Ornl 2677

Page 1



QRNL -2677

Reactors- Power TlD-4500 (14th ed.)

Contract No.

Vd-7405-eng-26

R E A C T O R P R O J E C T S DlVlSlON

M. Blander, L. G. Epel, A. P. Fraos,

und

R. F.

Newton

J

D A T E ISSUED * . .

-

OAK RIDGE NATIONAL LABORATORY

Oak R i d g e ,

Tennessee operated b y

UNION C A R B l D f CORPORATION for the

U.S. ATOMIC ENERGY COMM15510N

3 4456 0363364 0



ALUMINUM CHLORIDE AS A THERMODYNAMIC WORKING FLUID AND HEAT TRANSFER MEDIUM

M.

A. P. Fraas

L. G. E p e l

Blander

R. F. Newton

ABSTRACT The b a s i c p h y s i c a l properties and thermodynamic constants of aluminum c h l o r i d e have been calculated

to

employing from

obtain t h e data required far

aluminurn chloride vapor.

engineering c a l c u l a t i o n s o f thermodynamic c y c l e s

T h e p o s s i b l e corrosion problems i n v a l v e d were evaluated

the standpoint of b a s i c chemical thermodynamics, and it was concluded that h i g h - n i c k e l -

content a l l o y s would c o n t a i n aluminum chloride s a t i s f a c t o r i l y . T h e advantages of gaseous aluminum c h l o r i d e os an intermediate heat transfer medium i n a

molten-salt-fueled molten-salt

reactor were evaluated.

It was determined that t h e temperature range of the

heat transfer system was too l o w to u t i l i z e aluminum c h l o r i d e e f f e c t i v e l y .

A gas-

turbine c y c l e employing aluminum chloride as the working f l u i d and a binary vapor c y c l e employing water vapor for the lower temperature c y c l e were a l s o considered. aluminum chloride t o have outstanding advantages.

Neither o f these studies showed

It i s believed, however, t h a t s p e c i a l a p p l i -

c a t i o n s may be found in w h i c h it w i l l be p o s s i b l e t o e x p l o i t the unique c h a r a c t e r i s t i c s of aluminum c h I or ide

.

INTRODUCTION

of the r e l a t i v e l y large difference in t h e gas constant

Gaseous aluminum c h l o r i d e appears t o be attract i v e as a heat transfer medium and as a thermodynamic-cycle working f l u i d as a consequence of the f a c t t h a t it e x i s t s as t h e monomer AICI, a t h i g h temperatures and as t h e dimer AI,CI, a t low

between t h e monomer and dimer, t h e r a t i o o f turbine work t o compressor work w i l l be greater

temperatures.

The effective

specific

heat and

thermal c o n d u c t i v i t y of a gas that associates are considerably enhanced because of t h e a s s o c i a t i o n e q u i l i b r i u m a t temperatures at w h i c h there i s an appreciable fraction o f both monomer and polymer, and therefore aluminum c h l o r i d e may b e a n except i o n a l l y good heat transfer medium for some

than for a gas that does not dissociate. Further, t h e energy l o s s e s due t o t h e i n e f f i c i e n c y of both the compressor and t h e turbine w i l l have r e l a t i v e l y smaller e f f e c t s on the over-all thermal e f f i c i e n c y w i t h a d i s s o c i a t i n g gas as t h e working fluid. BASIC PHYSICAL PROPERTIES O F

ALUMINUM CHLORIDE T h e o b j e c t i v e of

this study was t o i n v e s t i g a t e

the working

the p o s s i b l e advantages of aluminum c h l o r i d e a r i s i n g from i t s d i s s o c i a t i o n and t h e consequent

f l u i d i n a thermodynamic c y c l e stem from i h e f a c t that, i n an i d e a l i z e d gas turbine w i t h a n e g l i g i b l e pressure drop i n t h e system, the pump compressor w i l l require work proportional t o t h e compressor i n l e t temperature times t h e s p e c i f i c gas constant of t h e dimer for any g i v e n pressure r a t i o . I n the high-temperature region a t the turbine, on t h e other hond, i f t h e gos i s completely monomeric, t h i s same weight of gas w i l l do work proportional t o the turbine i n l e t temperature times t h e monomer gas c o n s t a n t for t h e same pressure r a t i o . Because

conductivity. Q u a l i t a t i v e l y t h e reason for these increases i s simple. L o w e r i n g the temperature o f the gas w i l l y i e l d not only the heat g i v e n o f f i f t h e camposition of t h e gas were “frozen, 1 s but, s i n c e the gas is more h i g h l y associated a t lower temperatures, it w i l l a l s o g i v e off t h e chemical heat due t o t h e a s s o c i a t i o n of some of t h e monomer molecules us a r e s u l t of lowering t h e temperature. T h e same phenomenon increases t h e thermal conductivity. T h e therrnal c o n d u c t i v i t y i s the

applications.

I t s p o s s i b i l i t i e s as

increase

i n e f f e c t i v e s p e c i f i c heat and thermal

1


amount of heat that w o u l d be transferred i n u n i t t i m e across u n i t area from a temperature T + d f t o T d i v i d e d b y t h e temperature gradient, d T / d x . T h e frozen thermal c o n d u c t i v i t y i s t h a t w h i c h would occur i f t h e composition were frozen a t an average weight fraction Z n of the polymer and W 1 Since w , of t h e monomer a t b o t h temperatures. i s higher at 7' + dT and w n i s higher at I' than t h e average, r e l a t i v e l y more monomer w o u l d d i f f u s e from T t dT t o T and more polymer from T t o T + d T than for a frozen composition. T h e composition of t h e higher-temperature gas molecules d i f f u s i n g t o t h e lower temperature would change w i t h a

trend toward t h e lower e q u i l i b r i u m concentration of monomer a t t h e lower temperature and would g i v e o f f heat i n t h e process. This c h e m i c a l heat c o n t r i b u t i o n i s part of t h e heat flux. Q u a n t i t a t i v e expressions for these phenomena For a have been g i v e n by B u t l e r and Brokaw.' substance w h i c h dimerizes,

T h e q u a n t i t i e s of p r a c t i c a l interest, t h e e f f e c t i v e s p e c i f i c heat, C p e , t h e e f f e c t i v e thermal conduct i v i t y , he, and t h e v i s c o s i t y , have never been measured. T h e s e and other q u a n t i t i e s of i n t e r e s t must be estimated. It i s fortunate that t h e theory of gases i s w e l l developed and, for some calculations, i s more r e l i a b l e than measurements.

Effective Specific Heat T h e e f f e c t i v e s p e c i f i c heat was c a l c u l a t e d by u s e of Eq. (1). T h e frozen s p e c i f i c heat of Al,C16, was estimated according t o well-known s t a t i s t i c a l mechanical methods2 by u s e o f t h e infrared v i b r a t i o n a l frequencies measured or esti-

Cpi:

mated by K l e m ~ e r e r . ~T h e frequencies for AICI, were estimated b y analogy w i t h t h e compound

BGI, (ref 4). T h e average v a l u e of t h e s p e c i f i c heat i n t h e temperature range 500 t o l O O O O K i s 0.16 cal.g-'.(째C)-l for A12C16 and i s 0.14

c a l - c ~ - I - ( ~ C ) - ' for AICI,. A t each cornposition of t h e gas, an average v a l u e was computed from t h e composition-weighted average of t h e s e t w o v a l u e s for t h e monomer and t h e dimer. T h e composition of t h e gas may be computed from t h e e q u i l i b r i u m constant

where

Cpe

= e f f e c t i v e s p e c i f i c heat i n

C

= frozen s p e c i f i c heat,

Pi

AH

R , R'

ca I - 9 -

=

=

adeg -

,

4 F o - \[I

heat change for the r e a c t i o n

A12C164 2AICI,,

gas constants i n proper units,

wl,w 2 = w e i g h t f r a c t i o n of monomer and dimer, res p e c t i ve I y,

he

Xi

where

= e f f e c t i v e thermal c o n d u c t i v i t y i n

tal-cm- '.set- I - d e g -

I,

frozen thermal conductivity,

:

- T I S o - -RT

In K

,

(36)

in w h i c h A H i s t h e h e a t of d i s s o c i a t i o n o f t h e gas, w h i c h was taken a s 29.6 kcal/mole (ref 5 ) , and 15' i s t h e entropy difference between 2 moles o f AICI, at 1 atm pressure and 1 mole o f AI,CI, at 1 atm pressure, w h i c h was taken as 34.6 cal.mole-l.deg-' (ref 5 ) . T h e values of u f l c a l c u l a t e d from Eqs. ( 3 n ) and ( 3 b ) a t pressures of 0.1, 1, and 10 atm, respectively, i n t h e temperature range 500 t o 1200OK ore l i s t e d i n column 2 o f Table

1.

Column

3 o f t h e same t a b l e l i s t s t h e

D 1 2 = i n t e r d i f f u s i o n c o e f f i c i e n t s o f monomer and dimer,

P

=

t o t a l pressure,

M,

=

molecular weight of a monomer.

2J. E. Mayer and M. G. Moyer, S t a t i s t i c a l Mechanirs, Vrliley, New York, 1940. 3W. Kleivperer, /. Chpm. Phys. 24, 353 (1956).

4G. Heszberg, Molecular Spectra and Moleculur Structure, V a n Nostrand, New York, 1945. 'J. N. Butler and R . S. Brokaw, J . Chem. P h y s . 26, 1636 (1957).

2

'A. Shepp and S. H. 265 (1954).

