QRNL -2677
Reactors- Power TlD-4500 (14th ed.)
Contract No.
Vd-7405-eng-26
R E A C T O R P R O J E C T S DlVlSlON
M. Blander, L. G. Epel, A. P. Fraos,
und
R. F.
Newton
J
D A T E ISSUED * . .
-
OAK RIDGE NATIONAL LABORATORY
Oak R i d g e ,
Tennessee operated b y
UNION C A R B l D f CORPORATION for the
U.S. ATOMIC ENERGY COMM15510N
3 4456 0363364 0
ALUMINUM CHLORIDE AS A THERMODYNAMIC WORKING FLUID AND HEAT TRANSFER MEDIUM
M.
A. P. Fraas
L. G. E p e l
Blander
R. F. Newton
ABSTRACT The b a s i c p h y s i c a l properties and thermodynamic constants of aluminum c h l o r i d e have been calculated
to
employing from
obtain t h e data required far
aluminurn chloride vapor.
engineering c a l c u l a t i o n s o f thermodynamic c y c l e s
T h e p o s s i b l e corrosion problems i n v a l v e d were evaluated
the standpoint of b a s i c chemical thermodynamics, and it was concluded that h i g h - n i c k e l -
content a l l o y s would c o n t a i n aluminum chloride s a t i s f a c t o r i l y . T h e advantages of gaseous aluminum c h l o r i d e os an intermediate heat transfer medium i n a
molten-salt-fueled molten-salt
reactor were evaluated.
It was determined that t h e temperature range of the
heat transfer system was too l o w to u t i l i z e aluminum c h l o r i d e e f f e c t i v e l y .
A gas-
turbine c y c l e employing aluminum chloride as the working f l u i d and a binary vapor c y c l e employing water vapor for the lower temperature c y c l e were a l s o considered. aluminum chloride t o have outstanding advantages.
Neither o f these studies showed
It i s believed, however, t h a t s p e c i a l a p p l i -
c a t i o n s may be found in w h i c h it w i l l be p o s s i b l e t o e x p l o i t the unique c h a r a c t e r i s t i c s of aluminum c h I or ide
.
INTRODUCTION
of the r e l a t i v e l y large difference in t h e gas constant
Gaseous aluminum c h l o r i d e appears t o be attract i v e as a heat transfer medium and as a thermodynamic-cycle working f l u i d as a consequence of the f a c t t h a t it e x i s t s as t h e monomer AICI, a t h i g h temperatures and as t h e dimer AI,CI, a t low
between t h e monomer and dimer, t h e r a t i o o f turbine work t o compressor work w i l l be greater
temperatures.
The effective
specific
heat and
thermal c o n d u c t i v i t y of a gas that associates are considerably enhanced because of t h e a s s o c i a t i o n e q u i l i b r i u m a t temperatures at w h i c h there i s an appreciable fraction o f both monomer and polymer, and therefore aluminum c h l o r i d e may b e a n except i o n a l l y good heat transfer medium for some
than for a gas that does not dissociate. Further, t h e energy l o s s e s due t o t h e i n e f f i c i e n c y of both the compressor and t h e turbine w i l l have r e l a t i v e l y smaller e f f e c t s on the over-all thermal e f f i c i e n c y w i t h a d i s s o c i a t i n g gas as t h e working fluid. BASIC PHYSICAL PROPERTIES O F
ALUMINUM CHLORIDE T h e o b j e c t i v e of
this study was t o i n v e s t i g a t e
the working
the p o s s i b l e advantages of aluminum c h l o r i d e a r i s i n g from i t s d i s s o c i a t i o n and t h e consequent
f l u i d i n a thermodynamic c y c l e stem from i h e f a c t that, i n an i d e a l i z e d gas turbine w i t h a n e g l i g i b l e pressure drop i n t h e system, the pump compressor w i l l require work proportional t o t h e compressor i n l e t temperature times t h e s p e c i f i c gas constant of t h e dimer for any g i v e n pressure r a t i o . I n the high-temperature region a t the turbine, on t h e other hond, i f t h e gos i s completely monomeric, t h i s same weight of gas w i l l do work proportional t o the turbine i n l e t temperature times t h e monomer gas c o n s t a n t for t h e same pressure r a t i o . Because
conductivity. Q u a l i t a t i v e l y t h e reason for these increases i s simple. L o w e r i n g the temperature o f the gas w i l l y i e l d not only the heat g i v e n o f f i f t h e camposition of t h e gas were “frozen, 1 s but, s i n c e the gas is more h i g h l y associated a t lower temperatures, it w i l l a l s o g i v e off t h e chemical heat due t o t h e a s s o c i a t i o n of some of t h e monomer molecules us a r e s u l t of lowering t h e temperature. T h e same phenomenon increases t h e thermal conductivity. T h e therrnal c o n d u c t i v i t y i s the
applications.
I t s p o s s i b i l i t i e s as
increase
i n e f f e c t i v e s p e c i f i c heat and thermal
1
amount of heat that w o u l d be transferred i n u n i t t i m e across u n i t area from a temperature T + d f t o T d i v i d e d b y t h e temperature gradient, d T / d x . T h e frozen thermal c o n d u c t i v i t y i s t h a t w h i c h would occur i f t h e composition were frozen a t an average weight fraction Z n of the polymer and W 1 Since w , of t h e monomer a t b o t h temperatures. i s higher at 7' + dT and w n i s higher at I' than t h e average, r e l a t i v e l y more monomer w o u l d d i f f u s e from T t dT t o T and more polymer from T t o T + d T than for a frozen composition. T h e composition of t h e higher-temperature gas molecules d i f f u s i n g t o t h e lower temperature would change w i t h a
trend toward t h e lower e q u i l i b r i u m concentration of monomer a t t h e lower temperature and would g i v e o f f heat i n t h e process. This c h e m i c a l heat c o n t r i b u t i o n i s part of t h e heat flux. Q u a n t i t a t i v e expressions for these phenomena For a have been g i v e n by B u t l e r and Brokaw.' substance w h i c h dimerizes,
T h e q u a n t i t i e s of p r a c t i c a l interest, t h e e f f e c t i v e s p e c i f i c heat, C p e , t h e e f f e c t i v e thermal conduct i v i t y , he, and t h e v i s c o s i t y , have never been measured. T h e s e and other q u a n t i t i e s of i n t e r e s t must be estimated. It i s fortunate that t h e theory of gases i s w e l l developed and, for some calculations, i s more r e l i a b l e than measurements.
Effective Specific Heat T h e e f f e c t i v e s p e c i f i c heat was c a l c u l a t e d by u s e of Eq. (1). T h e frozen s p e c i f i c heat of Al,C16, was estimated according t o well-known s t a t i s t i c a l mechanical methods2 by u s e o f t h e infrared v i b r a t i o n a l frequencies measured or esti-
Cpi:
mated by K l e m ~ e r e r . ~T h e frequencies for AICI, were estimated b y analogy w i t h t h e compound
BGI, (ref 4). T h e average v a l u e of t h e s p e c i f i c heat i n t h e temperature range 500 t o l O O O O K i s 0.16 cal.g-'.(째C)-l for A12C16 and i s 0.14
c a l - c ~ - I - ( ~ C ) - ' for AICI,. A t each cornposition of t h e gas, an average v a l u e was computed from t h e composition-weighted average of t h e s e t w o v a l u e s for t h e monomer and t h e dimer. T h e composition of t h e gas may be computed from t h e e q u i l i b r i u m constant
where
Cpe
= e f f e c t i v e s p e c i f i c heat i n
C
= frozen s p e c i f i c heat,
Pi
AH
R , R'
ca I - 9 -
=
=
adeg -
,
4 F o - \[I
heat change for the r e a c t i o n
A12C164 2AICI,,
gas constants i n proper units,
wl,w 2 = w e i g h t f r a c t i o n of monomer and dimer, res p e c t i ve I y,
he
Xi
where
= e f f e c t i v e thermal c o n d u c t i v i t y i n
tal-cm- '.set- I - d e g -
I,
frozen thermal conductivity,
:
- T I S o - -RT
In K
,
(36)
in w h i c h A H i s t h e h e a t of d i s s o c i a t i o n o f t h e gas, w h i c h was taken a s 29.6 kcal/mole (ref 5 ) , and 15' i s t h e entropy difference between 2 moles o f AICI, at 1 atm pressure and 1 mole o f AI,CI, at 1 atm pressure, w h i c h was taken as 34.6 cal.mole-l.deg-' (ref 5 ) . T h e values of u f l c a l c u l a t e d from Eqs. ( 3 n ) and ( 3 b ) a t pressures of 0.1, 1, and 10 atm, respectively, i n t h e temperature range 500 t o 1200OK ore l i s t e d i n column 2 o f Table
1.
Column
3 o f t h e same t a b l e l i s t s t h e
D 1 2 = i n t e r d i f f u s i o n c o e f f i c i e n t s o f monomer and dimer,
P
=
t o t a l pressure,
M,
=
molecular weight of a monomer.
2J. E. Mayer and M. G. Moyer, S t a t i s t i c a l Mechanirs, Vrliley, New York, 1940. 3W. Kleivperer, /. Chpm. Phys. 24, 353 (1956).
4G. Heszberg, Molecular Spectra and Moleculur Structure, V a n Nostrand, New York, 1945. 'J. N. Butler and R . S. Brokaw, J . Chem. P h y s . 26, 1636 (1957).
2
'A. Shepp and S. H. 265 (1954).
