HOME HELP
3 .. ..... .
..=.:w
CONTENTS
Page 1
4 2.
.....
MATERUL IWEPJTORIES IN A N raSBR POWER PLANT
e
.
e
5
7
4. 5.
... . . DISCUSSION OF WSU=LTS . . . . . . . ....... . 5.1 Bery11ium . . . . . . . . - . . . . . . . . . . . 5.2 F l u o r i n e . . . . . . . . . . . . . . . ..... 5.3 Bismuth . . . . . - . - . . . . . . . . . . . . . . 5.4 Thorium . . . . - .. . - .. ... CONCLUSIONS AND RECOMMENDATIONS ...... .. . .. REFEaENCES .. .. .......... . PREDICTED GROWTH IN DEMAND FOR MSBR MATERIALS *
e
a
e
0
e
s
9 12
e
e
e
6.
7.
a
e
e
m
.
.
e
e
I.
a
a
e
e
e
NOTICE This report was prepared as sponsored by the United States the United States nor the United Commission, nor any of their employees, nor any of their contractoes, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed. or represents that its use 1 would not infringe privately owned rights. . I _ _ _
a
18 23
4
The Molten-Salt Breeder Reactor i s being developed by t h e Oak Ridge N a t i o n a l Laboratory a s a thermal. b r e e d e r r e a c t o r t h a t w i l l produce lowc o s t e l e c t r i c a l power, w h i l e conserving t h e n a t i o n ' s f u e l r e s o u r c e s . Fuel f o r t h i s type of r e a c t o r c o n s i s t s of 233UF
4 dissolved
s a l t which has t h e composition 72-16-12? mole $ 'I LiF-&F
2
in a carrier
-T~F
~
4'
The
r e a c t o r v e s s e l , h e a t exchangers, d r a i n tank, piping, pumps, and most equipment which c o n t a c t e i t h e r t h e f u e l salt o r t h e c o o l a n t s a l t a r e f a b r i c a t e d of a modification of t h e n i c k e l - b a s e a l l o y Hastelloy-N.
Fuel
s a l t i s withdrawn from the primary r e a c t o r system on a 10-day cycle f o r chemical. p r o c e s s i n g by f l u o r i n a t i o n - r e d u c t i v e e x t r a c t i o n to remove u r a nium and t o i s o l a t e p r o t a c t i n i u m .
The r e s u l t i n g s a l t i s t r e a t e d by t h e
metal t r a n s f e r process, a sequence of r e d u c t i v e e x t r a c t i o n s t e p s d e v e l oped a t OW'L, t o remove Sr, Y,
B.a, and t h e r a r e - e a r t h fission p r o d u c t s .
The r e d u c t i v e e x t r a c t i o n s t e p s c o n s i s t of c o n t a c t i n g t h e f u e l salt o r t h e metal t r a n s f e r a c c e p t o r s a l t ( 7L i C 1 ) w i t h lithium-bismuth s o l u t i o n s . The c u r r e n t development program a n t i c i p a t e s t h a t t h e v e s s e l s f o r t h e s a l t - m e t a l c o n t a c t o r s w i l l b e c o n s t r u c t e d sf, o r l i n e d with, molybdenum. The purpose of this r e p o r t i s t o examine t h e a v a i l a b i l i t y o f m a t e r i a l s
which a r e r e q u i r e d t o sustain an expanding MSBR power economy, to indic a t e m a t e r i a % s f o r which n a t u r a l r e s o u r c e s a r e i n s h o r t supply, and t o a n t i c i p a t e t h e p o s s i b l e impact of such s h o r t a g e s on t h e MSBR concept. Data f o r t h e world r e s e r v e s and world primary demands of v a r i o u s m i n e r a l s
have been obtained from U.S. Bureau of Mines''2 Reports.
2
amd U.S, Geulogical Survey
The a u t h o r would Hike t o acknowledge t h e generous c o o p e r a t i o n
of W. 0. Fulkerson, H. E. Goeller, P. R. Kasten, and R. C . b b e r t s o n , of ORBTI,,
i n compiling t h e information presented i n t h i s r e p o r t .