Douer,

J . Am. G e m . SOC. 76,


Table 1. C a l c u l a t e d Values of w , , C

pe’ f‘

for Aluminum C h l o r i d e

and

-

~

Temperature

Weight Fraction

(”K )

of Monomer, tu,

‘fie (cal-g-l-deg-

’)

see-

(cal*cm‘

mdeg-

)

(cal-cm-

he * rec-

adeg-’)

For a Pressure of 0.1 a i m

x 10-6

x

500

0.003

0.17

12

14

550

0.013

0.19

13

18

600

0.038

0.25

13

26

650

0.100

0.35

14

42

700

0.223

0.5 1

15

63

750

0.422

0.66

16

77

aoo

0.655

0.63

17

68

85 0

0.83 1

0.43

ia

47

900

0.926

0.28

19

32

950

0.966

0.20

19

25

1000

0.984

0.17

20

23

1050

0.992

0.15

20+

22

1100

0.996

0.15

21

22

1150

0.998

0.14

21

21 +

1200

0.999

0.14

22

22

For

a Pressure of

-

1 atm

x 10-6

x

500

0.001

0.16

12

13

550

O.QO4

0.17

13

15

600

0.012

0.19

13

17

650

0.032

0.22

14

24

700

0.072

0.28

15

34

75 0

0.145

0.36

15

46

800

0.264

0.47

16

60

85 0

0.428

0.55

17

65

900

0.612

0.54

18

63

950

0.766

0.44

19

50

1000

0.870

0.32

19

37

1050

0.929

0.24

20

30

1100

0.961

0.19

20

25

1150

0.978

0.17

21

24

1200

0,987

0.16

22

24

3


1

Table . . . . I

Temperature

Weight F r a c t i o n

(OK)

of Monomer, w 1

-

(continued)

-_

...........

. . . . . . . .

xf

e (cal.g-'.deg-

')

(calecm"'

F o r o Pressure o f

'*set- 'adeg-.......

Xe

')

(cal-ern-'. sec-

10 a t m

x 10-6 0.000

0.16

12

12

550

0.001

0.16

13

14

6 00

0.004

0.17

13

14

650

0.01 0

0.18

14

17

700

0.023

0.20

14

20

750

0.047

0.23

15

26

8 00

0.087

0.27

16

34

850

0.148

0.32

16

42

900

0.240

0.38

17

52

95 0

0.352

0.43

18

58

1000

0.490

0.46

18

59

1050

0.622

0.44

19

54

1100

0.740

0.38

20

47

1150

0.827

0.30

21

40

1200

0.888

0.25

21

E f f e c t i v e Thermal C o n d u c t i v i t i e s T h e e f f e c t i v e thermal c o n d u c t i v i t i e s were calculated using Eq. (2). T h e frozen thermal conduct i v i t i e s of monomer and of dimer were c a l c u l a t e d from the equation6

A,

=

(1.9891 x l o m 4 )( 7 / M , ) "2

where

x

500

values of C estimated b y use of Eq. (1) for the Pe three pressures and t h e same temperature range. A - p l o t of C Pe and the average frozen s p e c i f i c heat C p / v s temperature a t the three pressures i s presented i n Fig. 1.

R

0,'

15 R

5

M n i s the molecular weight of a polymer,

33

._.

a polymer i n angstroms, and I! i s a factor w h i c h corrects for intermolecular interactions and can be c a l c u l a t e d t h e o r e t i c a l l y for simple potential functions i n terms of t h e parameters of the p o t e n t i a l fun c t i on. A crude estimate of 0: was made for A12C16 and AlCl . From electron d i f f r a c t i o n data on A12C16 (ref s t r u c t u r a l estimates for AICI, (ref 5), and the v a n der Waals r a d i i of c h l o r i n e atoms, t h e

d),

dimensions of A12C16 and AICI, were estimated. B y comparison of t h e r e l a t i v e dimensions of s i m i l a r compounds t o t h e i r e f f e c t i v e c o l l i s i o n diameters,' the e f f e c t i v e c o l l i s i o n diameters of A12CI, and AICI, were estimated. For the

7For o more accurate equation s e e J. 0. Wirschfelder, T h e use of the more accurate equation leads t o only a r e l a t i v e l y s m a l l d i f ference f r o m t h e v a l u e s calculated here,

ur2 i s t h e average e f f e c t i v e molecular diameter of

1. Chem. Phys. 26, 282 (1957).

6J. 0. Hirschfelder, C. F. Curtiss, and R. B. Byrd, Molecular Theory o/ G a s e s and L i q u i d s , p p 14, 528, 534, Wiley, New York, 1954.

9Hirschfelder, Curtiss, and Byrd, pp 1111-12, 162.

4

-deg- ' )

......

'L. R. M a x w e l l ,

1. Opt.

SOC. Am. 30, 374 (1940).

op. cit,,

Table

I-A,


.

Lennard-Jones 6-12 i n t e r a c t i o n potential, 0 has been c a l c u l a t e d as a function of t h e parameter K ~ / E , where E i s t h e depth of t h e p o t e n t i a l well. or T h e volue of F i s unknown for e i t h e r AI,CI, AICI,. We may, however, estimate E by analogy Of w i t h other halogen-containing compounds. several halogen-containing compounds9 t h e lowest value of E / K , i s 324 for HI and the h i g h e s t i s 1550 for SnC14. With these values as limits, t h e foll o w i n g values were obtained for Q:

E/k

Q

500

324

1.3 2.7

1000

1550 324 1550

T

(OK)

1 .o 2.0

............,

UNCLASSIFIEO

0.8

ORN Li- --L R -...D ...I.G 35364R2

~

..... ............. 600 700

500

Fig.

The

1.

Aluminum

...........

900 1000 TEMPERATURE Y K )

800

1200

C a l c u l a t e d E f f e c t i v e Specific Heat of

Chloride

as

a

Function o f

Temperature

at

T h r e e Pressures.

UNCLASSIFIED O R Y l - L R - GNG 39713

T h e range of values o f Q l i s t e d i s 1.0 t o 2.7, and a v a l u e of Q == 2 was a r b i t r a r i l y chosen as b e i n g reasonable.

1100

T h e v a l u e of D t 2 P was estimated

from the equation"

where M , and M ,

are the molecular weights of

monomer and dimer, respectively, u,, 7 (o1 t a2)/2, and Q' i s a correction for intermolecular inter-

actions. It does not d i f f e r g r e a t l y from i), and therefore t h e value 2.0 was used. T h e c a l c u l a t e d values of D I 2 P i n t h e temperature range 500 t o 1200째K are l i s t e d i n column 2 of T a b.l _ e 2. T h e average frozen thermal conductivities, e f f e c t i v e thermal conductivity, ha,

Eq. (2), at pressures of 0.1, 1 , and 10 atm were l i s t c d i n T a b l e 1. P l o t s of and he vs tempera/ ture ~t the three pressures m e presented i n F i g . 2.

x

T h e constants and parometers used i n these c a l c u l a t i o n s are summarized below:

K

=

1.9869 cat-mole- '.deg-

R' = 82.057 cm3.atrn-mole- 'edeg-'

AI!

=

29.6 k c a l for t h e reaction A12CI, 2AIC1,

ASo = 34.6

e.u.,

change for r e a c t i o n A12CI, # 2AICI, w i t h b o t h monomer and dimer a t t h e i r standard state of 1 atm

"fbid., p 539.

entropy

500

Fig.

700

600

800 900 1000 TEMPE R ATU R t L"K )

4100

1200

2. T h e Calculated E f f e c t i v e Thermal Conductivi-

t i e s of Aluminum Chloride a s a Function of Temperature a t Three Pressures.

g:

w2

-40

0 2 = 2

65 9 2

o2 = 51.7 12

M , = M2/2

Q

=

f!'

C -C V

= P

i2 --- 133.35 g/mole 2.0

-R Viscosity

T h e v i s c o s i t y was estimated from the equation6

2.6693 '7, =

Y

__ 0 :

(!%In 7')

(6)

d !

5


Table

2.

V a l u e s of

D 1 2 P , q l , and q2

O12

T

(OK )

.__

_. ....-

_.___

(cm2.atrn* sec-

'1

V i s c o s i t y of Monomer,

(9.cm- 1. se c-

'

)

q1

V i s c o s i t y of Dimer, (g.cm-'-sec-')

x 10-6

x 500

21.3

86

75

550

24.6

90

79

600

28.0

94

82

650

31.6

98

86

700

35.3

102

89

75 0

39.2

106

92

800

43.1

109

95

85 0

47.2

112

98

900

51.5

116

101

95 0

55.8

119

103

1000

60.3

122

106

1050

64.8

125

109

1100

69.6

128

111

1150

74.3

131

114

1200

79.2

134

116

for b o t h monomer and dimer. T h e c a l c u l a t e d values are l i s t e d in columns 3 and 4 of T a b l e 2. F o r a mixture of monomer and dimer, a c o m p o s i t i o n weighted average would be an adequate approximation t o t h e v i s c o s i t y .

T h e vapor pressure of s o l i d aluminum c h l o r i d e in e q u i l i b r i u m w i t h t h e gaseous phase may be c a l c u l a t e d from t h e equation"

-6360 T

3.77 log 1'

-

- 0.00612T + 6.78 . T h e vapor pressure i s

enough s o that t h e v e l o c i t y of a s s o c i a t i o n and d i s s o c i a t i o n of t h e aluminum chloride i s f a s t enough t o f o l l o w the compression and r a r e f a c t i o n cf t h e gas, the v e l o c i t y of sound may be c a l c u -

lated from6

"

Vapor Pressure

l o g P (atm) = ----+

72

(7)

where C , i s t h e v e l o c i t y of sound in cm/sec, v i s t h e s p e c i f i c volume of t h e gas i n cm3/gI P i s the pressure in dynes/cm2, and S i s t h e entropy. T h e v a l u e of ( d u / d P ) , can be c a l c u l a t e d from t h e e x a c t thermodynamic r e l a t i o n 12

1 atm a t 18OOC (453째K).

Velocity of Sound i n Aluminum C h l o r i d e T h e v e l o c i t y of sound, C, i n the working f l u i d i s needed for turbine design. At frequencies low "0. Kuboschewski and E. I-. Evans, MetaIIt~rgicaI Thermochemistry, W i ley, N e w York, 1956.

6

'*G. N. L e w i s and h4. Randall, T h e r m o d y n a m i c s and the Free Ene7 y of Chemical substances, p 164, McGrowHill, N e w Y o r f , 1923.


and t h e equation

PV

L

=:

(2) ,

RT

(10)

volume were ternperatwe and pressure. The r e l a t i o n s used in the computational procedure are summarized below. D e t e r m i n o t i o n of Weight F r a c t i o n of Monomer,

-

i n w h i c h the reasonable assumption i s made t h a t the gaseous monomer and dimer i n d i v i d u a l l y

w,. It has been shown by Newton, from freeenergy-change relationships, that

behave as i d e a l gases and t h a t a l l deviations from

an i d e a l gas are due t o the a s s o c i a t i o n or d i s s o c i a t i o n o f the gaseous monomer or dimer. A n evalua t i o n o f ( c % / ~ P and )~

( d v / d T ) p from Eq. (10)

and

where

the thermodynam i c r e l a t i o n

u = 8.016

T

is in

OR,

P 13420 - -21 In -14.696 T and P i s pressure i n psia.

