Chapter 3 Logic Circuits & Boolean Algebra

Page 1

Chapter 3 Logic Circuits & Boolean Algebra Laws and Rules DeMorgan’s Theorem Universal Gates Combinational Logic Circuits


Boolean Algebra • Boolean Algebra is the mathematics of digital systems. • A variable is a symbol used to represent a logical quantity that have a value of 1 or 0. • A, B Example • The complement is the inverse of a variable and is indicated by a bar over the variable. Example

• A, B

• Three laws of Boolean Algebra are: Commutative

10/9/2012

Distributive

RA/Sept2012-Jan2013

Associative

2


Commutative Laws

Description

• This law states that the order in which the variables are ORed/ANDed makes no difference.

Example

• A+B=B+A • AB = BA

10/9/2012

RA/Sept2012-Jan2013

3


Associative Laws

Description

• This law states that when ORing/ANDing more than two variables, the result is the same regardless of the grouping of the variables.

Example

• A + (B + C) = (A + B) + C • A (BC) = (AB) C

10/9/2012

RA/Sept2012-Jan2013

4


Distributive Laws

Description

• This law states that ORing two or more variables and then ANDing the result with a single variable is equivalent to ANDing the single variable with each of the two or more variables and then ORing the products. • It also expresses the process of factoring in which the common variable A is factored out of the product terms.

Example

• A (B + C) = AB + AC • AB + AC = A(B + C)

10/9/2012

RA/Sept2012-Jan2013

5


Rules of Boolean Algebra Rule 1

• A.0 = 0 • Examples: AB.0 = 0 • (A+B)(C+D).0 = 0

Rule 2

• A.1 = A • Examples: AB.1 = AB • (A+B)(C+D).1 = (A+B)(C+D)

Rule 3

•A + 0 = A • Examples: AB + 0 = AB • A + B + 0 = A + B

Rule 4

•A + 1 = 1 • Examples: AB + 1 = 1 • A+B+C +1 = 1 • (A+B)(C+D) + 1 = 1

10/9/2012

RA/Sept2012-Jan2013

6


Rules of Boolean Algebra

Rule 5

• A.A=A • Examples: (AB).(AB) = AB • (A+B)(A+B) = A+B • A.B.A = A.B

Rule 6

• A+A=A • Examples: AB + AB = AB • A+A+B+C = A+B+C

A. A  0 • Examples: AB. AB  0 A.B. A  0.B  0 ( A  B)( A  B)  0 •

Rule 7

A  A 1 • Examples: AB  AB  1 A  B  A  1 B  1 • ( A  B)  ( A  B)  1 •

Rule 8 10/9/2012

RA/Sept2012-Jan2013

7


Rules of Boolean Algebra A A • Examples: AB  AB •

Rule 9

( A  B)  A  B

(A  BC)  (A  B)(A  C)

Rule 10

• Examples: A  BCD  ( A  B)( A  CD)

 ( A  B)( A  C )( A  D)

Rule 11

10/9/2012

(A  AB)  A • Examples: A  AB  A(1  B)  A.1 A

RA/Sept2012-Jan2013

8


Simplifying Expressions using Boolean Algebra Example 1

Simplify Solution:

Y  A  ABC Y  A  ABC  (A  A)(A  BC)

Rule 10

 1(A  BC)  A  BC Example 2

Simplify Solution:

10/9/2012

Y  A  A.B  A.B.C Y  A  A.B  A.B.C  A  A.B(1  C)

Rule 11

 A  A.B AB

Rule 10

RA/Sept2012-Jan2013

9


Simplifying Expressions using Boolean Algebra Example 3

Prove that Solution:

A.B.C  A.B.C  A.B.C  A.B  B.C A.B.C  A.B.C  A.B.C  A.B(C  C)  A.B.C

Factorise A B

Distributive Law

 A.B(1)  A.B.C  A.B  A.B.C  B.(A  AC)  B(A  A)(A  C)

* A  BC  (A  B)(A  C)

Rule 10

 B(A  C)  A.B  B.C

10/9/2012

RA/Sept2012-Jan2013

10


SOP = POS Example

Prove that the SOP and POS expressions for an OR gate are equivalent. SOP, Y  AB  AB  AB POS, Y = A + B Solution:

Y  A.B  A.B  AB  A.B  A(B  B)

Distributive Law

 A.B  A  (A  A)(A  B) AB

10/9/2012

Rule 10

RA/Sept2012-Jan2013

11


DeMorgan’s Theorem

Theorem 1

Theorem 2

10/9/2012

•The complement of two or more variables ANDed is equivalent to the OR of the complements of the individual variables. •AB = A + B • The complement of two or more variables ORed is equivalent to the AND of the complements of the individual variables. •A + B = A B

RA/Sept2012-Jan2013

12


DeMorgan’s Theorem Example 1

Example 2

Prove that AB.B  AB Solution: AB.B

Prove that AB.B  C  BC Solution: AB.B  C

 (A  B)B

 (A  B)  BC

 AB  BB

 A  B  C  BBC

 AB  0

 A  B  C  BC

 AB

 B  C(A  1)  BC

Example 3

Prove that Solution

AB.C  D. AB  A  B  C  D

AB.C  D. AB  A.B.C  D  AB Break the outer most bar  AB  C  D  A  B  A B C  D

10/9/2012

RA/Sept2012-Jan2013

13


Universality of NAND and NOR gates • NAND and NOR gates are universal gates. • It can represent basic gates which are NOT, AND and OR. • The expression Y  A.A  A is equivalent to a NOT gate. A

=

Y

• The expression Y  AB  AB is equivalent to an AND gate. A B

=

Y

• The expression is Y  A.B  A  B  A  B equivalent to the OR gate. A B

10/9/2012

Y

=

RA/Sept2012-Jan2013

14


Universality of NAND and NOR gates Example 1

Draw Y  AB  CD using only NAND gates.

