoảng cách giữa hai thanh ray. Bỏ qua mọi sự mất mát năng lượng. Hướng dẫn Chu kỳ dao động bé của con lắc khi đứng yên và khi chuyển động lần lượt là: T 2 g T' g g T' T . Trong đó g’ là gia tốc trọng trường biểu kiến T g' g' T ' 2 g ' Flt v2 v2 (Vì <<R) g' g g a tt , với a lt m R sin R
N
G
U
R
Trên hình vẽ ta có: g a lt nên: g ' g 2 a lt2 g 2
gR v2 g 2 R 2 v4 g T' T T 2 4 4 R g' R v g2R 2
Mở rộng: Nếu thay con lắc đơn bằng con lắc lò xo thì sẽ thế nào?
116
a tt
g
g'
Ví dụ 6: Một con lắc lò xo một đầu cố định một đầu gắn với vật nhỏ cỏ khối lượng m. Hệ dao động điều hòa theo phương trùng với trục của lò xo. Tìm chu kì dao động. Biết lò xo dãn đều, có độ cứng k và có khối lượng m0.
m1 m 0 / 3 m m0 / 2 m m0 m 3m 0 . B. T 2 . C. T 2 . D. T 2 . k k k k Hướng dẫn
A. T 2
L
d
v
N
m
O
D
U C TI O
Giả sử tại thời điểm t, vật dao động có li độ x, có tốc độ v thì phần tử vi phân trên lò xo có khối m lượng dm có chiều dài d thỏa mãn: dm 0 d . Hơn nữa, vì lò xo dãn đều nên tốc độ của phần L v từ dm là: v1 . L Do đó, cơ năng của hệ:
m m 0 d v m 0 v2 L kx 2 mv 2 kx 2 mv 2 m 0 v 2 kx 2 3 L L W 2 2 2 2 2 6 2 2 0 2
TU
PR
2
m m0 / 3 Chọn A. k Ví dụ 7: Cho hai cơ hệ như hình vẽ: vật nhỏ có khối lượng m, lò xo có độ cứng k, ròng rọc có khối lượng không đáng kể, bỏ qua khối lượng lò xo, ma sát và lực cản. Kích thích dao động điều hoà với chu kì dao động với chu kì lần lượt là TA và TB. Chọn phương án đúng. B. TB 2
N
m . k
YE
A. TA 2
TH
AN
H
Suy ra chu kì dao động của hệ: T 2
4m . k
C. TA 2
D. TB 2
N
G
U
Hướng dẫn * Xét cơ hệ hình A. Vì ròng rọc cố định nên khi vật dịch chuyển một đoạn x thì lò xo biến dạng thêm môt đoan cũng là x => Cơ hệ m này giống như con lắc lò xo: TA 2 k * Xét cơ hệ hình A. Vì ròng rọc cố động nên khi vật dịch chuyển một đoạn x thì lò xo biến dạng một đoạn là x/2 => Cơ năng của hệ: 2 mv 2 k 0,5x W 2 2
2m . k
k
k
m Hình a
vx ' Đạo hàm theo thời gian: 0 mvv ' 0, 25kxx ' x '' a v ' x ''
B
k 4m TB 2 Chọn A,B. 4m k
117
m
k x0 4m
Hình b
2m . k
BÀI TẬP TỰ LUYỆN
4.A
AN
3.D
G
U
YE
N
TH
2.D
N
1.D
H
TU
PR
O
D
U C TI O
N
Bài 1: Một lò xo có độ cứng k = 50 N/m, một đầu gắn vào điểm treo cố định, đầu kia gắn vào một khối gỗ hình trụ có khối lượng m = 1 kg và tiết diện ngang là S = 50 cm2 nhúng một phần trong chất lỏng có khối lượng riêng d = 1 kg/dm3. Kích thích cho vật dao động điều hòa tại nơi có gia tốc trọng trường là g = 10 m/s2. Tính chu kì dao động. A 0,2 s B. 0,3 s C. 0,4 s D. 0,6 s Bài 2: Cho một vật hình trụ, khối lượng 400g, diện tích đáy 50 cm2, nổi trong nước, trục hình trụ có phương thẳng đứng. Ấn hình trụ chìm vào nước sao cho vật bị lệch khỏi vị trí cân bằng một đoạn nhỏ theo phương thẳng đứng rồi thả ra cho nó dao động điều hòa. Khối lượng riêng của nước 1 kg/dm3. Xem gia tốc trọng trường bằng 10 (m/s2). Tính chu kỳ dao động. A. T = 1,6 s. B. T = 1,2 s. C. T = 0,80s. D. T = 0,56s. Bài 3: Một viên bi khối lượng m đứng cân bằng ở mặt trong của bán cầu bán kính R = 1 m, g = 10 = π2 (m/s2). Kéo vật lệch 1 đoạn nhỏ và để nó trượt tự do trên mặt cong này. Tần số góc dao động của m là A. 1,5π (rad/s). B. 0,5 (rad/s). C. 1 (rad/s). D. π (rad/s). Bài 4: Hãy tưởng tượng rằng chúng ta có một cái giêng xuyên qua Trái Đất dọc theo trục quay của nó. Xem Trái Đất như một khối cầu đồng chất và bỏ qua lực cản của không khí. Hãy tính tốc độ của vật x khi rơi qua tâm Trái Đất? Biết gia tốc tại mặt đất là g = 9,8 m/s2, bán kính Trái Đất R = 6400 km. A. 7,9km/s. B. 15,8 km/s. C. 11,2km/s. D. 16,6km/s.
118