D e t e r m i n o t i o n of

leads t o

-

Enthalpy, h.

T h e enthalpy

of the mixture i s the sum of the enthalpy the gas w o u l d have if it were a l l i n the dimer state p l u s the enthalpy o f dissociation. Choosing absolute zero temperature as the base for enthalpy and 0,1575 Btwlb- l*(oR)-"' os the frozen s p e c i f i c heat averaged for the temperatures and pressures under consideration, t h e "sensible" enthalpy, i n R t d l b , is

hs

and

=

0.15753

.

T h e enthalpy of d i s s o c i a t i o n i s 199.7 B t u for each pound of A12CI, monornerized. Therefore the t o t a l enthalpy i s

+ 1 9 9 . 7 ~ .~ (16) D e t e r m i n a t i o n of Entropy, s . - F r o m the d e f i n i t i o n h

Substitution leads t o

o f Eqs.

(12)

and

(13)

i n t o Eq.

(9)

T H E R M O D Y NAMlC P R O P E R T !ES

In t h e gaseous phase the state of an e q u i l i b r i u m

mixture o f A12CI, and AICI, i s determined by any t w o independent properties, and knowledge o f the thermodynamic state mokes it p o s s i b l e t o determine

the thermodynamic properties. The t w o independent defining properties used t o c a l c u l a t e w e i g h t f r a c t i o n of monomer, enthalpy, entropy, and s p e c i f i c

0.1575T

of entropy i n Btu~lb-l-(oF?)-',

ds =

"1 "2

2

=

it c a n be shown'

V E r s ib le

"re

T

I

that

Noting t h a t

dh = du

+P

gives

ds

',See,

for

iv

dP

- v dP .

___...-

?'

J. H . York, 1941.

instance,

P 85, Wiley, N e w

dh

dv

Keenon,

Thermodynamics,

7


Then,

for an isobaric process, that is, constant

pressure,

Determination of Specific Volume, perfect gas l a w states t h a t

-

LJ.

The

‘ 1

for small variations i n T , where

1 and 2 are thermo-

dynamic states. T h e entropy was considered equal t o zero a t 900°R a n d 150 psia, and the entropy at other temperatures a t t h i s pressure was approximated by a stepwi se, finite-difference procedure using the approximation g i v e n nbove. T o get t h e entropy at 960”R and some other pressure, i t i s p o s s i b l e i o u s e one of Maxwell’s relations 14

where

- 154.5 f : . l b ~ m o I e - ’ ~ ( O R ) - ’

K~

and ,AIrn i s t h e molecular weight of t h s mixture and i s 266.7/(1 -C u , ) . N u m e r i c a l l y t h i s becomes

5.793(1

z

L

ul)

T

in

ft3/lbm

,

in

ft3/lb,

,

where P i s expressed i n psf, or

7,’

For n constant temperature process, then

,

=

T

0.04023(1 i

ul)-

P

where P is i n psia.

- A s an example fhe c a l c u l a t i o n a l procedure employed, a compu-

E x a m p l e of N u m e r i c a l Procedure. of

enthalpy, t a t i o n of weight f r a c t i o n of monower, h, entropy, s, and s p e c i f i c volume, v , a t a pressure o f 30 psia and CI temperature of 1260’R f o l l o w s : 1. For t h e weight fraction of monomer c a l c u lation, u r 1 ’

A s shown below,

i f l’ i s expressed in pounds per

sauare foot (psf),

c - 5.793(1 Since (1 + than about

71

0.3%

T

+ 7i

)-P

,

does not vary from u n i t y by more at 900OR for t h e pressures under

consideration, it can be stated that

5.793

($){, ‘=P so t h a t n t constant temperature

where

u = 8.016

1

--

2

In

P ~

-

14.696

13420 ~

T

=

1 30 13420 8.696 - - I n ___ - _ _ 2 14.696 1260

=

-2.9923

and therefore

,1/2

I

t - tanh

=

5.793 In

I’

1

~

e2

0.05055

i n ft. Ib-Ib-’-(”R)-’

:

-

8

.

2. For the enthalpy calculation, h - G.15751

l41bid., p 342.

(-2.9923)

+ 199.711

(0.1575 x 1260)

- 208.53

.

+ (199.7

x 0.05055)


3. For the entropy

calculation,

a t a constant

pres sur e, As]:

25-

=

1.7751

Ah T

.i0.05055)

1260

-

30

.

% 0.003792

,

0.07298

.

CORROSION BEHAVlQR

208.53

- 203.79

1260

and s %

4. For the specific volutne =

0.04023(1

Data obtained for these functions a t temperatures from 900 t o 2000"R and pressures of 1.5, 5, 15, 30, 60, 100, and 150 p s i a are listed i n Tabla 3, and an enthalpy-entropy chart i s presented i n Fig. 3.

ru

v

=

0.04023(1

calculation

T i- Z U , ) ~

The corrosiveness of the gas i s another important consideration. The free energies of formation of aluminum chloride a n d the chlorides of some possible container m a t e r i a l s a t 560 and l O O O O K IJNCL A ss I i l E ? O R N L - L R - - D W G 39596

550

250

200

i

150

0

0.05

0.10

ENTROPY [ R t u

Fig.

3.

0.20

0.15 '

Ib-'

'

0.25

0.30

(OR)-']

Enthalpy-Entropy D i a g r a m for Aluminum Chloride Vapor.

9


Table

__

3.

Thermodynamic D a t a for Aluminum C h l o r i d e a t V a r i o u s P r e s s u r e s

__._____I_

-...___

Temperature

(OR

Weight F r a c t i o n

Enthalpy

of AIC13

( B t u A b)

Entropy [Btu.lb"'.(%)-']

Specific Volume

(ft3/lb)

A t a Pressure o f 1.5 p s i 0

10

900 920

0.0032 1 0.00442

142.39 145.78

0.03425 0.03794

940 96 0 980

0.00605 0.0081 1 0.01083

149.25 152.81 156.51

0.04 164 0.04535 0.0491 1

24.193 24.761 25.340 25.932 26.544

1000 1020 1040

0.01422 0.0 1848 0.02 382

160.33

1060 1080

0.03037 0.03836

0.052 94 0.05686 0.06 092 0.065 12 0.06951

27.176 27.836 28.531 29.266 30.049

1100 1120 1140 1160 1180

0.04808 0.05973 0.07361 0.09006 0.10933

0.07414 0.07903 0.08422 0.08976 0.09569

30.892 31.803

1200 1220 1240

0.131 76 0.15765 0.18725

0.10204

1260 1280

0.22072 0.25820

215.28 223.60 232.65 242.48 253.11

0.10886 0.11616 0.12396 0.13226

36.391 37.844 39.448 41.214 43.154

264.51 276.65

0.14 1 04 0.15023

45.270 47.560

289.42

0.15977 0.16952 0.17936

50.013 52.608 55.314 58.091 60.895

380.78

0.18912 0.19862 0.20772 0.21629 0.22422

164.33 168.55 173.00 177.75 182.84 188.31 194.23 200.66 207.66

32.795 33.882 35.076

1300

0.29959

1320 1340 1360 1380

0.34464 0.39288 0.44360 0.49587

302.70 316.27

1400 1420

0.54854 0.6004 1

1440 1460 1480

0.65030 0.69718 0.74025

329.93 343.43 356.53 369.03

1500

0.77900 0.8 1324 0.84299 0.86851 0.89016

391.66 401.64 410.72 418.96 426.43

0.23148 0.23804 0.24394 0.24922 0.25395

71.504

1520 1540 1560 1580 1600 1620 1640 1660 1680

0.908 37 0.92359 0.93625 0.94676 0.95546

433.22 439.40 445.08 450.32 455.21

0.25819 0.26201 0.26547 0.26863 0.27154

81.818 83.501 85.088 86.593 88.028

1700 1720 1740 1760 1780

0.96267 0.96863 0.97358 0.97768 0.98109

459.80 464.14 468.27 472.24 476.07

0.2 7424 0.27676 0.27914 0.281 39 0.28355

89.405 90.731 92.017 93.268 94.491

63.678 66.396 69.014 73.852 76.052 78.106 80.024


T o b l e 3 (continued) Temperature

(OR 1

Weight Fraction of

AICl3

f

1800 1820 1840 1860 1880

0.98394 0.98631 0.98830 0.98997 0.99138

2000

0.996 31

1900 1920 1940 1960 1980

0.99257 0.99357 0.99443 0.99516 0.99578

Entholpy (Btu/lb)

Entropy

[ Btu-lb”.(%)-

A t o Pressure of 1.5 psia

479.79 483.42 486.96 490.45 493.88

0.28561 0.28760 0.28953 0.29140 0.29323

513.76

0.30343

497.26 500.61 503.93 507.23 510.50

0.2950 1 0.29675 0.29847 0.30015 0.30180

’1

Specific Volume

(ft3/1 b)