5 2:40 MATEKIAL INVENTORIES
IN AN MSBR l?oWER PLANT
The i n v e n t o r i e s of f u e l s a l t and Hastelloy-N i n a n W B R power p l a n t have been considered p r e v i o u s l y by Kasten and R ~ b e r t s o n . ~The f u e l f o r
$
' IL ~ P - B ~-FT ~ F ~ Hastelloy-N . is a 2 n i c k e l - b a s e a l l o y , designed s p e c i f i c a l l y f o r u s e i n molten f l u o r i d e s y s -
nominal composition 42-16-12 mole
tems, w i t h t h e composition g i v e n i n Table 1;
Table 1.
Chemical Composition of Modified Hastelloy-N f o r Use i n S B R ~ ~ Element
Ba P ance
Nickel Molybdenum
12
Chromium
'I 0-4
Iron
5
Manganese
0.2 -0
Silicon
0.1 max
Boron
0.001 max
T i t an ium
0.5-1 .o
e
a -2
Hafnium o r Niobium Cu, C s , P, S, C, W, a
A 1 (Total)
0.35
MSR Program Semiann. Progr. Rept. Feb. 28$ 1970, QFNL4548, p . 45.
The amount of molybdenum r e q u i r e d to c o n s t r u c t t h e s a l t - m e t a l c o n t a c t s r s i n t h e p r o c e s s i n g p l a n t , i n a d d i t i o n t o t h e amount of molybdenum a l r e a d y
present i n t h e Hastelloy-N,
i s e s t i m a t e d t o be 16 t o n s .
c e s s i n g flowsheet a l s o r e q u i r e s a bismuth i n v e n t o r y of s a l t d i s c a r d r a t e o f 0.3
ft7/day.
4
The p r e s e n t p r s -
17.4 tons
ahd a
Table 2 summarizes t h e i n v e n t o r i e s
of v a r i o u s m a t e r i a l s i n a n MSBR power p l a n t , and compares t h e MSBR i n .
. <.;.;.;.;.;y .~_
.
v e n t o r i e s w i t h t h e e s t i m a t e d world r e s e r v e s and world r e s o u r c e s f o r t h e s e
6 ..
<.. . ..
Table 2- M a t e r i a l I n v e n t o r i e s f o r a lOOO-PIW(e) MSgK,and World Reserves arld Resources of MSBR M a t e r i a l s ~~
Element
Fuel S a l t (225 t o n s )
MSBR Inventory (tORS )
Li Be Th
F Has t e l l o y -M (1.32 x 10 t o n s )
~
World Reserves (tons)
17.9
7.5 x 1.2 x 10 5.9 x 105e 2.2 x lc!7f
5.1
99.1 102 -9
7.4 x lo6I 5.4 x lo8 8.0 x lolL
Mi Mo
cr
Fe
1.0 x
m Tii Mb Bf
Other
lo8
7.3 x '08 1.5 x 10
1.0 x 107 x 105
3.1
Bi
17.4
B
50
1.0
1 07 5j
7.2 x lo
Keserve t o Inventory Rat i o
~o r 1d ~e sours e s (tons
4
6 6 x logd
4.2 x 10
2.3 x I O 3? 5.9 x IO' 2.1 x 105
1.6
x 10
105 e 4.4 x 107f
9.5 x
e.5 x LO44 3.6 x lo7 1.0 x l o 4.5 x lo83 5.3 x 10 2.7 x io67 9.1 x I O 5 2.8 x 10
5-9 x
3
105
8.2 x 104j
1.4 x BO
g
alJ.S. Geological Survey, Geological Survey P r o f e s s i o n a l Paper 600, "MineraE-Resource Appraisals"
(w@)*
bReserves a r e known m a t e r i a l s t h a t may o r may not be completely explored, but t h a t way be quant i t a t i v e l y estimated; considered t o be economically e x p l o i t a b l e a t t h e time of t h e e s t i m a t e . 'Resources a r e m a t e r i a l s o t h e r than K ~ S ~ K Vt h~ aSt may be u l t i m a t e l y e x p l o i t a b l e ; they include undiscovered but g e o l o g i c a l l y p r e d i c t a b l e d e p o s i t s of m a t e r i a l s s i m i l a r t o p r e s e n t r e s e r v e s a s well a s known d e p o s i t s whose e x p l o i t a t i o n awaits more f a v o r a b l e economic o r technologic conditions. dIncludes d e p o s i t s containing a t l e a s t l$ equivalent b e r y l (C.1$
BeB).
eores from which Tho2 i s recoverable f o r $ 1 0 / l b . which c o n t a i n a t l e a s t sulfides. %ate
35$ CaF2 o r equivalent value i n combined f l u o r s p a r and m e t a l l i c
not a v a i l a b l e .
hklybdenurn inventory includes 16.0 tons required f o r s a l t - m e t a l c o n t a c t a r s i n processing plant. i
Niobium and hafnium are being considered as a l t e r n a t e a d d i t i v e s f o r modified B s t e l l o y - N .