Douer,
J . Am. G e m . SOC. 76,
Table 1. C a l c u l a t e d Values of w , , C
pe’ f‘
for Aluminum C h l o r i d e
and
-
~
Temperature
Weight Fraction
(”K )
of Monomer, tu,
‘fie (cal-g-l-deg-
’)
see-
(cal*cm‘
’
mdeg-
)
(cal-cm-
’
he * rec-
’
adeg-’)
For a Pressure of 0.1 a i m
x 10-6
x
500
0.003
0.17
12
14
550
0.013
0.19
13
18
600
0.038
0.25
13
26
650
0.100
0.35
14
42
700
0.223
0.5 1
15
63
750
0.422
0.66
16
77
aoo
0.655
0.63
17
68
85 0
0.83 1
0.43
ia
47
900
0.926
0.28
19
32
950
0.966
0.20
19
25
1000
0.984
0.17
20
23
1050
0.992
0.15
20+
22
1100
0.996
0.15
21
22
1150
0.998
0.14
21
21 +
1200
0.999
0.14
22
22
For
a Pressure of
-
1 atm
x 10-6
x
500
0.001
0.16
12
13
550
O.QO4
0.17
13
15
600
0.012
0.19
13
17
650
0.032
0.22
14
24
700
0.072
0.28
15
34
75 0
0.145
0.36
15
46
800
0.264
0.47
16
60
85 0
0.428
0.55
17
65
900
0.612
0.54
18
63
950
0.766
0.44
19
50
1000
0.870
0.32
19
37
1050
0.929
0.24
20
30
1100
0.961
0.19
20
25
1150
0.978
0.17
21
24
1200
0,987
0.16
22
24
3
1
Table . . . . I
Temperature
Weight F r a c t i o n
(OK)
of Monomer, w 1
-
(continued)
-_
...........
. . . . . . . .
xf
e (cal.g-'.deg-
')
(calecm"'
F o r o Pressure o f
'*set- 'adeg-.......
Xe
')
(cal-ern-'. sec-
10 a t m
x 10-6 0.000
0.16
12
12
550
0.001
0.16
13
14
6 00
0.004
0.17
13
14
650
0.01 0
0.18
14
17
700
0.023
0.20
14
20
750
0.047
0.23
15
26
8 00
0.087
0.27
16
34
850
0.148
0.32
16
42
900
0.240
0.38
17
52
95 0
0.352
0.43
18
58
1000
0.490
0.46
18
59
1050
0.622
0.44
19
54
1100
0.740
0.38
20
47
1150
0.827
0.30
21
40
1200
0.888
0.25
21
E f f e c t i v e Thermal C o n d u c t i v i t i e s T h e e f f e c t i v e thermal c o n d u c t i v i t i e s were calculated using Eq. (2). T h e frozen thermal conduct i v i t i e s of monomer and of dimer were c a l c u l a t e d from the equation6
A,
=
(1.9891 x l o m 4 )( 7 / M , ) "2
where
x
500
values of C estimated b y use of Eq. (1) for the Pe three pressures and t h e same temperature range. A - p l o t of C Pe and the average frozen s p e c i f i c heat C p / v s temperature a t the three pressures i s presented i n Fig. 1.
R
0,'
15 R
5
M n i s the molecular weight of a polymer,
33
._.
a polymer i n angstroms, and I! i s a factor w h i c h corrects for intermolecular interactions and can be c a l c u l a t e d t h e o r e t i c a l l y for simple potential functions i n terms of t h e parameters of the p o t e n t i a l fun c t i on. A crude estimate of 0: was made for A12C16 and AlCl . From electron d i f f r a c t i o n data on A12C16 (ref s t r u c t u r a l estimates for AICI, (ref 5), and the v a n der Waals r a d i i of c h l o r i n e atoms, t h e
d),
dimensions of A12C16 and AICI, were estimated. B y comparison of t h e r e l a t i v e dimensions of s i m i l a r compounds t o t h e i r e f f e c t i v e c o l l i s i o n diameters,' the e f f e c t i v e c o l l i s i o n diameters of A12CI, and AICI, were estimated. For the
7For o more accurate equation s e e J. 0. Wirschfelder, T h e use of the more accurate equation leads t o only a r e l a t i v e l y s m a l l d i f ference f r o m t h e v a l u e s calculated here,
ur2 i s t h e average e f f e c t i v e molecular diameter of
1. Chem. Phys. 26, 282 (1957).
6J. 0. Hirschfelder, C. F. Curtiss, and R. B. Byrd, Molecular Theory o/ G a s e s and L i q u i d s , p p 14, 528, 534, Wiley, New York, 1954.
9Hirschfelder, Curtiss, and Byrd, pp 1111-12, 162.
4
-deg- ' )
......
'L. R. M a x w e l l ,
1. Opt.
SOC. Am. 30, 374 (1940).
op. cit,,
Table
I-A,
.
Lennard-Jones 6-12 i n t e r a c t i o n potential, 0 has been c a l c u l a t e d as a function of t h e parameter K ~ / E , where E i s t h e depth of t h e p o t e n t i a l well. or T h e volue of F i s unknown for e i t h e r AI,CI, AICI,. We may, however, estimate E by analogy Of w i t h other halogen-containing compounds. several halogen-containing compounds9 t h e lowest value of E / K , i s 324 for HI and the h i g h e s t i s 1550 for SnC14. With these values as limits, t h e foll o w i n g values were obtained for Q:
E/k
Q
500
324
1.3 2.7
1000
1550 324 1550
T
(OK)
1 .o 2.0
............,
UNCLASSIFIEO
0.8
ORN Li- --L R -...D ...I.G 35364R2
~
..... ............. 600 700
500
Fig.
The
1.
Aluminum
...........
900 1000 TEMPERATURE Y K )
800
1200
C a l c u l a t e d E f f e c t i v e Specific Heat of
Chloride
as
a
Function o f
Temperature
at
T h r e e Pressures.
UNCLASSIFIED O R Y l - L R - GNG 39713
T h e range of values o f Q l i s t e d i s 1.0 t o 2.7, and a v a l u e of Q == 2 was a r b i t r a r i l y chosen as b e i n g reasonable.
1100
T h e v a l u e of D t 2 P was estimated
from the equation"
where M , and M ,
are the molecular weights of
monomer and dimer, respectively, u,, 7 (o1 t a2)/2, and Q' i s a correction for intermolecular inter-
actions. It does not d i f f e r g r e a t l y from i), and therefore t h e value 2.0 was used. T h e c a l c u l a t e d values of D I 2 P i n t h e temperature range 500 t o 1200째K are l i s t e d i n column 2 of T a b.l _ e 2. T h e average frozen thermal conductivities, e f f e c t i v e thermal conductivity, ha,
Eq. (2), at pressures of 0.1, 1 , and 10 atm were l i s t c d i n T a b l e 1. P l o t s of and he vs tempera/ ture ~t the three pressures m e presented i n F i g . 2.
x
T h e constants and parometers used i n these c a l c u l a t i o n s are summarized below:
K
=
1.9869 cat-mole- '.deg-
R' = 82.057 cm3.atrn-mole- 'edeg-'
AI!
=
29.6 k c a l for t h e reaction A12CI, 2AIC1,
ASo = 34.6
e.u.,
change for r e a c t i o n A12CI, # 2AICI, w i t h b o t h monomer and dimer a t t h e i r standard state of 1 atm
"fbid., p 539.
entropy
500
Fig.
700
600
800 900 1000 TEMPE R ATU R t L"K )
4100
1200
2. T h e Calculated E f f e c t i v e Thermal Conductivi-
t i e s of Aluminum Chloride a s a Function of Temperature a t Three Pressures.
g:
w2
-40
0 2 = 2
65 9 2
o2 = 51.7 12
M , = M2/2
Q
=
f!'
C -C V
= P
i2 --- 133.35 g/mole 2.0
-R Viscosity
T h e v i s c o s i t y was estimated from the equation6
2.6693 '7, =
Y
__ 0 :
(!%In 7')
(6)
d !
5
Table
2.
V a l u e s of
D 1 2 P , q l , and q2
O12
T
(OK )
.__
_. ....-
_.___
(cm2.atrn* sec-
'1
V i s c o s i t y of Monomer,
(9.cm- 1. se c-
'
)
q1
V i s c o s i t y of Dimer, (g.cm-'-sec-')
x 10-6
x 500
21.3
86
75
550
24.6
90
79
600
28.0
94
82
650
31.6
98
86
700
35.3
102
89
75 0
39.2
106
92
800
43.1
109
95
85 0
47.2
112
98
900
51.5
116
101
95 0
55.8
119
103
1000
60.3
122
106
1050
64.8
125
109
1100
69.6
128
111
1150
74.3
131
114
1200
79.2
134
116
for b o t h monomer and dimer. T h e c a l c u l a t e d values are l i s t e d in columns 3 and 4 of T a b l e 2. F o r a mixture of monomer and dimer, a c o m p o s i t i o n weighted average would be an adequate approximation t o t h e v i s c o s i t y .
T h e vapor pressure of s o l i d aluminum c h l o r i d e in e q u i l i b r i u m w i t h t h e gaseous phase may be c a l c u l a t e d from t h e equation"
-6360 T
3.77 log 1'
-
- 0.00612T + 6.78 . T h e vapor pressure i s
enough s o that t h e v e l o c i t y of a s s o c i a t i o n and d i s s o c i a t i o n of t h e aluminum chloride i s f a s t enough t o f o l l o w the compression and r a r e f a c t i o n cf t h e gas, the v e l o c i t y of sound may be c a l c u -
lated from6
"
Vapor Pressure
l o g P (atm) = ----+
72
(7)
where C , i s t h e v e l o c i t y of sound in cm/sec, v i s t h e s p e c i f i c volume of t h e gas i n cm3/gI P i s the pressure in dynes/cm2, and S i s t h e entropy. T h e v a l u e of ( d u / d P ) , can be c a l c u l a t e d from t h e e x a c t thermodynamic r e l a t i o n 12
1 atm a t 18OOC (453째K).
Velocity of Sound i n Aluminum C h l o r i d e T h e v e l o c i t y of sound, C, i n the working f l u i d i s needed for turbine design. At frequencies low "0. Kuboschewski and E. I-. Evans, MetaIIt~rgicaI Thermochemistry, W i ley, N e w York, 1956.
6
'*G. N. L e w i s and h4. Randall, T h e r m o d y n a m i c s and the Free Ene7 y of Chemical substances, p 164, McGrowHill, N e w Y o r f , 1923.
and t h e equation
PV
L
=:
(2) ,
RT
(10)
volume were ternperatwe and pressure. The r e l a t i o n s used in the computational procedure are summarized below. D e t e r m i n o t i o n of Weight F r a c t i o n of Monomer,
-
i n w h i c h the reasonable assumption i s made t h a t the gaseous monomer and dimer i n d i v i d u a l l y
w,. It has been shown by Newton, from freeenergy-change relationships, that
behave as i d e a l gases and t h a t a l l deviations from
an i d e a l gas are due t o the a s s o c i a t i o n or d i s s o c i a t i o n o f the gaseous monomer or dimer. A n evalua t i o n o f ( c % / ~ P and )~
( d v / d T ) p from Eq. (10)
and
where
the thermodynam i c r e l a t i o n
u = 8.016
T
is in
OR,
P 13420 - -21 In -14.696 T and P i s pressure i n psia.