95.690 96.869 98.031 99.180 100.31

101.44 102.56 103.67 104.78 105.88 106.98

A t a Pressure of 5 psia

900 920 940 960 980

0.00176 0.00242 0.00331 0,00444 0,00593

142.10 145.38 148.71 152.08 155.53

0.02530 0.02886 0.03241 0.03592 0.03944

7.2476 7.4135 7.5814 7.7515 7.9247

1100 1120 1140 1160 1180

0.02636 0.03274 0.04039 0.04947 0.06013

178.50 182.93 187.60 192.57 197.84

0.06130 0.06525 0.06935 0.07363 0.07810

9.0757 9.2981 9.5343 9.7862 10.056

1000 1020 1040 1060 1080

0.00777 0.01 01 2 0.01305 0.01662 0.021 02

159.05 162.67 166.40 170.26 174.29

1200 1220 1240 1260 1280

0.07260 0.08712 0.10384 0.12300 0.14484

203.48 209.53 216.01 222.99 230.49

1400 1420 1440 1460 1480

0.33816 0.38032 0.42452 0.4701 3 0.5 1642

287.96 299.52 31 1.49 323.74 336.12

1300 1320 1340 1360 1380

1500 1520

0.16951 0.1971 4 0.22784 0.26166 0.29850

0.56258 0.60782

238.56 24?.23 256.50 266.40 276.90

348.48 360.66

0.04296 0.04650 0.05010 0.05374 0.05747

8.1012 8.2825 8.4694 8.6627 8.8643

0.08280 0.08776 0.09299 0.09852 0.10438

10.346 10.661 1 1.003 11.374 11.779

0.14686 0.15500 0.16332 0.17171 0.18007

15.060 15.756 16.489 17.254 18.041

0.1 1059 0.1 1715 0.12408 0.13135 0.13896

0.18831 0.19632

12.221 12.703 13.226 13.793 14.404

18.841 19.645


Table Tern pera t ure (OR

1

Weight F r a c t i o n of AIC13

3 (continued)

E n t h o I py ( B t i J / lb)

Entropy

[ i3t1.1. Ib-

.(OR)-

’3

Specific Volume (ft3/lb)

A t a Pressure of 5 psia

1540 1560 1580

0.65132 0.69243 0.73062

372.48 383.84 394.60

0.20400 0.21 128 0.21810

20.442 21.223 21.981

1600 1620 1640 1660 1680

0.76553 0.79699 0.82497 0.84960 0.87106

404.72 414.15 422.88 430.94 438.37

0.22442 0.23024 0.23556 0.24042 0.24484

22.708 23.401 24.059 24.681 25.268

1700 1720 1740 1760 1780

0.88963 0.90560 0.91926 0.93093 0.94085

445.23 451.56 457.44 462.92 468.05

0.24887 0.25256 0.25593 0.25905 0.26193

25.823 26.348 26.845 27.319 27.771

1800 1820 1840 1860 1880

0.94929 0.95645 0.96254 0.96771 0.97211

472.88 477.46 481.82 486.01 490.03

0.26461 0.26713 0.26950 0.27175 0.27389

28.205 28.624 29.028 29.421 29.804

1900 1920 1940 1960 198G

0.97586 0.97906 0.98179 0.98413 0.98614

493.93 497.72 501.41 505.03 508.58

0.27594 0.27792 0.27982 0.28167 0.28346

0.98786

512.07

0.28521

30.178 30.545 30.906 31.261 31.612

2000

A t a Pressure o f

12

31.959

15 p s i a

900 920 940 960 980

0.00100 0.00141 0.00189 0.00256 0.00342

141.94 145.18 148.42 151.71 155.03

0.01713 0.02064 0.02409 0.027§1 0.03090

2.4140 2.4686 2.5235 2.5789 2.6349

1000 1020 1040 1060 1080

0.00448 0.00586 0.00753 0.00959 0.01215

158.39 161.81 165.30 168.86 172.52

0.03426 0.03762 0.04097 0.04433 0.04772

2.6915 2.7491 2.8077 2.8676 2.9291

1100 1120 1140 1160 1180

0.01522 0.01891 0.02335 0.02858 0.03475

176.28 180.17 184.20 188.40 192.78

0.051 14

0.05461 0.05815 0.06176 0.06548

2.9923 3.0578 3.1260 3.1971 3.2717

1200 1220 1240 1260

0.04199 0.05043 0.06017 0.07137

197.37 202.21 207.30 212.69

0.06931 0.07327 0.07738 0.08165

3.3505 3.4339 3.5226 3.6172


Table 3 Temperature (OR

1

Weight F r a c t i o n of

AICl3

(continued)

Entha I py

(Btu/lb)

’.(%)- ’1

Entropy

(B+wIb-

.I._._

Specific Volume

(fr3/1 b)

___I.

A t a Pressure o f 15 p s i a

1280

0.08421

21 8.40

0.086 1 1

3.7186

1300 1320 1340 1360 1380

0.09882 0.1 1532 0.13388 0.15464 0.17770

224.46 230.90 237.75 245.05 252.80

0.09078 0.09566 0.10077 0.1 06 13 0.11175

3.8276 3.9449 4,0713 4.2077 4.3549

1400 1420 1440 1460 1480

0.20313 0.23099 0.26 129 0.29395 0.32881

261.02 269.73 278.92 288.59 298.69

0.1 1762 0.12375 0.1301 4 0.13676 0.14359

4.5134 4.6839 4.8668 5.062 1 5.2697

1500 1520 1540 1560 1580

0.365 67 0.40421 0.44404 0.48467 0.52559

309.20 320.04 331.13 342.39 353.70

0.15059 0.15772 0.16492 0.17214 0.17930

5.4891 5.7192 5.9588 6.2061 6.4589

1600 1620 1640 1660 1680

0.56622 0.6 06 0 1 0.64443 0.681 01 0.71540

364.96 376.04 386.86 397.31 407.32

0.18634 0.1 9318 0.19977 0.20607 0.2 1203

6.7148 6.9715 7.2264 7.4773 7.7222

1700 1720 1740 1760 1780

0.74732 0.7766 1 0.80320 0.82712 0.84848

416.84 425.83 434.28 442.21 449.62

0.21 763 0.22285 0.22771 0.23222 0.23638

7.9595 8.1881 8.4073 8.6168 8.8166

1800 1820 1840 1860 1880

0.86741 0.884 10 0.89874 0.91154 0.92270

456.54 463.02 469.10 474.80 480.18

0,24023 0.24379 0.24709 0.25015 0.25301

9.0069 9.1884 9.3616 9.5271 9.6858

1900 1920 1940 1960 1980

0.93242 0.94085 0.94818 0.95454 0.96006

485.26 490,lO 494.71 499.13 503.38

0.25569 0.25821 0.26059 0.26284 0.26499

9.8383 9.9852 10.127 10.265 10.399

2000

0.96486

507.49

0.26704

10.529

At a P r e s s u r e o f 30 p s i a

900 92 0 940 96 0 980

0.00072 0.00097 0.00136 0.001 79 0.0024 1

14 1.89 145.09 148.32 151.55 154.83

0.01 197 0.01545 o.oia88 0.02225 0.02559

1.2066 1.2338 1.2611 1.a885 1.3161

1000

0.003 18

158.13

0.02889

1.3440

13


Table

3

(continued)

Teniperoture

Weight F r a c t i o n

Entha Ipy

(OR)

of AICl3

(Btu/lb)

A t a Pressure o f

14

Entropy [Btu.lb-’.(%)-

30

’1

S p e c i f i c V o I unie

(ft3/1b)

psia

1020 1040 1060 1080

0.00412 0.00534 0.006ao 0.00857

161.47 164.86 168.30 171.81

0.0321 7 0.03543 0.03867 0.04192

1.3722 1.4008 1.4298 1.4593

1100 1120 1140 1160 1 180

0.01 075 0.01338 0.01649 0.02020 0.02459

175.39 179.07 182.83 186.73 190.75

0.04518 0.04846 0.051 77 0.055 1’2 0.05853

1.4894 1.5206 1.5525 1.5855 1.6198

1200 1220 1240 1260 1280

0.02971 0.03566 0.04258 0.05055 0.05965

194.92 199.26 203.79 208.53 213.50

0.062 0 1 0.06556 0.06922 0.07298 0.076 86

1.6555 1.6928 1.7320 1.7734 1.8172

1300 1320 1340 1360 1380

0.07003 0.08181 0.095 10 0.1 1001 0.12664

218.72 224.22 230.02 236.14 242.61

0.08087 0.08504 0.08937 0.09387 0.09856

1 .a637 1.9132 1.9660 2.0225 2.0830

1400 1420 1440 1460 1480

0.1451 3 0.16558 0.1 8800 0.2 1249 0.23905

249.45 256.68 264.30 272.34 280.79

0.10345 0.10854 0.1 1383 0.11933 0.1 2504

2.1479 2.2175 2.2920 2.3717 2.4568

1500 1520 1540 1560 1580

0.26767 0.29827 0.33071 0.36481 0.4003 1

289.65 298.90 308.52 318.48 328.71

0.13095 0.13704 0.14328 0.14967 0.15614

2.5476 2.6439 2.7456 2.8525 2.9642

1600 1620 1640 1660 1680

0.43692 0.47426 0.51192 0.54945 0.58643

339.16 349.76 360.42 371.06 381.59

0.16268 0.16922 0.17572 0.1 821 3 0.18839

3.0802 3.1998 3.3220 3.4460 3.5708

1700 1720 1740 1760 1780

0.62244 0.65708 0.69004 0.72105 0.74994

391.92 401.98 41 1.71 421.05 429.96

C. 19447 0.20032 0.20591 0.21 122 0.21622

3.6953 3.8186 3.9398 4.0582 4.1732

1aoo 1a20 1840 1860 1880

0.77659 0.80097 0.823 i o 0.84305 0.86095

438.42 446.44 454.00 461.14 467.85

0.22093 0.22533 0.22944 0.23328 0.236 85

4.2844 4.3915 4.4943 4.5929 4.6873

1900

0.87691

474.19

0.2401 a

4.7778


Table Temperature

ei,

1920 1940 1960 1980

2000

3 (continued)

Weight F r a c t i o n

Entha Ipy

of AIC13

(Btu/lb)

0.891io 0.90367 0.91477 0.92456

0.93318

___

Entropy

[B t u. I b ’

A t a Pressure o f 30 p s i a

480.17 485.83 491.19 496.30 501.17

e(%?