1

Double invert the expression .

Y  AB  CD

2

Keep the top inversion bar. Apply DeMorgan’s Theorem 2 to the bottom inversion bar to eliminate the OR operation.

Y  AB  CD

3

Draw the circuit using only NAND gates. A B Y C D

10/9/2012

RA/Sept2012-Jan2013

15


Universality of NAND and NOR gates Example 2

Draw Y  (A  B)(C  D) using only NOR gates.

1

Double invert the expression .

Y  (A  B)(C  D)

2

Keep the top inversion bar. Apply DeMorgan’s Theorem 1 to the bottom inversion bar to eliminate the AND operation.

Y  (A  B)  (C  D)

3

Draw the circuit using only NOR gates. A B Y C D

10/9/2012

RA/Sept2012-Jan2013

16


Sum-of-Product (SOP) Description

•SOP expression is the sum of all product terms when the output is a logic 1. •Product Term is formed by ANDing the complemented or uncomplemented input variables.

Example

• Given the OR gate truth table with 2 inputs. Derive the SOP expression. A

B

Y

SOP

0

0

0

0

1

1

AB

1

0

1

AB

1

1

1

AB

Product term

Therefore, Y = A B + A B + A B 10/9/2012

RA/Sept2012-Jan2013

17


Product-of-Sum (POS) Description

•POS expression is the product of all sum terms when the output is a logic 0. •Sum term is formed by ORing the complemented or uncomplemented input variables.

Example

• Given an AND gate truth table with 2 inputs. Derive the POS expression. A

B

Y

POS

0

0

0

A+B

0

1

0

A+B

1

0

0

A+B

1

1

1

Sum terms

Therefore, Y = (A+B) ( A+B) (A+B)

10/9/2012

RA/Sept2012-Jan2013

18


Combinational Logic Circuits • Combinational logic circuits are constructed by connecting together logic gates. • Four steps involve in designing combinational logic circuits are:-

1

Derive the truth table

10/9/2012

2

Identify the Boolean expression

3

RA/Sept2012-Jan2013

Simplify the Boolean expression

4

Draw the logic circuit

19


Designing Combinational Logic Circuits Example

• The diagram shown below is a water filtering system. A water quality sensing detector will generate a quality scale from 0 – 7. From this scale, selected filter will function as follows to produce clean water. Filter

Water flow

A B

Water quality sensing detector

Clean water

C

Water Condition The cleanest

Logic circuit

Scale 0 - 7

The dirtiest

Scale 0 1 2 3 4 5 6 7

Filters needed No filters are activated A A, B and C B A A and B A and C A, B and C

Design the logic circuit. Your solution should include: a) Truth table. b) Simplified expression. c) Based on the simplified expression in (b), draw the logic circuit. 10/9/2012

RA/Sept2012-Jan2013

20


Designing Combinational Logic Circuits Solution:

1

Derive the truth table

2

Identify the Boolean expression (SOP)

A B C

FA

FB

FC

FA  ABC  ABC  ABC  ABC  ABC  ABC

0 0 0

0

0

0

FB  ABC  ABC  ABC  ABC

0 0

1

1

0

0

FC  ABC  ABC  ABC

0

0

1

1

1

1

0

1

1

0

1

0

1

0 0

1

0

0

1

0

1

1

1

0

1

1

0

1

0

1

1

1

1

1

1

1

Water Condition The cleanest

The dirtiest

10/9/2012

RA/Sept2012-Jan2013

Scale

Filters needed

0

No filters are activated A A, B and C B A A and B A and C A, B and C

1 2 3 4 5 6 7

21


Designing Combinational Logic Circuits Solution:

3

Simplify the Boolean expression using Boolean Algebra

FA  ABC  ABC  ABC  ABC  ABC  ABC

 ABC  ABC  AB(C  C)  AB(C  C)  ABC  ABC  A(B  B) Distributive Law  A(BC  BC)  A Rule 10  (A  A)(A  (BC  BC))  A  BC  BC

Distributive Law Rule 8

FB  ABC  ABC  ABC  ABC

 AB(C  C)  AC(B  B)  AB  AC

10/9/2012

Distributive Law

Rule 8

FC  ABC  ABC  ABC  BC(A  A)  ABC Distributive Law  B(C  AC) Rule 8  B(C  A)(C  C) Rule 10 RA/Sept2012-Jan2013  BC  AB

22


Designing Combinational Logic Circuits Solution:

4

Draw the logic circuit based on the simplified Boolean expression

A

B

C

Filter A

Filter B

Filter C

10/9/2012

RA/Sept2012-Jan2013

23


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.