D e t e r m i n o t i o n of
leads t o
-
Enthalpy, h.
T h e enthalpy
of the mixture i s the sum of the enthalpy the gas w o u l d have if it were a l l i n the dimer state p l u s the enthalpy o f dissociation. Choosing absolute zero temperature as the base for enthalpy and 0,1575 Btwlb- l*(oR)-"' os the frozen s p e c i f i c heat averaged for the temperatures and pressures under consideration, t h e "sensible" enthalpy, i n R t d l b , is
hs
and
=
0.15753
.
T h e enthalpy of d i s s o c i a t i o n i s 199.7 B t u for each pound of A12CI, monornerized. Therefore the t o t a l enthalpy i s
+ 1 9 9 . 7 ~ .~ (16) D e t e r m i n a t i o n of Entropy, s . - F r o m the d e f i n i t i o n h
Substitution leads t o
o f Eqs.
(12)
and
(13)
i n t o Eq.
(9)
T H E R M O D Y NAMlC P R O P E R T !ES
In t h e gaseous phase the state of an e q u i l i b r i u m
mixture o f A12CI, and AICI, i s determined by any t w o independent properties, and knowledge o f the thermodynamic state mokes it p o s s i b l e t o determine
the thermodynamic properties. The t w o independent defining properties used t o c a l c u l a t e w e i g h t f r a c t i o n of monomer, enthalpy, entropy, and s p e c i f i c
0.1575T
of entropy i n Btu~lb-l-(oF?)-',
ds =
"1 "2
2
=
it c a n be shown'
V E r s ib le
"re
T
I
that
Noting t h a t
dh = du
+P
gives
ds
',See,
for
iv
dP
- v dP .
___...-
?'
J. H . York, 1941.
instance,
P 85, Wiley, N e w
dh
dv
Keenon,
Thermodynamics,
7
Then,
for an isobaric process, that is, constant
pressure,
Determination of Specific Volume, perfect gas l a w states t h a t
-
LJ.
The
‘ 1
for small variations i n T , where
1 and 2 are thermo-
dynamic states. T h e entropy was considered equal t o zero a t 900°R a n d 150 psia, and the entropy at other temperatures a t t h i s pressure was approximated by a stepwi se, finite-difference procedure using the approximation g i v e n nbove. T o get t h e entropy at 960”R and some other pressure, i t i s p o s s i b l e i o u s e one of Maxwell’s relations 14
where
- 154.5 f : . l b ~ m o I e - ’ ~ ( O R ) - ’
K~
and ,AIrn i s t h e molecular weight of t h s mixture and i s 266.7/(1 -C u , ) . N u m e r i c a l l y t h i s becomes
5.793(1
z
L
ul)
T
in
ft3/lbm
,
in
ft3/lb,
,
where P i s expressed i n psf, or
7,’
For n constant temperature process, then
,
=
T
0.04023(1 i
ul)-
P
where P is i n psia.
- A s an example fhe c a l c u l a t i o n a l procedure employed, a compu-
E x a m p l e of N u m e r i c a l Procedure. of
enthalpy, t a t i o n of weight f r a c t i o n of monower, h, entropy, s, and s p e c i f i c volume, v , a t a pressure o f 30 psia and CI temperature of 1260’R f o l l o w s : 1. For t h e weight fraction of monomer c a l c u lation, u r 1 ’
A s shown below,
i f l’ i s expressed in pounds per
sauare foot (psf),
c - 5.793(1 Since (1 + than about
71
0.3%
T
+ 7i
)-P
,
does not vary from u n i t y by more at 900OR for t h e pressures under
consideration, it can be stated that
5.793
($){, ‘=P so t h a t n t constant temperature
where
u = 8.016
1
--
2
In
P ~
-
14.696
13420 ~
T
=
1 30 13420 8.696 - - I n ___ - _ _ 2 14.696 1260
=
-2.9923
and therefore
,1/2
I
t - tanh
=
5.793 In
I’
1
~
e2
0.05055
i n ft. Ib-Ib-’-(”R)-’
:
-
8
.
2. For the enthalpy calculation, h - G.15751
l41bid., p 342.
(-2.9923)
+ 199.711
(0.1575 x 1260)
- 208.53
.
+ (199.7
x 0.05055)
3. For the entropy
calculation,
a t a constant
pres sur e, As]:
25-
=
1.7751
Ah T
.i0.05055)
1260
-
30
.
% 0.003792
,
0.07298
.
CORROSION BEHAVlQR
208.53
- 203.79
1260
and s %
4. For the specific volutne =
0.04023(1
Data obtained for these functions a t temperatures from 900 t o 2000"R and pressures of 1.5, 5, 15, 30, 60, 100, and 150 p s i a are listed i n Tabla 3, and an enthalpy-entropy chart i s presented i n Fig. 3.
ru
v
=
0.04023(1
calculation
T i- Z U , ) ~
The corrosiveness of the gas i s another important consideration. The free energies of formation of aluminum chloride a n d the chlorides of some possible container m a t e r i a l s a t 560 and l O O O O K IJNCL A ss I i l E ? O R N L - L R - - D W G 39596
550
250
200
i
150
0
0.05
0.10
ENTROPY [ R t u
Fig.
3.
0.20
0.15 '
Ib-'
'
0.25
0.30
(OR)-']
Enthalpy-Entropy D i a g r a m for Aluminum Chloride Vapor.
9
Table
__
3.
Thermodynamic D a t a for Aluminum C h l o r i d e a t V a r i o u s P r e s s u r e s
__._____I_
-...___
Temperature
(OR
Weight F r a c t i o n
Enthalpy
of AIC13
( B t u A b)
Entropy [Btu.lb"'.(%)-']
Specific Volume
(ft3/lb)
A t a Pressure o f 1.5 p s i 0
10
900 920
0.0032 1 0.00442
142.39 145.78
0.03425 0.03794
940 96 0 980
0.00605 0.0081 1 0.01083
149.25 152.81 156.51
0.04 164 0.04535 0.0491 1
24.193 24.761 25.340 25.932 26.544
1000 1020 1040
0.01422 0.0 1848 0.02 382
160.33
1060 1080
0.03037 0.03836
0.052 94 0.05686 0.06 092 0.065 12 0.06951
27.176 27.836 28.531 29.266 30.049
1100 1120 1140 1160 1180
0.04808 0.05973 0.07361 0.09006 0.10933
0.07414 0.07903 0.08422 0.08976 0.09569
30.892 31.803
1200 1220 1240
0.131 76 0.15765 0.18725
0.10204
1260 1280
0.22072 0.25820
215.28 223.60 232.65 242.48 253.11
0.10886 0.11616 0.12396 0.13226
36.391 37.844 39.448 41.214 43.154
264.51 276.65
0.14 1 04 0.15023
45.270 47.560
289.42
0.15977 0.16952 0.17936
50.013 52.608 55.314 58.091 60.895
380.78
0.18912 0.19862 0.20772 0.21629 0.22422
164.33 168.55 173.00 177.75 182.84 188.31 194.23 200.66 207.66
32.795 33.882 35.076
1300
0.29959
1320 1340 1360 1380
0.34464 0.39288 0.44360 0.49587
302.70 316.27
1400 1420
0.54854 0.6004 1
1440 1460 1480
0.65030 0.69718 0.74025
329.93 343.43 356.53 369.03
1500
0.77900 0.8 1324 0.84299 0.86851 0.89016
391.66 401.64 410.72 418.96 426.43
0.23148 0.23804 0.24394 0.24922 0.25395
71.504
1520 1540 1560 1580 1600 1620 1640 1660 1680
0.908 37 0.92359 0.93625 0.94676 0.95546
433.22 439.40 445.08 450.32 455.21
0.25819 0.26201 0.26547 0.26863 0.27154
81.818 83.501 85.088 86.593 88.028
1700 1720 1740 1760 1780
0.96267 0.96863 0.97358 0.97768 0.98109
459.80 464.14 468.27 472.24 476.07
0.2 7424 0.27676 0.27914 0.281 39 0.28355
89.405 90.731 92.017 93.268 94.491
63.678 66.396 69.014 73.852 76.052 78.106 80.024
T o b l e 3 (continued) Temperature
(OR 1
Weight Fraction of
AICl3
f
1800 1820 1840 1860 1880
0.98394 0.98631 0.98830 0.98997 0.99138
2000
0.996 31
1900 1920 1940 1960 1980
0.99257 0.99357 0.99443 0.99516 0.99578
Entholpy (Btu/lb)
Entropy
[ Btu-lb”.(%)-
A t o Pressure of 1.5 psia
479.79 483.42 486.96 490.45 493.88
0.28561 0.28760 0.28953 0.29140 0.29323
513.76
0.30343
497.26 500.61 503.93 507.23 510.50
0.2950 1 0.29675 0.29847 0.30015 0.30180
’1
Specific Volume
(ft3/1 b)
95.690 96.869 98.031 99.180 100.31
101.44 102.56 103.67 104.78 105.88 106.98