)-

’1

I _ _ -

Specific Volume

(ft3/lb)

0.24330 0.24622 0.24895 0.25 153

4.8646 4.9479

0.25397

5.0281

5.1054 5.1801

At a Pressure of 60 p s i 0

900 920 940 960 98o

0.00049 0.00071 0.00093 0.00 130 0.00171

141.84 145.04 148.23 151.46 154.69

0.00681 0,01028 0.01368 0.01704 0.02034

0.60320 0.41674 0.63029 0.64393 0.65762

1100 1120 1140 1160 1180

0.00759 0.00945 0.01 168 0.01430 0.01737

174.76 178.28 181.88 185.55 189.31

0.03946 0.04261 0.04576 0.04892 0.05211

0.74247 0.75737 0.77260 0.78818 0.80420

1000 1020 1040 1060 1080

1200 1220 1240 1260 1280

0.00223 0.00293 0.00374 0.00479 0.006 08

0.021 00 0.02524 0.03013 0.03575 0.0422 1

1300 1320 1340 1360 1380

0.04959 0.05795 0.06738 0.07801 0.08993

1500 1520 1540 1560 1580

0.19276 0.2 1575 0.24050 0.26699 0,29515

1400 1420 1440 1460 1480

1600 1620 1640

157.94 161.23 164.54 167.90 171.31

193.19 197.18 201.31 205.58 21 0.02

0.02359 0.02682 0.03000 0.033 17 0.03632

0,67139 0.68529 0.69929 0.71349 0.72788

0.05534 0.05862 0.06194 0.06533 0.06880

0.82075 0.83790 0.85569 0.87424

0.091 78 0.09607 0.10050 0.1051 0 0.10986

1.0346 1.0633 1.0940 1.1266 1.1614

0.a9366

214.64 219.46 224.49 229.76 235.29

0.07236 0.0 7601 0.07976 0.08364 0.08764

0.91405 0,93550 0.95814 0.982 13 1.0075

274.70 282.44 290.53 298.96 307.73

0.1 1479 0.1 1988 0.12513 0.13054 0.13609

1.1985 1.2379 1.2797 1.3240 1.3708

0.10318 0.1 1788 0.13412 0.151 97 0.17151

241.08 247.16 253.55 260.26 267.31

0.32485 0.35597 0.38830

316.80 326.16 335.76

0.I4176 0.14753 0.15339

1.4200 1.471 5 1.5252

15


Table .-...

Te rnper at ure

(“R1

.... We i g ht

F ra c t i on

of AIC13

3

(continued)

.-.

...___ Entha Ipy

(Btu/lb)

Entropy

[ Btuslb- ’.(OR)-

’1

Specific Volume

(ft3/lb)

A t a Pressure of 60 psia 1.5809 1.6382

1660 1680

0.42164

345.56

0.15929

0.45570

355.51

0.16521

1700 1720 1740 1760 1780

0.490 16 0.52471 0.55899 0.59269 0.62547

365.53 375.57 385.56 395.44 405.13

0.171 11 0.17695 0.18269 0.18830 0.19374

1.6970 1.7567 1.8171 1.a777 1.9382

1800 1820 1840 1860 1880

0.65706 0.68721 0.71573 0.74248

414.58 423.75 432.59 44 1.07 449.19

0.19899 0.204 03 0.20883 0.21340 0.2 1771

1.9981 2.0570 2.1 148 2.1711 2.2258

1900

0.79036 0.8 1146

456.92

0.22178 0.22562

0.76737

0.83070

464.28 471.27

0.22922

2.2787 2.3298 2.3791

1960 1980

0.848 18 0.86397

477.91 484.21

0.23261 0.23579

2.4266 2.4723

2000

0.87819

490.19

0.23878

2,5163

0.00301 0.006 4 7 0.00986

0.36188 0.36 9 98

1920 1940

A t a Pressure of 100 p s i 0

0.000 74 0.00099

141.82 145.00 148.19 151.39

0.00132

1000 1020 1040 1060 1080

900 920 94 0

0.00039 0.00054

154.61

0.01320 0.01648

0.37809 0.38624 0.39441

0.001 74 0.00226

157.84 161.10

0.01971 0.02290

0.40263 0.41090

0.00291 0.00371 0.00470

164.38 167.69 171.03

0.02605 0.029 18 0.03228

0.41923 0.42763 0.436 13

1100 1120 1140 1160 1180

0.00589 0.00732 0>.00904 0.01 107 0.0 1346

174.42 177.86 181.35 184.90 188.53

0.03536 0.03842 0.04149 0.04455 0.04763

0.44473 0.45346

1200 1220 1240 1260 1280

0.0 1627 0.01955 0.02334 0.02770 0.03271

192.24 196.05 199.95 203.97 208.12

0.05072 0.05383 0.05698 0.06018 0.06 342

0.4901 7 0.49994 0.51 003 0.52047 0.531 30

1300 1320 1340 1360 1380

0.03843 0.04491 0.05225 0.06051 0.069 76

212.41 216.86 22 1.47 226.27 23 1.26

0.06672 0.07009 0.07353 0.07706 0.08068

0.54259 0.55438 0.56673 0.57970 0.59336

96 0 98 0

0.46234 0.47140 0.48067


Table Temperature

(%1

Weight F r a c t i o n

of AICIQ

3

(continued)

Entha Ipy

(Btu/lb)

Entropy [Btwlb-

'a(%)-

'1

S p e c i f i c Volume (ft3/lb)

A t a P r e s s u r e o f 100 p s i a

1400 1420 1440 1460 1480

0.08009 0.09156 0.10426 0.1 1827 0.13363

236.47 241.91 247.60 253.54 259.76

0.08440 0.08823 0.092 1a 0.09625 0.10045

0.60777 0.62301 0.63913 0.65623 0.67436

1500 1520 1540 1560 1580

0.15043 0.16870 0.1 8849 0.20982 0.2 32 70

266.26 273.05 280.15 287.56 295.27

0.10478 0.10925 0.1 1386 0.11861 0.12349

0.69359 0.7140 1 0.73565 0,75858 0.78284

1600 1620 1640 1660 1680

0.2571 1 0.28299 0.3 1029 0.33888 0,36862

303.29 311.60 320.20 329.05 330.14

0.12850 0.13363 0.13887 0.14421 0.14961

0.80844 0,83540 0.86370 0.89331 0.92416

1700 1720 1740 1760 1780

0.39935 0.43085 0.46289 0.4 952 0 0.52752

347.42 356.85 366.39 375.99 385.59

0.15507 0.16056 0.16604 0.1 7149 0.17689

0.95616 0.98919 1.0230 1.0577 1.0928

1aoo 1820 1 a40 1860 1880

0.55956 0.59106 0.62 176 0.65 141 0.67984

395.13 404.56 413.84 422.90 431.72

0.18219 0.1 a737 0.19241 0.19729 0.20198

1.1283 1.1639 1.1993 1.2346 1.2693

1900 1920 1940 1960 1980

0.70686 0.73235 0.75624 0.7 784 9 0.79907

440.26 448.50 456.42 464.00 471.26

0.20647 0.2 1076 0.21484 0.21 871 0.22238

1.3034 1.3368 1.3694 1.401 0 1.4317

2000

0.81802

478.19

0.22584

1.4614

0.00000 0.00344 0.00683 0.01015 0.01342

0.24123 0.24662 0.25203 0.25 744 0.26288

A t a P r e s s u r e o f 150 p s i 0

900 920 94 0 96 0 980

0.00032 0.00044 0.00060 0.001 oa

141.81 144.98 148.17 151.36 154.56

1000 1020 1040 1060 1oao

0.00142 o.00184 0.00238 0.00303 0.00383

157.78 161.01 164.27 167.55 170.86

0.01664 0.01981 0.02295 0.02604 0.029 10

0.2683 3 0.27382 0.27933 0.28489 0.29050

1100 1120

0.00481 0.00598

174.21 177.59

0.03215 0.035 17

0.29617 0.301 90

o.oooai

17


Table ..-

Tern perat ure

3

(continued)

..

Weight F r a c t i o n

(OR 1

of AIC13

Entha Ipy (Btu/lb)

Entropy

[Btu.lb-’.(??)-

’1

Specific Volume (ft3/lb)

A t a Pressure of 150 p s i a

1140 1160 1180

0.00738 0.00904 0.01099

181.02 184.50 188.04

0.038 17 0.041 17

1200 1220 1240 1260 1280

0.0 1328 0.01596 0.0 1906 0.02262 0.026 7 1

191.65 195.33 199.10 202.96

0.04718 0.05020 0.05324

206.92

0.05630 0.05940

1300 1320 1340 1360

0.03138

21 1.01

0.06254

0.3592 7

0.03668 0.04268 0.04943

215.21 2 19.56 224.06

0.06573 0.068 97 0.07228

0.36668 0.37438 0.38243

1380

0.05700

228.72

0.075 66

0.39086

1400 1420 1440 1460 1480

0.06546 0.07487 0.08529 0.09679 0.10944

233.56 238.58 243.81 249.26 254.93

0.0791 1 0.08265 0.08628 0.09001 0.09385

0.39969 0.40898 0.41876 0.42908 0.43997

1500 1520 1540 1560 1580

0.12329 0.13840 0.15482 0.1 7259 0.191 74

260.84

0.09779

0.45149

267.01 273.43 280.13 287.10

0.101 84 0.10602 0.1 1031 0.1 1472

0.46366 0.47654 0.49016 0.50455

1600 1620 1640 1660 1680

0.21228 0.23421 0.25751 0.28214 0.308 04

294.35 301.87 309.67 31 7.73 326.05

0.1 1925 0.12389 0.12865 0.13351 0.13846

1700 1720 1740 1760 1780

0.33510 0.36320 0.39221 0.42 194

334.60 343.36 352.29 36 1.37

0.14349

0.45220

370.56

0.14858 0.15371. 0.15887 0.16403

1800 1820 1840 1860 1880

0.48277 0.51 342 0.54391 0.5 74 02 0.60352

379.81 389.07 398.31 407.46 416.50

0.16917 0.1 7426 0.17928 0.18420 0.1 8901

0.73806 0.76 12 1 0.78449 0.80778

1900 1920 1940 1960 1980

0.632 19 0.65985 0.6 86 35 0.71 155 0.73537

425.37 434.04 442.47 450.65 458.55

0.19368 0.1 981 9 0.20254 0.20671 0.2 1070

0.83097 0.85395 0.87662 0.89890 0.92071

0.75774

466.17

0.21451

0.942 00

2000 ~

....