'F0 H. Persse, Bismuth i n t h e United
States,
USBM I r i f o m a t i o n C i r c u l a r 8439 (1970).
.... ..... %.>?
7
...... > .&
materials
Throughout t h i s r e p o r t , t h e d e f i n i t i o n s of " r e s e r v e s " and 2 ' E ~ e ~ ~ g~i v~e nc by e ~ t h es U.S. ' Geological Survey a r e employed. Reserves
a r e known m a t e r i a l s t h a t may o r may n o t be completely explored, but t h a t may be q u a n t i t a t i v e l y estimated, and t h a t a r e considered t o be economic a l l y e x p l o i t a b l e a t t h e time of t h e e s t i m a t e .
Resources a r e m a t e r i a l s
o t h e r t h a n r e s e r v e s t h a t may be u l t i m a t e l y e x p l o i t a b l e .
Resources i n -
c l u d e undiscovered b u t g e o l o g i c a l l y p r e d i c t a b l e d e p o s i t s of m a t e r i a l s i m i l a r t o p r e s e n t r e s e r v e s a s w e l l a s known d e p o s i t s whose e x p l o i t a t i o n a w a i t s more f a v o r a b l e economic o r t e c h n o l o g i c c o n d i t i o n s .
The r a t i o o f
t h e world r e s e r v e s of a m a t e r i a l t o t h e MSBR i n v e n t o r y of t h a t element can be i n t e r p r e t e d a s t h e number of lQOO-MW(e) MSBRs t h a t could be b u i l t i f t h e e n t i r e world r e s e r v e s of t h e v a r i o u s elements were committed t o MSBR c o n s t r u c t i o n , and i f no m a t e r i a l s were r e c y c l e d .
The world r e s e r v e s
of beryllium, bismuth, and thorium a r e adequate t o c o n s t r u c t o n l y a few thousand MSBRs, w h i l e t h e world r e s e r v e s o f l i t h i u m , n i c k e l , and molybdenum a r e s u f f i c i e n t t o c o n s t r u c t a few t e n s of thousands of MSBR power plants The world r e s o u r c e s of t h e elements Pithiurn and b e r y l l i u m a r e q u i t e Parge, and t h e s e el.ements w i l l be a v a i l a b l e f o r u s e i n BEBRs, a l t h o u g h a t an increased p r i c e .
world r e s o u r c e s of $ l ~ / l b t h o r i a a r e e s t i m a t e d
t o be e q u a l l y a s l a r g e a s t h e world r e s e r v e s , and h i g h e r p r i c e d thorium ores a r e very p l e n t i f u l .
Bismuth r e s o u r c e s a r e n o t r e p o r t e d t o be l a r g e ,
b u t t h e f o r e i g n p o t e n t i a l bismuth r e s o u r c e s a r e n o t w e l l known.
World
r e s o u r c e s of MSBR materials are s u f f i c i e n t t o c o n s t r u c t many hundreds of thousands of r e a c t o r s
i f t h e p r o c e s s i n g flowsheet i s modified t o reduce
t h e bismuth i n v e n t o r y .
5.0
WORLD PRIMARY DEMAND FOR NSBR MATERIALS
I n a d d i t i o n t o t h e consumption of n a t u r a l r e s o u r c e s by t h e MSR program, t h e p r e s e n t and f u t u r e non-MSBR u s e s o f t h e s e m a t e r i a l s must a l s o be c o n s i d e r e d .
Table 5 compares t h e world primary demand f o r MSBR mate-
r i a l s i n the y e a r 1968 with t h e known world r e s e r v e s of t h e s e materials. The d a t a show t h a t t h e world r e s e r v e s of f l u o r i n e , beryllium, and bisnuth a,:.&
a r e being r a p i d l y d e p l e t e d .