A t a Pressure of 5 psia
900 920 940 960 980
0.00176 0.00242 0.00331 0,00444 0,00593
142.10 145.38 148.71 152.08 155.53
0.02530 0.02886 0.03241 0.03592 0.03944
7.2476 7.4135 7.5814 7.7515 7.9247
1100 1120 1140 1160 1180
0.02636 0.03274 0.04039 0.04947 0.06013
178.50 182.93 187.60 192.57 197.84
0.06130 0.06525 0.06935 0.07363 0.07810
9.0757 9.2981 9.5343 9.7862 10.056
1000 1020 1040 1060 1080
0.00777 0.01 01 2 0.01305 0.01662 0.021 02
159.05 162.67 166.40 170.26 174.29
1200 1220 1240 1260 1280
0.07260 0.08712 0.10384 0.12300 0.14484
203.48 209.53 216.01 222.99 230.49
1400 1420 1440 1460 1480
0.33816 0.38032 0.42452 0.4701 3 0.5 1642
287.96 299.52 31 1.49 323.74 336.12
1300 1320 1340 1360 1380
1500 1520
0.16951 0.1971 4 0.22784 0.26166 0.29850
0.56258 0.60782
238.56 24?.23 256.50 266.40 276.90
348.48 360.66
0.04296 0.04650 0.05010 0.05374 0.05747
8.1012 8.2825 8.4694 8.6627 8.8643
0.08280 0.08776 0.09299 0.09852 0.10438
10.346 10.661 1 1.003 11.374 11.779
0.14686 0.15500 0.16332 0.17171 0.18007
15.060 15.756 16.489 17.254 18.041
0.1 1059 0.1 1715 0.12408 0.13135 0.13896
0.18831 0.19632
12.221 12.703 13.226 13.793 14.404
18.841 19.645
Table Tern pera t ure (OR
1
Weight F r a c t i o n of AIC13
3 (continued)
E n t h o I py ( B t i J / lb)
Entropy
[ i3t1.1. Ib-
.(OR)-
’3
Specific Volume (ft3/lb)
A t a Pressure of 5 psia
1540 1560 1580
0.65132 0.69243 0.73062
372.48 383.84 394.60
0.20400 0.21 128 0.21810
20.442 21.223 21.981
1600 1620 1640 1660 1680
0.76553 0.79699 0.82497 0.84960 0.87106
404.72 414.15 422.88 430.94 438.37
0.22442 0.23024 0.23556 0.24042 0.24484
22.708 23.401 24.059 24.681 25.268
1700 1720 1740 1760 1780
0.88963 0.90560 0.91926 0.93093 0.94085
445.23 451.56 457.44 462.92 468.05
0.24887 0.25256 0.25593 0.25905 0.26193
25.823 26.348 26.845 27.319 27.771
1800 1820 1840 1860 1880
0.94929 0.95645 0.96254 0.96771 0.97211
472.88 477.46 481.82 486.01 490.03
0.26461 0.26713 0.26950 0.27175 0.27389
28.205 28.624 29.028 29.421 29.804
1900 1920 1940 1960 198G
0.97586 0.97906 0.98179 0.98413 0.98614
493.93 497.72 501.41 505.03 508.58
0.27594 0.27792 0.27982 0.28167 0.28346
0.98786
512.07
0.28521
30.178 30.545 30.906 31.261 31.612
2000
A t a Pressure o f
12
31.959
15 p s i a
900 920 940 960 980
0.00100 0.00141 0.00189 0.00256 0.00342
141.94 145.18 148.42 151.71 155.03
0.01713 0.02064 0.02409 0.027§1 0.03090
2.4140 2.4686 2.5235 2.5789 2.6349
1000 1020 1040 1060 1080
0.00448 0.00586 0.00753 0.00959 0.01215
158.39 161.81 165.30 168.86 172.52
0.03426 0.03762 0.04097 0.04433 0.04772
2.6915 2.7491 2.8077 2.8676 2.9291
1100 1120 1140 1160 1180
0.01522 0.01891 0.02335 0.02858 0.03475
176.28 180.17 184.20 188.40 192.78
0.051 14
0.05461 0.05815 0.06176 0.06548
2.9923 3.0578 3.1260 3.1971 3.2717
1200 1220 1240 1260
0.04199 0.05043 0.06017 0.07137
197.37 202.21 207.30 212.69
0.06931 0.07327 0.07738 0.08165
3.3505 3.4339 3.5226 3.6172
Table 3 Temperature (OR
1
Weight F r a c t i o n of
AICl3
(continued)
Entha I py
(Btu/lb)
’.(%)- ’1
Entropy
(B+wIb-
.I._._
Specific Volume
(fr3/1 b)
___I.
A t a Pressure o f 15 p s i a
1280
0.08421
21 8.40
0.086 1 1
3.7186
1300 1320 1340 1360 1380
0.09882 0.1 1532 0.13388 0.15464 0.17770
224.46 230.90 237.75 245.05 252.80
0.09078 0.09566 0.10077 0.1 06 13 0.11175
3.8276 3.9449 4,0713 4.2077 4.3549
1400 1420 1440 1460 1480
0.20313 0.23099 0.26 129 0.29395 0.32881
261.02 269.73 278.92 288.59 298.69
0.1 1762 0.12375 0.1301 4 0.13676 0.14359
4.5134 4.6839 4.8668 5.062 1 5.2697
1500 1520 1540 1560 1580
0.365 67 0.40421 0.44404 0.48467 0.52559
309.20 320.04 331.13 342.39 353.70
0.15059 0.15772 0.16492 0.17214 0.17930
5.4891 5.7192 5.9588 6.2061 6.4589
1600 1620 1640 1660 1680
0.56622 0.6 06 0 1 0.64443 0.681 01 0.71540
364.96 376.04 386.86 397.31 407.32
0.18634 0.1 9318 0.19977 0.20607 0.2 1203
6.7148 6.9715 7.2264 7.4773 7.7222
1700 1720 1740 1760 1780
0.74732 0.7766 1 0.80320 0.82712 0.84848
416.84 425.83 434.28 442.21 449.62
0.21 763 0.22285 0.22771 0.23222 0.23638
7.9595 8.1881 8.4073 8.6168 8.8166
1800 1820 1840 1860 1880
0.86741 0.884 10 0.89874 0.91154 0.92270
456.54 463.02 469.10 474.80 480.18
0,24023 0.24379 0.24709 0.25015 0.25301
9.0069 9.1884 9.3616 9.5271 9.6858
1900 1920 1940 1960 1980
0.93242 0.94085 0.94818 0.95454 0.96006
485.26 490,lO 494.71 499.13 503.38
0.25569 0.25821 0.26059 0.26284 0.26499
9.8383 9.9852 10.127 10.265 10.399
2000
0.96486
507.49
0.26704
10.529
At a P r e s s u r e o f 30 p s i a
900 92 0 940 96 0 980
0.00072 0.00097 0.00136 0.001 79 0.0024 1
14 1.89 145.09 148.32 151.55 154.83
0.01 197 0.01545 o.oia88 0.02225 0.02559
1.2066 1.2338 1.2611 1.a885 1.3161
1000
0.003 18
158.13
0.02889
1.3440
13
Table
3
(continued)
Teniperoture
Weight F r a c t i o n
Entha Ipy
(OR)
of AICl3
(Btu/lb)
A t a Pressure o f
14
Entropy [Btu.lb-’.(%)-
30
’1
S p e c i f i c V o I unie
(ft3/1b)
psia
1020 1040 1060 1080
0.00412 0.00534 0.006ao 0.00857
161.47 164.86 168.30 171.81
0.0321 7 0.03543 0.03867 0.04192
1.3722 1.4008 1.4298 1.4593
1100 1120 1140 1160 1 180
0.01 075 0.01338 0.01649 0.02020 0.02459
175.39 179.07 182.83 186.73 190.75
0.04518 0.04846 0.051 77 0.055 1’2 0.05853
1.4894 1.5206 1.5525 1.5855 1.6198
1200 1220 1240 1260 1280
0.02971 0.03566 0.04258 0.05055 0.05965
194.92 199.26 203.79 208.53 213.50
0.062 0 1 0.06556 0.06922 0.07298 0.076 86
1.6555 1.6928 1.7320 1.7734 1.8172
1300 1320 1340 1360 1380
0.07003 0.08181 0.095 10 0.1 1001 0.12664
218.72 224.22 230.02 236.14 242.61
0.08087 0.08504 0.08937 0.09387 0.09856
1 .a637 1.9132 1.9660 2.0225 2.0830
1400 1420 1440 1460 1480
0.1451 3 0.16558 0.1 8800 0.2 1249 0.23905
249.45 256.68 264.30 272.34 280.79
0.10345 0.10854 0.1 1383 0.11933 0.1 2504
2.1479 2.2175 2.2920 2.3717 2.4568
1500 1520 1540 1560 1580
0.26767 0.29827 0.33071 0.36481 0.4003 1
289.65 298.90 308.52 318.48 328.71
0.13095 0.13704 0.14328 0.14967 0.15614
2.5476 2.6439 2.7456 2.8525 2.9642
1600 1620 1640 1660 1680
0.43692 0.47426 0.51192 0.54945 0.58643
339.16 349.76 360.42 371.06 381.59
0.16268 0.16922 0.17572 0.1 821 3 0.18839
3.0802 3.1998 3.3220 3.4460 3.5708
1700 1720 1740 1760 1780
0.62244 0.65708 0.69004 0.72105 0.74994
391.92 401.98 41 1.71 421.05 429.96
C. 19447 0.20032 0.20591 0.21 122 0.21622
3.6953 3.8186 3.9398 4.0582 4.1732
1aoo 1a20 1840 1860 1880
0.77659 0.80097 0.823 i o 0.84305 0.86095
438.42 446.44 454.00 461.14 467.85
0.22093 0.22533 0.22944 0.23328 0.236 85
4.2844 4.3915 4.4943 4.5929 4.6873
1900
0.87691
474.19
0.2401 a
4.7778
Table Temperature
ei,
1920 1940 1960 1980
2000
3 (continued)
Weight F r a c t i o n
Entha Ipy
of AIC13
(Btu/lb)
0.891io 0.90367 0.91477 0.92456
0.93318
___
Entropy
[B t u. I b ’
A t a Pressure o f 30 p s i a
480.17 485.83 491.19 496.30 501.17
e(%?