0.04418

0.30772 0.3 1364 0.31966 0.32582 0.33212 0.33859 0.34526 0.35214

0.5 1974 0.53576 0.55261 0.57031 0.58883 0.60817 0.62828 0.6491 1 0.67059 0.69264 0.71517


(ref

15)

4. Aluminum c h l o r i d e

are l i s t e d i n T a b l e

i s s t a b l e on a free-energy b a s i s r e l a t i v e t o t h e s e pure container materials. If, however, t h e products of o p o s s i b l e corrosion r e a c t i o n are gaseous or

form a s o l i d or l i q u i d s o l u t i o n and i f a mechanism exists for t h e removal of the r e a c t i o n products from t h e r e g i o n of the reaction, a corrosion r e a c t i o n

might proceed. Unfortunately aluminum e x i s t s i n t w o p o s i t i v e v a l e n c e states. T h e chlorides AICl

AFo at 1000°K Reaction

Table 4. Free E n e r g i e s o f Formation of Aluminum Chloride and the Chlorides of Some P o s s i b l e Container Materials Free Energy of

Meta I

At 1000%

AICI,

-48(g)

-46(g)

CrCI,

-35

CrCI2

-40

-26

-_

-32

-23

-21

-33

-27

-18

-27

NiCI2

AlCl

-2%)

MoC12

-15

MoC I

-14

-6

MoCI4

-12

-7

MoC15

-10

-7

-32(g)

W" at 1000 "K

-3

As an i l l u s t r a t i o n of t h e p o s s i b l e c o r r o s i o n behavior, t h e corrosion of an a l l o y containing chromium and n i c k e l i n a system i n w h i c h gaseous aluminum c h l o r i d e i s c i r c u l a t e d a t temperatures i n t h e range 500 t o 1000°K i s d i s c u s s e d here. T h e most l i k e l y chromi urn are: Reaction

corrosion

reactions

involving

A

2/,AICl,(g)

+ Cr

3F" a t 500°K

-42

=

kcal

k', for r e a c t i o n A i s

The e q u i l i b r i u m constant,

IOe7

-

at

500'K l0OOOK

at

.

If pure aluminum i s produced from t h e r e a c t i o n o f pure chromium and AICI, a t a pressure o f 1 atm, a t IOOOOK t h e a c t i v i t y of CrC12, u C r C , I i s and

at

500'K.

,

T h e p a r t i a l pressure of

,

CrCI,

under these conditions, P C r C l may b e c a l c u l a t e d 2 from t h e r e l a t i o n

-8

-7

MoC16

AICI,(g)

W" a t 50O0K = -78 k c a l

7

FeCI2

4

CI)

At 500%

FeCI,

2AI

Formation

(kcal per mole of

Chloride

kcal

C 3AlCl(g)

and AICI, are b o t h gaseous i n t h e temperature range of interest.

t42

=

CrCl z =

where P ~ , c 1 2i s t h e vapor pressure of t h e pure solid, w h i c h may be calculated from t h e r e l a t i o n

- 14,000 -

log P : , ~, 2 (atm) = - 0.42 log 7

T

- 0.000587' The vapor pressure P C r C l i s atm a t

500OK.

2

+ 12.24 or

11

-

. 6.6 x

(21)

IO-'

or 2 x otm a t T h e c a l c u l a t e d p a r t i a l pressures of CrCI,

lOOOOK and 10-''*71

under t h e stated c o n d i t i o n s are then 5.3 x lo-'' otm a t lOOOOK and 2 x atm a t 500°K. I n o system i n w h i c h aluminum c h l o r i d e g a s was being

( ~ t) %AI

+16 k c a l

AFo a t 1000°K = +28 k c a l

l 5 A . G l a s s n e r , T h e Thermochemical Pro arties 01 the Oxides, F l u o r i d e s , a n d C h l o r i d e s to 2300opK. ANL-5750 (1957).

19


circulated, i f r e a c t i o n A were t h e o n l y s i g n i f i c a n t one, it would t a k e a minimum o f 2 x 10" moles of aluminum c h l o r i d e gas t o move 1 mole o f CrCI, from t h e hot zone and d e p o s i t it a s s o l i d CrCI,

i n the c o l d zone. T h e fact t h a t t h e aluminum metal produced i n r e a c t i o n A w i g h t form a s o l i d s o l u t i o n w i t h the metal w a l l in t h e r e a c t i o n zone w o u l d increase t h e i n i t i a l p a r t i a l pressure and A f t e r an i n i t i a l d e p o s i t o f transport o f CrCI,. aluminum metal h a d formed on t h e surface, t h e r e a c t i o n w o u l d y i e l d a smaller p a r t i a l pressure o f CrCI,, w i t h d i f f u s i o n of aluminum i n t o t h e metal i n t h e h o t zone b e i n g one c o n t r o l l i n g factor for t h i s p a r t i a l pressure i f r e a c t i o n A were important. N o t o n l y i s t h e i n i t i a l a c t i v i t y of chromium i n an a l l o y lower than that of t h e pure metal,

This would

p a r t i a l pressure i s higher than that w h i c h be present above a chromium-containing

a l l o y i n w h i c h t h e a c t i v i t y o f the chromium was lower than t h e a c t i v i t y o f pure chromium metal. The p a r t i a l pressure o f CrCI, from r e a c t i o n B i s Reaction B higher t h a n t h a t from r e a c t i o n A. s h o u l d be, therefore, t h e important corrosion r e a c t i o n and s h o u l d r e s u l t in t h e transport, a t t h e

very most, of about 2 x lo-' mole o f chromium per mole of c i r c u l a t i n g gas. At t h e low-temperature zone, CrCI, w i l l i n i t i a l l y deposit a s t h e solid, AlCl w i l l disproportionate according t o r e a c t i o n C, and a small concentration of aluminum w i l l d e p o s i t on t h e surface of t h e a l l o y . A f t e r a s m a l l a c t i v i t y of aluminum i s b u i l t u p in t h e metal, t h e r e a c t i o n a t t h e low-temperature zone should

but t h e d e p l e t i o n o f t h e surface chromium concent r a t i o n w o u l d further lower t h e a c t i v i t y o f chromium a t t h e surface and, hence, lower t h e maximum p a r t i a l pressure of CrCI, in the Circulating gas

be t h e reverse o f r e a c t i o n B, w i t h chromium metal At t h e hot zone, b e i n g d e p o s i t e d on t h e w a l l s , after t h e surface chromium has been depleted, the

at t h e hot end,

mium from t h e i n t e r i o r of t h e metal t o t h e surface.

T h i s w o u l d lead t o a smaller

transport o f CrCI, from t h e hot t o t h e c o l d zone. The chromium concentration on t h e r e a c t i o n surface and, hence, t h e corrosion rate, w o u l d then be c o n t r o l l e d b y t h e d i f f u s i o n o f chromium t o t h e surface i n t h e h o t zone. T h i s d i f f u s i o n w o u l d be a second c o n t r o l l i n g factor i f reaction A were important. T h e e q u i l i b r i u m constant for r e a c t i o n

K

t3

=.-AF/KT -

'AlCl

B is

'CrCI,

A l C l3'Cr

r e a c t i o n w i l l be l i m i t e d by t h e d i f f u s i o n o f chro-

If r e a c t i o n B i s important, t h i s d i f f u s i o n o f chro-

mium t o t h e surface a t t h e h o t zone w i l l probably be the rate-controlling step in t h e transport of chromium metal from t h e h o t t o t h e c o l d zone. L o w e r i n g t h e temperature of t h e h o t zone w o u l d decrease t h e rate of corrosion, m a i n l y b y lowering t h e d i f f u s i o n rate o f chromium. T h e formation o f an adherent n o n m e t a l l i c f i l m on the surface t h a t i s not a t t a c k e d b y aluminum c h l o r i d e w o u l d a l s o decrease t h e corrosion rate. T h e corrosion of n i c k e l would be much l e s s severe. The r e a c t i o n s s i g n i f i c a n t for n i c k e l c o r r o s i o n are: Reaction

-

10-

-

18.4

at

500°K

at IOOOOK

.

For pure chromium exposed t o aluminum c h l o r i d e a t a pressure o f 1 atm,

at

1000°K

and

D

AF" a t 500°K

=

+42 k c a l

h F " at 1000°K

=

+56 k c a l

Reaction E AICl,(g)

+ Ni

+ NiCl,(s)

AF" at 500°K - +-68k c a l .W"at

20

AICl(g)

1000°K = + 7 0 kcal


T h e e q u i l i b r i u m constants for r e a c t i o n s are:

D

and

E

04

g o s a t I atm passing t h e surface at 1QOO'K. One mole of .41CI, transports roughly 20 k c a l of

heat i n g o i n g from 1000 i o 500*K, so about 1 mole of n i c k e l would be transported per 1.2 x 10" kcal, 1.4 x IO7 kwhr, or about 600 Mwd of heat. The transport corrosion of iron and iiao!ybdenum as minor c o n s t i t u e n t s 0% an agley s h o u l d be less than t h a t of chromium. In concfusion, C O ~ ~ O Sof~ Qan~ a l l o y composed m a i n l y of n i c k e l and containing some chromium

-

10-

1 8 . 4 at

-- 10-'2'2 a t

K

ti

might not be n e g l i g i b l e for long-term operotion of a system c i r c u l a t i n g gaseous aluminum c h l o r i d e

50Q°K

a i temperatures in t h e range 500 and 100O0K, but t h e corrosion would be small enough for short-term operation of such a system. The carrosioti rata

1000°K , PAICI'NiCIZ

....-AF/I<T-

PAIC13aNi 'AICI

-

'N

iCI2

-

ip*lCt3

-

at

5Q0°K

--

at

IOQOOK

p: ictq

requires very l o w pumping power. It should be emphasized t h a t these are crude estimates based

.

The vapor pressure of pure NiCI,, 11 c a l c u l a t e d from t h e equation

- 13,300~

log P

: (atni) ~ =--- ~

T

- 2.68 At

At t h e

P i i c I 2 , may be

~ 1109

a higher reaction

on a l i m i t e d amount of data of varying degrees of r e l i a b i l i t y . Although a conscious attempt has been made t o make these estimates conservative, sQme of the estimates should &e checked r x p e r i m e n t a l l y .