)-
’1
I _ _ -
Specific Volume
(ft3/lb)
0.24330 0.24622 0.24895 0.25 153
4.8646 4.9479
0.25397
5.0281
5.1054 5.1801
At a Pressure of 60 p s i 0
900 920 940 960 98o
0.00049 0.00071 0.00093 0.00 130 0.00171
141.84 145.04 148.23 151.46 154.69
0.00681 0,01028 0.01368 0.01704 0.02034
0.60320 0.41674 0.63029 0.64393 0.65762
1100 1120 1140 1160 1180
0.00759 0.00945 0.01 168 0.01430 0.01737
174.76 178.28 181.88 185.55 189.31
0.03946 0.04261 0.04576 0.04892 0.05211
0.74247 0.75737 0.77260 0.78818 0.80420
1000 1020 1040 1060 1080
1200 1220 1240 1260 1280
0.00223 0.00293 0.00374 0.00479 0.006 08
0.021 00 0.02524 0.03013 0.03575 0.0422 1
1300 1320 1340 1360 1380
0.04959 0.05795 0.06738 0.07801 0.08993
1500 1520 1540 1560 1580
0.19276 0.2 1575 0.24050 0.26699 0,29515
1400 1420 1440 1460 1480
1600 1620 1640
157.94 161.23 164.54 167.90 171.31
193.19 197.18 201.31 205.58 21 0.02
0.02359 0.02682 0.03000 0.033 17 0.03632
0,67139 0.68529 0.69929 0.71349 0.72788
0.05534 0.05862 0.06194 0.06533 0.06880
0.82075 0.83790 0.85569 0.87424
0.091 78 0.09607 0.10050 0.1051 0 0.10986
1.0346 1.0633 1.0940 1.1266 1.1614
0.a9366
214.64 219.46 224.49 229.76 235.29
0.07236 0.0 7601 0.07976 0.08364 0.08764
0.91405 0,93550 0.95814 0.982 13 1.0075
274.70 282.44 290.53 298.96 307.73
0.1 1479 0.1 1988 0.12513 0.13054 0.13609
1.1985 1.2379 1.2797 1.3240 1.3708
0.10318 0.1 1788 0.13412 0.151 97 0.17151
241.08 247.16 253.55 260.26 267.31
0.32485 0.35597 0.38830
316.80 326.16 335.76
0.I4176 0.14753 0.15339
1.4200 1.471 5 1.5252
15
Table .-...
Te rnper at ure
(“R1
.... We i g ht
F ra c t i on
of AIC13
3
(continued)
.-.
...___ Entha Ipy
(Btu/lb)
Entropy
[ Btuslb- ’.(OR)-
’1
Specific Volume
(ft3/lb)
A t a Pressure of 60 psia 1.5809 1.6382
1660 1680
0.42164
345.56
0.15929
0.45570
355.51
0.16521
1700 1720 1740 1760 1780
0.490 16 0.52471 0.55899 0.59269 0.62547
365.53 375.57 385.56 395.44 405.13
0.171 11 0.17695 0.18269 0.18830 0.19374
1.6970 1.7567 1.8171 1.a777 1.9382
1800 1820 1840 1860 1880
0.65706 0.68721 0.71573 0.74248
414.58 423.75 432.59 44 1.07 449.19
0.19899 0.204 03 0.20883 0.21340 0.2 1771
1.9981 2.0570 2.1 148 2.1711 2.2258
1900
0.79036 0.8 1146
456.92
0.22178 0.22562
0.76737
0.83070
464.28 471.27
0.22922
2.2787 2.3298 2.3791
1960 1980
0.848 18 0.86397
477.91 484.21
0.23261 0.23579
2.4266 2.4723
2000
0.87819
490.19
0.23878
2,5163
0.00301 0.006 4 7 0.00986
0.36188 0.36 9 98
1920 1940
A t a Pressure of 100 p s i 0
0.000 74 0.00099
141.82 145.00 148.19 151.39
0.00132
1000 1020 1040 1060 1080
900 920 94 0
0.00039 0.00054
154.61
0.01320 0.01648
0.37809 0.38624 0.39441
0.001 74 0.00226
157.84 161.10
0.01971 0.02290
0.40263 0.41090
0.00291 0.00371 0.00470
164.38 167.69 171.03
0.02605 0.029 18 0.03228
0.41923 0.42763 0.436 13
1100 1120 1140 1160 1180
0.00589 0.00732 0>.00904 0.01 107 0.0 1346
174.42 177.86 181.35 184.90 188.53
0.03536 0.03842 0.04149 0.04455 0.04763
0.44473 0.45346
1200 1220 1240 1260 1280
0.0 1627 0.01955 0.02334 0.02770 0.03271
192.24 196.05 199.95 203.97 208.12
0.05072 0.05383 0.05698 0.06018 0.06 342
0.4901 7 0.49994 0.51 003 0.52047 0.531 30
1300 1320 1340 1360 1380
0.03843 0.04491 0.05225 0.06051 0.069 76
212.41 216.86 22 1.47 226.27 23 1.26
0.06672 0.07009 0.07353 0.07706 0.08068
0.54259 0.55438 0.56673 0.57970 0.59336
96 0 98 0
0.46234 0.47140 0.48067
Table Temperature
(%1
Weight F r a c t i o n
of AICIQ
3
(continued)
Entha Ipy
(Btu/lb)
Entropy [Btwlb-
'a(%)-
'1
S p e c i f i c Volume (ft3/lb)
A t a P r e s s u r e o f 100 p s i a
1400 1420 1440 1460 1480
0.08009 0.09156 0.10426 0.1 1827 0.13363
236.47 241.91 247.60 253.54 259.76
0.08440 0.08823 0.092 1a 0.09625 0.10045
0.60777 0.62301 0.63913 0.65623 0.67436
1500 1520 1540 1560 1580
0.15043 0.16870 0.1 8849 0.20982 0.2 32 70
266.26 273.05 280.15 287.56 295.27
0.10478 0.10925 0.1 1386 0.11861 0.12349
0.69359 0.7140 1 0.73565 0,75858 0.78284
1600 1620 1640 1660 1680
0.2571 1 0.28299 0.3 1029 0.33888 0,36862
303.29 311.60 320.20 329.05 330.14
0.12850 0.13363 0.13887 0.14421 0.14961
0.80844 0,83540 0.86370 0.89331 0.92416
1700 1720 1740 1760 1780
0.39935 0.43085 0.46289 0.4 952 0 0.52752
347.42 356.85 366.39 375.99 385.59
0.15507 0.16056 0.16604 0.1 7149 0.17689
0.95616 0.98919 1.0230 1.0577 1.0928
1aoo 1820 1 a40 1860 1880
0.55956 0.59106 0.62 176 0.65 141 0.67984
395.13 404.56 413.84 422.90 431.72
0.18219 0.1 a737 0.19241 0.19729 0.20198
1.1283 1.1639 1.1993 1.2346 1.2693
1900 1920 1940 1960 1980
0.70686 0.73235 0.75624 0.7 784 9 0.79907
440.26 448.50 456.42 464.00 471.26
0.20647 0.2 1076 0.21484 0.21 871 0.22238
1.3034 1.3368 1.3694 1.401 0 1.4317
2000
0.81802
478.19
0.22584
1.4614
0.00000 0.00344 0.00683 0.01015 0.01342
0.24123 0.24662 0.25203 0.25 744 0.26288
A t a P r e s s u r e o f 150 p s i 0
900 920 94 0 96 0 980
0.00032 0.00044 0.00060 0.001 oa
141.81 144.98 148.17 151.36 154.56
1000 1020 1040 1060 1oao
0.00142 o.00184 0.00238 0.00303 0.00383
157.78 161.01 164.27 167.55 170.86
0.01664 0.01981 0.02295 0.02604 0.029 10
0.2683 3 0.27382 0.27933 0.28489 0.29050
1100 1120
0.00481 0.00598
174.21 177.59
0.03215 0.035 17
0.29617 0.301 90
o.oooai
17
Table ..-
Tern perat ure
3
(continued)
..
Weight F r a c t i o n
(OR 1
of AIC13
Entha Ipy (Btu/lb)
Entropy
[Btu.lb-’.(??)-
’1
Specific Volume (ft3/lb)
A t a Pressure of 150 p s i a
1140 1160 1180
0.00738 0.00904 0.01099
181.02 184.50 188.04
0.038 17 0.041 17
1200 1220 1240 1260 1280
0.0 1328 0.01596 0.0 1906 0.02262 0.026 7 1
191.65 195.33 199.10 202.96
0.04718 0.05020 0.05324
206.92
0.05630 0.05940
1300 1320 1340 1360
0.03138
21 1.01
0.06254
0.3592 7
0.03668 0.04268 0.04943
215.21 2 19.56 224.06
0.06573 0.068 97 0.07228
0.36668 0.37438 0.38243
1380
0.05700
228.72
0.075 66
0.39086
1400 1420 1440 1460 1480
0.06546 0.07487 0.08529 0.09679 0.10944
233.56 238.58 243.81 249.26 254.93
0.0791 1 0.08265 0.08628 0.09001 0.09385
0.39969 0.40898 0.41876 0.42908 0.43997
1500 1520 1540 1560 1580
0.12329 0.13840 0.15482 0.1 7259 0.191 74
260.84
0.09779
0.45149
267.01 273.43 280.13 287.10
0.101 84 0.10602 0.1 1031 0.1 1472
0.46366 0.47654 0.49016 0.50455
1600 1620 1640 1660 1680
0.21228 0.23421 0.25751 0.28214 0.308 04
294.35 301.87 309.67 31 7.73 326.05
0.1 1925 0.12389 0.12865 0.13351 0.13846
1700 1720 1740 1760 1780
0.33510 0.36320 0.39221 0.42 194
334.60 343.36 352.29 36 1.37
0.14349
0.45220
370.56
0.14858 0.15371. 0.15887 0.16403
1800 1820 1840 1860 1880
0.48277 0.51 342 0.54391 0.5 74 02 0.60352
379.81 389.07 398.31 407.46 416.50
0.16917 0.1 7426 0.17928 0.18420 0.1 8901
0.73806 0.76 12 1 0.78449 0.80778
1900 1920 1940 1960 1980
0.632 19 0.65985 0.6 86 35 0.71 155 0.73537
425.37 434.04 442.47 450.65 458.55
0.19368 0.1 981 9 0.20254 0.20671 0.2 1070
0.83097 0.85395 0.87662 0.89890 0.92071
0.75774
466.17
0.21451
0.942 00
2000 ~
....
0.04418
0.30772 0.3 1364 0.31966 0.32582 0.33212 0.33859 0.34526 0.35214
0.5 1974 0.53576 0.55261 0.57031 0.58883 0.60817 0.62828 0.6491 1 0.67059 0.69264 0.71517
(ref
15)
4. Aluminum c h l o r i d e
are l i s t e d i n T a b l e
i s s t a b l e on a free-energy b a s i s r e l a t i v e t o t h e s e pure container materials. If, however, t h e products of o p o s s i b l e corrosion r e a c t i o n are gaseous or
form a s o l i d or l i q u i d s o l u t i o n and i f a mechanism exists for t h e removal of the r e a c t i o n products from t h e r e g i o n of the reaction, a corrosion r e a c t i o n
might proceed. Unfortunately aluminum e x i s t s i n t w o p o s i t i v e v a l e n c e states. T h e chlorides AICl
AFo at 1000°K Reaction
Table 4. Free E n e r g i e s o f Formation of Aluminum Chloride and the Chlorides of Some P o s s i b l e Container Materials Free Energy of
Meta I
At 1000%
AICI,
-48(g)
-46(g)
CrCI,
-35
CrCI2
-40
-26
-_
-32
-23
-21
-33
-27
-18
-27
NiCI2
AlCl
-2%)
MoC12
-15
MoC I
-14
-6
MoCI4
-12
-7
MoC15
-10
-7
-32(g)
W" at 1000 "K
-3
As an i l l u s t r a t i o n of t h e p o s s i b l e c o r r o s i o n behavior, t h e corrosion of an a l l o y containing chromium and n i c k e l i n a system i n w h i c h gaseous aluminum c h l o r i d e i s c i r c u l a t e d a t temperatures i n t h e range 500 t o 1000°K i s d i s c u s s e d here. T h e most l i k e l y chromi urn are: Reaction
corrosion
reactions
involving
A
2/,AICl,(g)
+ Cr
3F" a t 500°K
-42
=
kcal
k', for r e a c t i o n A i s
The e q u i l i b r i u m constant,
IOe7
-
at
500'K l0OOOK
at
.
If pure aluminum i s produced from t h e r e a c t i o n o f pure chromium and AICI, a t a pressure o f 1 atm, a t IOOOOK t h e a c t i v i t y of CrC12, u C r C , I i s and
at
500'K.
,
T h e p a r t i a l pressure of
,
CrCI,
under these conditions, P C r C l may b e c a l c u l a t e d 2 from t h e r e l a t i o n
-8
-7
MoC16
AICI,(g)
W" a t 50O0K = -78 k c a l
7
FeCI2
4
CI)
At 500%
FeCI,
2AI
Formation
(kcal per mole of
Chloride
kcal
C 3AlCl(g)
and AICI, are b o t h gaseous i n t h e temperature range of interest.
t42
=
CrCl z =
where P ~ , c 1 2i s t h e vapor pressure of t h e pure solid, w h i c h may be calculated from t h e r e l a t i o n
- 14,000 -
log P : , ~, 2 (atm) = - 0.42 log 7
T
- 0.000587' The vapor pressure P C r C l i s atm a t
500OK.
2
+ 12.24 or
11
-
. 6.6 x
(21)
IO-'
or 2 x otm a t T h e c a l c u l a t e d p a r t i a l pressures of CrCI,
lOOOOK and 10-''*71
under t h e stated c o n d i t i o n s are then 5.3 x lo-'' otm a t lOOOOK and 2 x atm a t 500°K. I n o system i n w h i c h aluminum c h l o r i d e g a s was being
( ~ t) %AI
+16 k c a l
AFo a t 1000°K = +28 k c a l
l 5 A . G l a s s n e r , T h e Thermochemical Pro arties 01 the Oxides, F l u o r i d e s , a n d C h l o r i d e s to 2300opK. ANL-5750 (1957).
19
circulated, i f r e a c t i o n A were t h e o n l y s i g n i f i c a n t one, it would t a k e a minimum o f 2 x 10" moles of aluminum c h l o r i d e gas t o move 1 mole o f CrCI, from t h e hot zone and d e p o s i t it a s s o l i d CrCI,
i n the c o l d zone. T h e fact t h a t t h e aluminum metal produced i n r e a c t i o n A w i g h t form a s o l i d s o l u t i o n w i t h the metal w a l l in t h e r e a c t i o n zone w o u l d increase t h e i n i t i a l p a r t i a l pressure and A f t e r an i n i t i a l d e p o s i t o f transport o f CrCI,. aluminum metal h a d formed on t h e surface, t h e r e a c t i o n w o u l d y i e l d a smaller p a r t i a l pressure o f CrCI,, w i t h d i f f u s i o n of aluminum i n t o t h e metal i n t h e h o t zone b e i n g one c o n t r o l l i n g factor for t h i s p a r t i a l pressure i f r e a c t i o n A were important. N o t o n l y i s t h e i n i t i a l a c t i v i t y of chromium i n an a l l o y lower than that of t h e pure metal,
This would
p a r t i a l pressure i s higher than that w h i c h be present above a chromium-containing
a l l o y i n w h i c h t h e a c t i v i t y o f the chromium was lower than t h e a c t i v i t y o f pure chromium metal. The p a r t i a l pressure o f CrCI, from r e a c t i o n B i s Reaction B higher t h a n t h a t from r e a c t i o n A. s h o u l d be, therefore, t h e important corrosion r e a c t i o n and s h o u l d r e s u l t in t h e transport, a t t h e
very most, of about 2 x lo-' mole o f chromium per mole of c i r c u l a t i n g gas. At t h e low-temperature zone, CrCI, w i l l i n i t i a l l y deposit a s t h e solid, AlCl w i l l disproportionate according t o r e a c t i o n C, and a small concentration of aluminum w i l l d e p o s i t on t h e surface of t h e a l l o y . A f t e r a s m a l l a c t i v i t y of aluminum i s b u i l t u p in t h e metal, t h e r e a c t i o n a t t h e low-temperature zone should
but t h e d e p l e t i o n o f t h e surface chromium concent r a t i o n w o u l d further lower t h e a c t i v i t y o f chromium a t t h e surface and, hence, lower t h e maximum p a r t i a l pressure of CrCI, in the Circulating gas
be t h e reverse o f r e a c t i o n B, w i t h chromium metal At t h e hot zone, b e i n g d e p o s i t e d on t h e w a l l s , after t h e surface chromium has been depleted, the
at t h e hot end,
mium from t h e i n t e r i o r of t h e metal t o t h e surface.
T h i s w o u l d lead t o a smaller
transport o f CrCI, from t h e hot t o t h e c o l d zone. The chromium concentration on t h e r e a c t i o n surface and, hence, t h e corrosion rate, w o u l d then be c o n t r o l l e d b y t h e d i f f u s i o n o f chromium t o t h e surface i n t h e h o t zone. T h i s d i f f u s i o n w o u l d be a second c o n t r o l l i n g factor i f reaction A were important. T h e e q u i l i b r i u m constant for r e a c t i o n
K
t3
=.-AF/KT -
'AlCl
B is
'CrCI,
A l C l3'Cr
r e a c t i o n w i l l be l i m i t e d by t h e d i f f u s i o n o f chro-
If r e a c t i o n B i s important, t h i s d i f f u s i o n o f chro-
mium t o t h e surface a t t h e h o t zone w i l l probably be the rate-controlling step in t h e transport of chromium metal from t h e h o t t o t h e c o l d zone. L o w e r i n g t h e temperature of t h e h o t zone w o u l d decrease t h e rate of corrosion, m a i n l y b y lowering t h e d i f f u s i o n rate o f chromium. T h e formation o f an adherent n o n m e t a l l i c f i l m on the surface t h a t i s not a t t a c k e d b y aluminum c h l o r i d e w o u l d a l s o decrease t h e corrosion rate. T h e corrosion of n i c k e l would be much l e s s severe. The r e a c t i o n s s i g n i f i c a n t for n i c k e l c o r r o s i o n are: Reaction
-
10-
-
18.4
at
500°K
at IOOOOK
.
For pure chromium exposed t o aluminum c h l o r i d e a t a pressure o f 1 atm,
at
1000°K
and
D
AF" a t 500°K
=
+42 k c a l
h F " at 1000°K
=
+56 k c a l
Reaction E AICl,(g)
+ Ni
+ NiCl,(s)
AF" at 500°K - +-68k c a l .W"at
20
AICl(g)
1000°K = + 7 0 kcal
T h e e q u i l i b r i u m constants for r e a c t i o n s are:
D
and
E
04
g o s a t I atm passing t h e surface at 1QOO'K. One mole of .41CI, transports roughly 20 k c a l of
heat i n g o i n g from 1000 i o 500*K, so about 1 mole of n i c k e l would be transported per 1.2 x 10" kcal, 1.4 x IO7 kwhr, or about 600 Mwd of heat. The transport corrosion of iron and iiao!ybdenum as minor c o n s t i t u e n t s 0% an agley s h o u l d be less than t h a t of chromium. In concfusion, C O ~ ~ O Sof~ Qan~ a l l o y composed m a i n l y of n i c k e l and containing some chromium
-
10-
1 8 . 4 at
-- 10-'2'2 a t
K
ti
might not be n e g l i g i b l e for long-term operotion of a system c i r c u l a t i n g gaseous aluminum c h l o r i d e
50Q°K
a i temperatures in t h e range 500 and 100O0K, but t h e corrosion would be small enough for short-term operation of such a system. The carrosioti rata
1000°K , PAICI'NiCIZ
....-AF/I<T-
PAIC13aNi 'AICI
-
'N
iCI2
-
ip*lCt3
-
at
5Q0°K
--
at
IOQOOK
p: ictq
requires very l o w pumping power. It should be emphasized t h a t these are crude estimates based
.
The vapor pressure of pure NiCI,, 11 c a l c u l a t e d from t h e equation
- 13,300~
log P
: (atni) ~ =--- ~
T
- 2.68 At
At t h e
P i i c I 2 , may be
~ 1109
a higher reaction
on a l i m i t e d amount of data of varying degrees of r e l i a b i l i t y . Although a conscious attempt has been made t o make these estimates conservative, sQme of the estimates should &e checked r x p e r i m e n t a l l y .