T

+ 19.00 . (25)

atm 10-2*34or 4.6 x 500'K it i s 10-'4*83 or 1.5 x lo-'' atm. high-temperature zone, r e a c t i o n E leads t o

lQOQ°K, P i i c l 2

and a t

(24

could be decreased considerably b y operating w i t h t h e h o t zone of the loop at temperatures Icwcr than t h e 1000°K for which these c a l c u l a t i o n s were made or by the formation of an oxide coating on T h e estimated values t h e surface of the metal. of t h e thermal conductivity, heat capacity, a n d v i s c o s i t y i n d i c a t e t h a t aluniinum ~ h l o ~ i dmay e be a unique gaseous heat exchange medium t h a t

is

p a r t i a l pressure of PIiCI, than does For the corrosion of pure nickel,

D.

At t h e low-temperature zone, t h e reverse o f sea c t i o n E w i l l probably take place, and n i c k e l metal w i l l deposit on t h e surface. The limiting factor in t h e corrosion of n i c k e l From an a l l o y composed p r i n c i p a l l y o f n i c k e l would be t h e t o t a l volume of gas passing over t h e surface. One mole of n i c k e l would be transported per 6 A 10' moles

E N G I N E E R I N G P R O B L E M S O F SOME T Y P I C A L APPLlCATlBNS

i s used a s a as 0 heat transfer medium, t h e pressures and temperat u r e s must be c a r e f u l l y chosen i o e x p l o i t t o t h e fullest t h e extra performance obtainable from dissociation. Normally a temperature range w i l l be defined b y the s t r u c t u r a l strength of t h e metals in t h e system or b y other considerations, such as corrosion, S O thot the only v a r i a b l e a v a i l a b l e t o t h e designer w i l l be t h e pressure, Phis means that t h e pressure l e v e l m u s t be chosen w i t h care t o g i v e the b e s t over-all system design. It i s l i k e l y that i t w i l l b e necessary t o cornprowise t h e design of other coniponsnts i f t h e f u l l e s t benefits a l e t Q be derived from t h z u s e o f a l u n i ~ n u mchloride. Where

aluminum chloride vapor

working f l u i d i n a thermodynamic c y c l e

Aluminum

Chlaride

o s a Heat Transfer

A t y p i c a l a p p l i c a t i o n for which aluminwin chloride

may

have

promise

i s as an

intermediate heat


transfer f l u i d between t h e f l u o r i d e f u e l of a moltens a l t - f u e l e d reactor and t h e steam generator. T h e use o f a gas rather than a l i q u i d in t h e intermediate loop w o u l d f a c i l i t a t e removal of t h e heat transfer medium; it w o u l d not be necessary t o design t h e system t o a v o i d the presence o f l o w spots which w o u l d present d i f f i c u l t drainage or scavenge problems. It w o u l d make p o s s i b l e t h e p l a c i n g of flanged j o i n t s i n c o o l zones at t h e t o p o f t h e system and outside o f t h e heat exchanger pressure envelope so t h a t leaks o f t h e molten f u e l i n t o t h e aluminum chloride w o u l d b e contained w i t h i n t h e pressure envelope. T h e pressure required, namely, t o 60 p s i i n t h e aluminum chloride, w o u l d present n o serious s t r u c t u r a l problems i n t h e design o f t h e c o n t a i n i n g v e s s e l . From F i g . 4,

20

w h i c h i s a p l o t o f data obtained from Eq. (7), it i s e v i d e n t t h a t there w o u l d b e n o s o l i d aluminum c h l o r i d e p r e c i p i t a t e d a t t h e temperatures and pressures p r e v a i l i n g in a molten-salt-fueled reactor. . Aluminum c h l o r i d e would have t h e advantage as a heat transfer f l u i d t h a t i t w o u l d UNCLDSSI F l i D O R N L - L R - D W G 39597

be chernicolly inert r e l a t i v e t o either t h e molten s a l t or water. T h i s w o u l d make i t d e s i r a b l e from t h e hazards standpoint a n d w o u l d g i v e a system r e l a t i v e l y i n s e n s i t i v e t o leaks between a n y t w o sets o f fluid; that is, a small leak from one system i n t o another w o u l d not lead t o t h e formation of a set of d e p o s i t s w h i c h w o u l d be v e r y d i f f i c u l t

to remove. It w o u l d be necessary, of course, t o make t h e steam generator, as w e l l a s t h e fuel-

to-aluminum c h l o r i d e heat exchanger, of a r e l a t i v e l y e x p e n s i v e high-nickel-content a1 loy. T h e p r i n c i p a l disadvantage of t h i s arrangement i s t h a t i t w o u l d require a larger amount of h e a t transfer surface area and a higher pumping powsr than would be t h e case fnr an inert molten salt, for example. However, i t w o u l d have a maior advantuge i n t h a t there would b e no freezing problem in t h e intermedicits h e a t exchanger c i r c u i t . T h e freezing problem presents e x c e e d i n g l y diff i c u l t d e s i g n problems i f a f l u i d such a s sodium

or NaK i s employed a s the transfer medium.

intermediate heat

T h e temperature range for such an a p p l i c a t i o n i s lower than i s d e s i r a b l e i n that t h e heat transfer surfaces for the molten s a l t w o u l d be at about

1100 t o 1200째F, w h i l e those i n t h e steam generator w o u l d be a t 700 t o 1000OF. As may be seen in

Fig. 1, t h i s temperature range i s b e l o w that w h i c h g i v e s t h e maximum obtainable average e f f e c t i v e

s p e c i f i c heat i f t h e pressure i s maintained h i g h enough (30 t o 100 p s i ) t o keep pumping losses to

a c c e p t a b l e levels.

Aluminum Chloride Vapor in

1

Fig. 4. Chloride.

22

4000

r200

L..I

........... 1400

TEMPERATURE

i600

1800

2000

(OR)

Gas-Solid Equilibrium Diagram for Aluminum

B

Gas-Turbine C y c l e

T h e features o f a gas-turbine c y c l e u t i l i z i n g aluniinuni c h l o r i d e deserve s p e c i a l attention. T h e c y c l e contemplated i s i n d i c a t e d s c h e m a t i c a l l y i n Fig. 5. The pressures and temperatures should be c h o s e n so that the gas w i l l be m o s t l y in t h e during compression, w h i l e during form of Al,CI, t h e expansion process it w i l l be m o s t l y AlC13. T h i s , i n effect, w i l l c u t t h e compression work roughly i n h a l f a n d thus produce a marked improvement i n c y c l e e f f i c i e n c y . T h e nature of t h i s e f f e c t c a n b e v i s u a l i z e d r e a d i l y b y exonlining t h e P-V diagrams of F i g . 6, w h i c h compare s i m i l a r i d e a l gas-turbine c y c l e s for helium, aluminum chloride, and water. It should be remembered t h a t t h e work i n v o l v e d in each compression or expansion process i s d i r e c t l y proportional t o t h e area of t h e P-V diagram, and t h e net- work i s


UNCLASSIFIED O R N L - L R - D W G 39538

proportional t o t h e net area for t h e c y c l e .

The

Rankine c y c l e u t i l i z i n g water vapor was included

i n Fig. 6 t o show that the proposed aluminum chloride c y c l e i s between a gas-turbine (or Brayton) c y c l e u t i l i z i n g helium and a Rankine c y c l e u t i l i z i n g water in i t s requirements for work input during t h e compression process. T h e diagrams of F i g . 6 were prepared for i d e a l c y c l e s w i t h no allowances for l o s s e s . T h e most important of these losses are associated w i t h the e f f i c i e n c i e s of t h e compressor and the turbine,

w h i c h are l i k e l y t o b e of t h e order of 85%. T h i s means that, w i t h an 85% e f f i c i e n t compressor, the i d e a l work input w i l l be 85% of the a c t u a l work input, w h i l e the a c t u a l work output of the t u r b i n e w i l l be o n l y 85% of t h e ideal. In oddition, pressure Fig. 5. Aluminum Chloride Gas-Turbine C y c l e .

drops between t h e compressor and t h e t u r b i n e w i l l

UNCLASSIFIED C R N L - - L i i - LjWG 3 4 5 7 7 R

RANKINE C Y C L E (H201

I D E A L 'WORK INPUT = & 4 3

8RAYTON CYCLE (A12CIG-AIC131

B R A Y T O N C Y C L E (HB)

Blu/lb

n-r

I._._..

~ I G E A NLE T WORK = 3.7.6 B t / i i l

VOL.UME i f t 3 / l b )

VOL LIME ( f t 3 / l b l

Fig. 6. P - V Diagrams for T y p i c a l ldeol Thermodynomic C y c l e s .

23


a l s o cause major losses in n e t output from the cycle. T h e nature of these effects can b e seen r e a d i l y in F i g . 7. It should be emphasized that the shaded portions o f these diagrams are merely proportional t o the losses they represent and that the a c t u a l paths of t h e processes cannot be A rough allowance for these pressure shown. losses can b e made b y using lower values for the turbine and compressor efficiencies, for example, 80% in each case. If allowances are made for these l o s s e s t o obtain the a c t u a l net outputs for the c y c l e s of Fig. 6, t h e diagrams o f F i g . 8 result. T h e r e l a t i v e l y large work input required for t h e compression process of the Brayton c y c l e makes the c y c l e e f f i c i e n c y very s e n s i t i v e t o compressor i n l e t temperature becouse the compression work i n creases r a p i d l y w i t h temperature. As a result, the net work output and over-all c y c l e e f f i c i e n c y of the Brayton c y c l e drop off so r a p i d l y w i t h increasing temperature a t the compressor i n l e t that, for any practicable plant, the compressor i n l e t

temperature must be h e l d b e l o w 150'F if conAt the same ventional working f l u i d s are used. time, the turbine i n l e t temperature must b e at least 120O0F, and preferably should b e above 14OOOF if there i s t o be an appreciable p o s i t i v e net area for t h e P-V diagram. T h e unusual properties o f aluminum chloride make it p o s s i b l e t o g o t o higher compressor i n l e t temperatures than w i t h other f l u i d s . T h e e f f e c t s of v a r i a t i o n s in both t h e compressor i n l e t tempernture a n d t h e compressor pressure r a t i o are indicated i n F i g . 9 for a turbine i n l e t temperature of 154OOF. While t h i s temperature i s h i g h b y steam power plant standards, the much lower pressures i n t h e aluminum chloride s y s i e i n reduce stresses suff i c i e n t l y t o compensate for most of t h e temperature difference. In any event, it i s necessary t o go t o peak temperatures in t h i s range t o t a k e f u l l advantage o f t h e unusual properties of t h e aluminum chloride. It i s evident from F i g . Othat t h e aluminum chloride vapor c y c l e should be designed for a compressor i n l e t temperature of around 540 t o

640째F and a pezisure r a t i o of 20 t o 40.