T
+ 19.00 . (25)
atm 10-2*34or 4.6 x 500'K it i s 10-'4*83 or 1.5 x lo-'' atm. high-temperature zone, r e a c t i o n E leads t o
lQOQ°K, P i i c l 2
and a t
(24
could be decreased considerably b y operating w i t h t h e h o t zone of the loop at temperatures Icwcr than t h e 1000°K for which these c a l c u l a t i o n s were made or by the formation of an oxide coating on T h e estimated values t h e surface of the metal. of t h e thermal conductivity, heat capacity, a n d v i s c o s i t y i n d i c a t e t h a t aluniinum ~ h l o ~ i dmay e be a unique gaseous heat exchange medium t h a t
is
p a r t i a l pressure of PIiCI, than does For the corrosion of pure nickel,
D.
At t h e low-temperature zone, t h e reverse o f sea c t i o n E w i l l probably take place, and n i c k e l metal w i l l deposit on t h e surface. The limiting factor in t h e corrosion of n i c k e l From an a l l o y composed p r i n c i p a l l y o f n i c k e l would be t h e t o t a l volume of gas passing over t h e surface. One mole of n i c k e l would be transported per 6 A 10' moles
E N G I N E E R I N G P R O B L E M S O F SOME T Y P I C A L APPLlCATlBNS
i s used a s a as 0 heat transfer medium, t h e pressures and temperat u r e s must be c a r e f u l l y chosen i o e x p l o i t t o t h e fullest t h e extra performance obtainable from dissociation. Normally a temperature range w i l l be defined b y the s t r u c t u r a l strength of t h e metals in t h e system or b y other considerations, such as corrosion, S O thot the only v a r i a b l e a v a i l a b l e t o t h e designer w i l l be t h e pressure, Phis means that t h e pressure l e v e l m u s t be chosen w i t h care t o g i v e the b e s t over-all system design. It i s l i k e l y that i t w i l l b e necessary t o cornprowise t h e design of other coniponsnts i f t h e f u l l e s t benefits a l e t Q be derived from t h z u s e o f a l u n i ~ n u mchloride. Where
aluminum chloride vapor
working f l u i d i n a thermodynamic c y c l e
Aluminum
Chlaride
o s a Heat Transfer
A t y p i c a l a p p l i c a t i o n for which aluminwin chloride
may
have
promise
i s as an
intermediate heat
transfer f l u i d between t h e f l u o r i d e f u e l of a moltens a l t - f u e l e d reactor and t h e steam generator. T h e use o f a gas rather than a l i q u i d in t h e intermediate loop w o u l d f a c i l i t a t e removal of t h e heat transfer medium; it w o u l d not be necessary t o design t h e system t o a v o i d the presence o f l o w spots which w o u l d present d i f f i c u l t drainage or scavenge problems. It w o u l d make p o s s i b l e t h e p l a c i n g of flanged j o i n t s i n c o o l zones at t h e t o p o f t h e system and outside o f t h e heat exchanger pressure envelope so t h a t leaks o f t h e molten f u e l i n t o t h e aluminum chloride w o u l d b e contained w i t h i n t h e pressure envelope. T h e pressure required, namely, t o 60 p s i i n t h e aluminum chloride, w o u l d present n o serious s t r u c t u r a l problems i n t h e design o f t h e c o n t a i n i n g v e s s e l . From F i g . 4,
20
w h i c h i s a p l o t o f data obtained from Eq. (7), it i s e v i d e n t t h a t there w o u l d b e n o s o l i d aluminum c h l o r i d e p r e c i p i t a t e d a t t h e temperatures and pressures p r e v a i l i n g in a molten-salt-fueled reactor. . Aluminum c h l o r i d e would have t h e advantage as a heat transfer f l u i d t h a t i t w o u l d UNCLDSSI F l i D O R N L - L R - D W G 39597
be chernicolly inert r e l a t i v e t o either t h e molten s a l t or water. T h i s w o u l d make i t d e s i r a b l e from t h e hazards standpoint a n d w o u l d g i v e a system r e l a t i v e l y i n s e n s i t i v e t o leaks between a n y t w o sets o f fluid; that is, a small leak from one system i n t o another w o u l d not lead t o t h e formation of a set of d e p o s i t s w h i c h w o u l d be v e r y d i f f i c u l t
to remove. It w o u l d be necessary, of course, t o make t h e steam generator, as w e l l a s t h e fuel-
to-aluminum c h l o r i d e heat exchanger, of a r e l a t i v e l y e x p e n s i v e high-nickel-content a1 loy. T h e p r i n c i p a l disadvantage of t h i s arrangement i s t h a t i t w o u l d require a larger amount of h e a t transfer surface area and a higher pumping powsr than would be t h e case fnr an inert molten salt, for example. However, i t w o u l d have a maior advantuge i n t h a t there would b e no freezing problem in t h e intermedicits h e a t exchanger c i r c u i t . T h e freezing problem presents e x c e e d i n g l y diff i c u l t d e s i g n problems i f a f l u i d such a s sodium
or NaK i s employed a s the transfer medium.
intermediate heat
T h e temperature range for such an a p p l i c a t i o n i s lower than i s d e s i r a b l e i n that t h e heat transfer surfaces for the molten s a l t w o u l d be at about
1100 t o 1200째F, w h i l e those i n t h e steam generator w o u l d be a t 700 t o 1000OF. As may be seen in
Fig. 1, t h i s temperature range i s b e l o w that w h i c h g i v e s t h e maximum obtainable average e f f e c t i v e
s p e c i f i c heat i f t h e pressure i s maintained h i g h enough (30 t o 100 p s i ) t o keep pumping losses to
a c c e p t a b l e levels.
Aluminum Chloride Vapor in
1
Fig. 4. Chloride.
22
4000
r200
L..I
........... 1400
TEMPERATURE
i600
1800
2000
(OR)
Gas-Solid Equilibrium Diagram for Aluminum
B
Gas-Turbine C y c l e
T h e features o f a gas-turbine c y c l e u t i l i z i n g aluniinuni c h l o r i d e deserve s p e c i a l attention. T h e c y c l e contemplated i s i n d i c a t e d s c h e m a t i c a l l y i n Fig. 5. The pressures and temperatures should be c h o s e n so that the gas w i l l be m o s t l y in t h e during compression, w h i l e during form of Al,CI, t h e expansion process it w i l l be m o s t l y AlC13. T h i s , i n effect, w i l l c u t t h e compression work roughly i n h a l f a n d thus produce a marked improvement i n c y c l e e f f i c i e n c y . T h e nature of t h i s e f f e c t c a n b e v i s u a l i z e d r e a d i l y b y exonlining t h e P-V diagrams of F i g . 6, w h i c h compare s i m i l a r i d e a l gas-turbine c y c l e s for helium, aluminum chloride, and water. It should be remembered t h a t t h e work i n v o l v e d in each compression or expansion process i s d i r e c t l y proportional t o t h e area of t h e P-V diagram, and t h e net- work i s
UNCLASSIFIED O R N L - L R - D W G 39538
proportional t o t h e net area for t h e c y c l e .
The
Rankine c y c l e u t i l i z i n g water vapor was included
i n Fig. 6 t o show that the proposed aluminum chloride c y c l e i s between a gas-turbine (or Brayton) c y c l e u t i l i z i n g helium and a Rankine c y c l e u t i l i z i n g water in i t s requirements for work input during t h e compression process. T h e diagrams of F i g . 6 were prepared for i d e a l c y c l e s w i t h no allowances for l o s s e s . T h e most important of these losses are associated w i t h the e f f i c i e n c i e s of t h e compressor and the turbine,
w h i c h are l i k e l y t o b e of t h e order of 85%. T h i s means that, w i t h an 85% e f f i c i e n t compressor, the i d e a l work input w i l l be 85% of the a c t u a l work input, w h i l e the a c t u a l work output of the t u r b i n e w i l l be o n l y 85% of t h e ideal. In oddition, pressure Fig. 5. Aluminum Chloride Gas-Turbine C y c l e .
drops between t h e compressor and t h e t u r b i n e w i l l
UNCLASSIFIED C R N L - - L i i - LjWG 3 4 5 7 7 R
RANKINE C Y C L E (H201
I D E A L 'WORK INPUT = & 4 3
8RAYTON CYCLE (A12CIG-AIC131
B R A Y T O N C Y C L E (HB)
Blu/lb
n-r
I._._..
~ I G E A NLE T WORK = 3.7.6 B t / i i l
VOL.UME i f t 3 / l b )
VOL LIME ( f t 3 / l b l
Fig. 6. P - V Diagrams for T y p i c a l ldeol Thermodynomic C y c l e s .
23
a l s o cause major losses in n e t output from the cycle. T h e nature of these effects can b e seen r e a d i l y in F i g . 7. It should be emphasized that the shaded portions o f these diagrams are merely proportional t o the losses they represent and that the a c t u a l paths of t h e processes cannot be A rough allowance for these pressure shown. losses can b e made b y using lower values for the turbine and compressor efficiencies, for example, 80% in each case. If allowances are made for these l o s s e s t o obtain the a c t u a l net outputs for the c y c l e s of Fig. 6, t h e diagrams o f F i g . 8 result. T h e r e l a t i v e l y large work input required for t h e compression process of the Brayton c y c l e makes the c y c l e e f f i c i e n c y very s e n s i t i v e t o compressor i n l e t temperature becouse the compression work i n creases r a p i d l y w i t h temperature. As a result, the net work output and over-all c y c l e e f f i c i e n c y of the Brayton c y c l e drop off so r a p i d l y w i t h increasing temperature a t the compressor i n l e t that, for any practicable plant, the compressor i n l e t
temperature must be h e l d b e l o w 150'F if conAt the same ventional working f l u i d s are used. time, the turbine i n l e t temperature must b e at least 120O0F, and preferably should b e above 14OOOF if there i s t o be an appreciable p o s i t i v e net area for t h e P-V diagram. T h e unusual properties o f aluminum chloride make it p o s s i b l e t o g o t o higher compressor i n l e t temperatures than w i t h other f l u i d s . T h e e f f e c t s of v a r i a t i o n s in both t h e compressor i n l e t tempernture a n d t h e compressor pressure r a t i o are indicated i n F i g . 9 for a turbine i n l e t temperature of 154OOF. While t h i s temperature i s h i g h b y steam power plant standards, the much lower pressures i n t h e aluminum chloride s y s i e i n reduce stresses suff i c i e n t l y t o compensate for most of t h e temperature difference. In any event, it i s necessary t o go t o peak temperatures in t h i s range t o t a k e f u l l advantage o f t h e unusual properties of t h e aluminum chloride. It i s evident from F i g . Othat t h e aluminum chloride vapor c y c l e should be designed for a compressor i n l e t temperature of around 540 t o
640째F and a pezisure r a t i o of 20 t o 40.
80
Further lowering o f t h e compressor i n l e t temperature w i l l do l i t t l e t o enhance efficiency, s i n c e a t 540째F p OSSTHROUGH HEATER most of t h e gas i s i n the dimer state already.
60
A p o i n t of interest i s t h a t i t was found in the c y c l e a n a l y s i s that during the compression and
IJNCLASSIFIED ORNL-LR-DWG 3472
expansion 40
- 20
l i t t l e change i n
for such an application. The heat transfer c o e f f i c i e n t for t h e aluminum chloride i s s u f f i c i e n t l y high for t h e high-pressure
EDDY I OSSES 11 COMPRESSOR
.-
rn a
I
w
THROUGHCOOLER
5 0
0
4
8
I2
16
20
24
portion o f t h e cycle, and therefore good heat transfer c o u l d be obtained in a reactor core. In the cooler, however, t h e heat transfer performance of t h e aluminum chloride w o u l d be poor, and a
28
SPECIFIC VOLUME ( f t ? I b )
Fig.
7.
P - V Diagrams for Ideal G a s T u r b i n e A i r
C y c l e s with Cross-Hatched Areas to I n d i c a t e the Magnitude of t h e P r i n c i p a l L o s s e s .
24
processes there was
t h e percentage of t h e gas dissociated. T h i s w i l l s i m p l i f y the design af cornpressors and turbines
large surface area w o u l d be required. T h e poor heat transfer c o e f f i c i e n t of aluminum chloride i n tho cooler stems from the f a c t t h a t t h e pressure at t h e turbine outlet would b e o n l y approximately 1/10 atm, and t h i s would g i v e a l o w Reynolds number. T h e pressure ahead of t h e turbine, on the other hand, would be 20 t o 40 times greater, w h i c h would g i v e heat transfer c o e f f i c i e n t s correspondingly higher. S i n a r y Vapor C y c l e Applications
If aluminum chloride were used a s a reactor coolant ar a s an intermediate heat transfer f l u i d
UNCLASSIFIED
ORNL-LR-DWG
R4NKlNE CYCLE ( H 2 0 )
F i g . 8.
P - V Diagrams
BRAYTON C Y C L E [ A l ~ C I ~ - A I C I ~ )
31578R
BRAYTON C Y C L E (He)
for Typical Ideal Thermodynamic Cycles with Cross-Hatched Areas to R e p r e s e n t the
L o s s e s Entailed by Compressor and Turbine E f f i c i e n c i e s of
for a molten-salt-fueled reactor, it appears that a b i n a r y vapor c y c l e employing aluminum chloride in the high-temperature portion and water vapor i n the lower-temperature region ought t o L e considered. Such a c y c l e w o u l d resemble i n many ways the binary mercury vapor-steam c y c l e w h i c h has been used i n a number of U.S. power plants. It w o u l d have t h e advontage t h a t it would permit operation at h i g h temperatures (which w o u l d be advantageous from t h e thermodynamic standpoint) w h i l e avoiding t h e expense a s s o c i a t e d w i t h t h e h i g h pressures characteristic o f high-temperature steam cycles. While there are a host of different combinations of conditions that might be employed,
80%.
a t y p i c a l case i s presented i n T a b l e 5. T h e aluminum chloride w o u l d be expanded through a The turbine similar to that described above. cooler for the aluminum c h l o r i d e would a l s o serve as t h e b o i l e r and superheater for t h e steam sys-
tem. It may b e seen from T a b l e 5 t h a t t h i s system gives a very much higher over-all thermal e f f i c i e n c y than i s obtainable from t h e gas-turbine c y c l e A corresponding steam system designed alone. far a pressure of 2400 p s i and a peak temperature out o f the superheater af 105OOF w o u l d give an over-all thermal e f f i c i e n c y of about 38%, somewhot less than the e f f i c i e n c y t h a t the t y p i c a l binary vapor c y c l e chosen w o u l d attain.
25
-......................._.......
UNCLASSIFIED
O R N L - L R - DvVG 39601 I
I
r
TURBINE I N L E T TEMPERATURE: 2000"R TURBINE INLET PRESSURE = 60 p s i 0 COMPONENT EFFl ClENC IES COMPRESSOR 00% TURBINE 00"?0 GENERATOR 90%
~
COMPRESSOR
0
Fig.
10
20 PRESSURE RATIO
9. C y c l e E f f i c i e n c y
C O N C L US10 NS Thermodynamic data have been prepared and are presented i n the form of t a b l e s and charts t o f a c i l i t a t e engineering c a l c u l a t i o n s on systems employing aluminum c h l o r i d e vapor either as a heat transfer medium or as t h e working f l u i d i n a thermodynamic cycle. A number of t y p i c a l a p p l i cations have been considered, but i n none of these
26
30
v s P r e s s u r e R a t i o for
40
AIC13.
has t h e aluminurn c h l o r i d e shown outstanding advantages over more conventional media. However, i t i s b e l i e v e d that for some s p e c i a l a p p l i cations it may w e l l prove t o have some outstanding advantages where t h e c h a r a c t e r i s t i c s of t h e other system components are such as t o make i t p o s s i b l e t o e x p l o i t t o the f u l l e s t t h e unique Characteristics of aluminum chloride.
i I T a b l e 5.
-I
B i n a r y Vapar C y c l e
I d e a l mass r a t i o = 0.18487 Ib of water per Ib o f aluminum chloride A c t u a l mass r a t i o = 0.19585 Ib of wuter per Ib o f aluminum chloride I d e a l c y c l e e f f i c i e n c y = 53.2%
11.4%
Actual cycle efficiency I _
Condition
. _ . . . _ I
.-.
Temperature
(OF )
Spec i f i c
Weight F r a c t i o n
Enthalpy
Entropy
Pressure
Volume
D i s s o c i a t e d or
(Bt ~ ~ / l b )
(Btuf'F 1
(psi.)
(fr3/lb)
Steam Q u a l i t y
Aluminum C h l o r i d e
Compressor inlet
44 0
142
0.02530
5
Compressor o u t l e t ( i se ntr o p ic)
570
164
0.02530
Compressor o u t l e t (80% e f f i c i e n c y )
615
169.5
7.2476
0.00176
100
0.41506
0.00259
0.031 1
100
0.4344
0.00447
1.4614
0.818
Turbine inlet
1540
478
0.22584
100
Turbine outlet (isentropic)
1150
406
0.22584
5
23.07
0.781
Turbine outlet (80% e f f i c i e n c y )
1175
420.4
0.2343
5
23.92
0.818
Steam" Pump inlet
91.72
59.71
0.1147
Pump o u t l e t (isentropic)
91.72
66.14
0.1147
Pump o u t l e t (50% e f f i c i e n c y )
91.72
72.57
Turbine inlet
1050
0.7368
0.01611
Saturated l i q u i d
2400
0.01600
Compressed l i q u i d
0.1243
2400
0.01600
Compressed l i q u i d
1494
1.555-4
2400
0.3373
Superheated vapor
Turbine outlet (isentropic)
91.72
a55
1.5554
0.7368
339.5
0.763
Turbine a u t l e t (80% e f f i c i e n c y )
81.72
983
1.790
0.7368
394.2
0.886
* T h e b a s e s for enthalpy and entropy of aluminum c h l o r i d e and steam are not the same. u b s o l u t e v a l u e s of these properties between the t w o f l u i d s i s n ~ e a n i n g l e s s .
H e n c e comparison of the
27
ORN L-2679
Reactors- Power TID-4500 (14th ed.)
INTERNAL DISTRIBUTION
1. L. G. Alexander 2. D. 5. Billington 3. M. Blander 4. F. F. Blankenship 5. E. P. Blizard 6, A. L. Boch 7. C. J. Borkowski 8. G. E. Bayd 9. M. A. Bredig 10. E. J. Breeding 11. R. B. Briggs 12. C. E. Center (K-25) 13. R. A. Charpie 14. F. L. Culler 15. L. B. E m l e t (K-25) 16-17.L. G. Epel 18. W. K. Ergen 19. D. E. Ferguson 20-45. A. P. Fraas 46. J. H. Frye, Jr. 47. W. R. Grimes 48. E. Guth 49. C. S. Harrill 50. H. W. Hoffman 51. A. Hollaender 52. A. S. Householder 53. W. H. Jordan 54. G. W. Keilholtz 55. C. P. Keim 56. M. T. Kelley 57. J. A. Lane
58. R. S. Livingston 59. H. G. MacPherson 60. W. D. Manly 61. J. R. Mcblally 62. K. Z. Morgan 63. J. P. Murray (Y-12) 64. M. L.Nelson 65. R. F. Newton 66. A. M. Perry
67. P. M. ReyIing 68. G. Samuels 69. H. W. Savage 70. A. W. Savolainen 71. H. E. Seagren 72. E. 0. Shipley 73. J. R. Simmons 74. M. J. Sk'inner 75. A. H. Snell 76. J. A. Swartout 77. E. H. Taylor 78. A. M. Weinberg 79. C. E. Winters 80. Biology Library 81. Health Physics Library 82. Reactor Experimental Engineering Library 83-84. Central Research Library 85-104. Laboratory Records Department 105. Laboratory Records, ORNL R.C. 106-110.ORNL - Y-12 Technical Library, Document Reference Section
EXTERNAL DlSTRl BUTION
1 1 1. W. C. Cooley, NASA, Washington 112. F. E. Rom, NASA, Cleveland, Ohio 113. W. D. Weatherford, Southwest Research Institute 114. Division of Research and Development, AEC, O R 0 115-696.Given distribution as shown i n TID-4500 (14th ed.) under Reactors-Power category (75copies - OTS)
29