80

Further lowering o f t h e compressor i n l e t temperature w i l l do l i t t l e t o enhance efficiency, s i n c e a t 540째F p OSSTHROUGH HEATER most of t h e gas i s i n the dimer state already.

60

A p o i n t of interest i s t h a t i t was found in the c y c l e a n a l y s i s that during the compression and

IJNCLASSIFIED ORNL-LR-DWG 3472

expansion 40

- 20

l i t t l e change i n

for such an application. The heat transfer c o e f f i c i e n t for t h e aluminum chloride i s s u f f i c i e n t l y high for t h e high-pressure

EDDY I OSSES 11 COMPRESSOR

.-

rn a

I

w

THROUGHCOOLER

5 0

0

4

8

I2

16

20

24

portion o f t h e cycle, and therefore good heat transfer c o u l d be obtained in a reactor core. In the cooler, however, t h e heat transfer performance of t h e aluminum chloride w o u l d be poor, and a

28

SPECIFIC VOLUME ( f t ? I b )

Fig.

7.

P - V Diagrams for Ideal G a s T u r b i n e A i r

C y c l e s with Cross-Hatched Areas to I n d i c a t e the Magnitude of t h e P r i n c i p a l L o s s e s .

24

processes there was

t h e percentage of t h e gas dissociated. T h i s w i l l s i m p l i f y the design af cornpressors and turbines

large surface area w o u l d be required. T h e poor heat transfer c o e f f i c i e n t of aluminum chloride i n tho cooler stems from the f a c t t h a t t h e pressure at t h e turbine outlet would b e o n l y approximately 1/10 atm, and t h i s would g i v e a l o w Reynolds number. T h e pressure ahead of t h e turbine, on the other hand, would be 20 t o 40 times greater, w h i c h would g i v e heat transfer c o e f f i c i e n t s correspondingly higher. S i n a r y Vapor C y c l e Applications

If aluminum chloride were used a s a reactor coolant ar a s an intermediate heat transfer f l u i d


UNCLASSIFIED

ORNL-LR-DWG

R4NKlNE CYCLE ( H 2 0 )

F i g . 8.

P - V Diagrams

BRAYTON C Y C L E [ A l ~ C I ~ - A I C I ~ )

31578R

BRAYTON C Y C L E (He)

for Typical Ideal Thermodynamic Cycles with Cross-Hatched Areas to R e p r e s e n t the

L o s s e s Entailed by Compressor and Turbine E f f i c i e n c i e s of

for a molten-salt-fueled reactor, it appears that a b i n a r y vapor c y c l e employing aluminum chloride in the high-temperature portion and water vapor i n the lower-temperature region ought t o L e considered. Such a c y c l e w o u l d resemble i n many ways the binary mercury vapor-steam c y c l e w h i c h has been used i n a number of U.S. power plants. It w o u l d have t h e advontage t h a t it would permit operation at h i g h temperatures (which w o u l d be advantageous from t h e thermodynamic standpoint) w h i l e avoiding t h e expense a s s o c i a t e d w i t h t h e h i g h pressures characteristic o f high-temperature steam cycles. While there are a host of different combinations of conditions that might be employed,

80%.

a t y p i c a l case i s presented i n T a b l e 5. T h e aluminum chloride w o u l d be expanded through a The turbine similar to that described above. cooler for the aluminum c h l o r i d e would a l s o serve as t h e b o i l e r and superheater for t h e steam sys-

tem. It may b e seen from T a b l e 5 t h a t t h i s system gives a very much higher over-all thermal e f f i c i e n c y than i s obtainable from t h e gas-turbine c y c l e A corresponding steam system designed alone. far a pressure of 2400 p s i and a peak temperature out o f the superheater af 105OOF w o u l d give an over-all thermal e f f i c i e n c y of about 38%, somewhot less than the e f f i c i e n c y t h a t the t y p i c a l binary vapor c y c l e chosen w o u l d attain.

25

-......................._.......


UNCLASSIFIED

O R N L - L R - DvVG 39601 I

I

r

TURBINE I N L E T TEMPERATURE: 2000"R TURBINE INLET PRESSURE = 60 p s i 0 COMPONENT EFFl ClENC IES COMPRESSOR 00% TURBINE 00"?0 GENERATOR 90%

~

COMPRESSOR

0

Fig.

10

20 PRESSURE RATIO

9. C y c l e E f f i c i e n c y

C O N C L US10 NS Thermodynamic data have been prepared and are presented i n the form of t a b l e s and charts t o f a c i l i t a t e engineering c a l c u l a t i o n s on systems employing aluminum c h l o r i d e vapor either as a heat transfer medium or as t h e working f l u i d i n a thermodynamic cycle. A number of t y p i c a l a p p l i cations have been considered, but i n none of these

26

30

v s P r e s s u r e R a t i o for

40

AIC13.

has t h e aluminurn c h l o r i d e shown outstanding advantages over more conventional media. However, i t i s b e l i e v e d that for some s p e c i a l a p p l i cations it may w e l l prove t o have some outstanding advantages where t h e c h a r a c t e r i s t i c s of t h e other system components are such as t o make i t p o s s i b l e t o e x p l o i t t o the f u l l e s t t h e unique Characteristics of aluminum chloride.


i I T a b l e 5.

-I

B i n a r y Vapar C y c l e

I d e a l mass r a t i o = 0.18487 Ib of water per Ib o f aluminum chloride A c t u a l mass r a t i o = 0.19585 Ib of wuter per Ib o f aluminum chloride I d e a l c y c l e e f f i c i e n c y = 53.2%

11.4%

Actual cycle efficiency I _

Condition

. _ . . . _ I

.-.

Temperature

(OF )

Spec i f i c

Weight F r a c t i o n

Enthalpy

Entropy

Pressure

Volume

D i s s o c i a t e d or

(Bt ~ ~ / l b )

(Btuf'F 1

(psi.)

(fr3/lb)

Steam Q u a l i t y

Aluminum C h l o r i d e

Compressor inlet

44 0

142

0.02530

5

Compressor o u t l e t ( i se ntr o p ic)

570

164

0.02530

Compressor o u t l e t (80% e f f i c i e n c y )

615

169.5

7.2476

0.00176

100

0.41506

0.00259

0.031 1

100

0.4344

0.00447

1.4614

0.818

Turbine inlet

1540

478

0.22584

100

Turbine outlet (isentropic)

1150

406

0.22584

5

23.07

0.781

Turbine outlet (80% e f f i c i e n c y )

1175

420.4

0.2343

5

23.92

0.818

Steam" Pump inlet

91.72

59.71

0.1147

Pump o u t l e t (isentropic)

91.72

66.14

0.1147

Pump o u t l e t (50% e f f i c i e n c y )

91.72

72.57

Turbine inlet

1050

0.7368

0.01611

Saturated l i q u i d

2400

0.01600

Compressed l i q u i d

0.1243

2400

0.01600

Compressed l i q u i d

1494

1.555-4

2400

0.3373

Superheated vapor

Turbine outlet (isentropic)

91.72

a55

1.5554

0.7368

339.5

0.763

Turbine a u t l e t (80% e f f i c i e n c y )

81.72

983

1.790

0.7368

394.2

0.886

* T h e b a s e s for enthalpy and entropy of aluminum c h l o r i d e and steam are not the same. u b s o l u t e v a l u e s of these properties between the t w o f l u i d s i s n ~ e a n i n g l e s s .

H e n c e comparison of the

27



ORN L-2679

Reactors- Power TID-4500 (14th ed.)

INTERNAL DISTRIBUTION

1. L. G. Alexander 2. D. 5. Billington 3. M. Blander 4. F. F. Blankenship 5. E. P. Blizard 6, A. L. Boch 7. C. J. Borkowski 8. G. E. Bayd 9. M. A. Bredig 10. E. J. Breeding 11. R. B. Briggs 12. C. E. Center (K-25) 13. R. A. Charpie 14. F. L. Culler 15. L. B. E m l e t (K-25) 16-17.L. G. Epel 18. W. K. Ergen 19. D. E. Ferguson 20-45. A. P. Fraas 46. J. H. Frye, Jr. 47. W. R. Grimes 48. E. Guth 49. C. S. Harrill 50. H. W. Hoffman 51. A. Hollaender 52. A. S. Householder 53. W. H. Jordan 54. G. W. Keilholtz 55. C. P. Keim 56. M. T. Kelley 57. J. A. Lane

58. R. S. Livingston 59. H. G. MacPherson 60. W. D. Manly 61. J. R. Mcblally 62. K. Z. Morgan 63. J. P. Murray (Y-12) 64. M. L.Nelson 65. R. F. Newton 66. A. M. Perry

67. P. M. ReyIing 68. G. Samuels 69. H. W. Savage 70. A. W. Savolainen 71. H. E. Seagren 72. E. 0. Shipley 73. J. R. Simmons 74. M. J. Sk'inner 75. A. H. Snell 76. J. A. Swartout 77. E. H. Taylor 78. A. M. Weinberg 79. C. E. Winters 80. Biology Library 81. Health Physics Library 82. Reactor Experimental Engineering Library 83-84. Central Research Library 85-104. Laboratory Records Department 105. Laboratory Records, ORNL R.C. 106-110.ORNL - Y-12 Technical Library, Document Reference Section

EXTERNAL DlSTRl BUTION

1 1 1. W. C. Cooley, NASA, Washington 112. F. E. Rom, NASA, Cleveland, Ohio 113. W. D. Weatherford, Southwest Research Institute 114. Division of Research and Development, AEC, O R 0 115-696.Given distribution as shown i n TID-4500 (14th ed.) under Reactors-Power category (75copies - OTS)

29


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.