In t h e c a s e of f l u o r i n e , t h e w o r l d reserves
8
1968 primary demand, and t h e e s t i m a t e d world r e s o u r c e s of o r e s c o n t a i n i n g 35% f l u o r s p a r w i l l be consumed i n 25 y e a r s . The Bureau of Mines a n t i c i p a t e s , however, t h a t
w i l l be d e p l e t e d i n about twelve y e a r s based on t h e
a s f l u o r s p a r r e s e r v e s a r e depleted, t e c h n o l o g i c a l advances w i l l be made i n exploring f o r f l u o r s p a r
rock,
and i n r e c o v e r i n g f l u o r i n e from phosphate
so t h a t U.S. production w i l l be maintained t o t h e y e a r 2000 a t
approximately t h e c u r r e n t r a t i o of p r o d u c t i o n t o demand. p a t e s approximately a
Table
The USBM a n t i c i -
338 i n c r e a s e i n t h e c o s t of f l u o r i n e , however.
3 . Year 1968 World Primary Demand f o r MSBR M a t e r i a l s and World Reserves of MS.BR M a t e r i a l s
Element
Fuel S a l t
I-bstelloy-N
7.5 x 1054
1.8 x 10
1.2 x 10 5.9 x BO5 2.2 x PO7
Ni Mo
4.7 x IO45 6.9 x lo6
9.4 x lo67 5.4 x lo8
268
2 x
6
lo8
8.0 x POll
lo6
9.3 x 108 1.5 x l o 1 107 3.1 x 105
4.3 x bo6
Fe k
8.2 x
Ti Fib Hf
1.4 x LO4 4.4 x l o 43
Bi B
a
4400 478
USGS Estimatedb World Reserves (tons )
Li Be Th P
Cr
Other
1968 World a Primary Demand (tons/year
3800 5
2.4 x 10
1 x
Reserve t o Demand Ratio
170 25
goo0
12
io8
g.0 x l o5 7.2 x BO 7
U.S. Bureau of Mines, Mineral F a c t s and Problems, B u l l e t i n
650, 1970
ed. b
U . S . Geological Survey, Geological Survey P r o f e s s i o n a l Paper 600, Wineral-Resource A p p r a i s a l s " (1968').
The cumulative world demand f o r b e r y l l i u m and bismuth a l s o cannot 1 be met by known world r e s e r v e s - Heindl concludes t h a t mechanical t e c h niques must b e developed t o r e p l a c e t h e p r e s e n t hand-cobbing of pegmatite
.".x:%.......
9 \...&
o r e s t o recover beryl,
i f t h e cumulative world demand â&#x201A;Ź o r b e r y l l i u m t o
t h e y e a r 2000 i s t o be met.
Such improved mining t e c h n i q u e s would make
a v a i l a b l e PQQ,QOO t o n s of b e r y l l i u m a t o r e p r i c e s 504 g r e a t e r t h a n t h e present cost. Current world r e s e r v e s of bismuth a r e inadequate t o meet t h e cumul a t i v e world demand t o t h e y e a r 2000. concentration i n the e a r t h ' s crust
Bismuth does n o t o c c u r i n h i g h
and i s recovered a s a byproduct i n
r e f i n i n g o t h e r metals, p r i n c i p a l l y l e a d and copper.
In o r d e r t o meet
t h e demand, it i s n e c e s s a r y t h a t new b a s e m e t a l ores, from which byproduct bismuth can be obtained, be developed, recovery and r e c y c l e t e c h n i q u e s be employed.
and t h a t more e f f e c t i v e Current o r e r e s e r v e s a r e
i n a d e q u a t e t o m e e t t h e h i g h range of t h e cumulative 1968-2008 primary demand f o r lead, s o t h a t development of new base m e t a l o r e s may be expected t o o c c u r .
It should be noted, however, t h a t t h e development sf
t h e s e a d d i t i o n a l l e a d r e s o u r c e s w i l l r e q u i r e a continued expansion of t h e u s e of t e t r a e t h y l l e a d i n g a s o l i n e , which i s i n c o n t r a d i c t i o n t o current trends
4- 0 Table
PREDICTED GROWTH I N DEMAND FOR MSBR MATERIALS
4 summarizes;
t h e e s t i m a t e d growth i n MSBR i n s t a l l e d e l e c t r i -
c a l c a p a c i t y , and the requirements for Hastebloy-N and c a r r i e r ezilt, through the y e a r 2880.
?Me MSBR installed e l e c t r i c a l c a p a c i t y i s assumed
t o grow a c c o r d i n g t o t h e r e l a t i o n :
where P i s t h e megawatts ( e l e c t r i c a l ) g e n e r a t e d by m o l t e n - s a l t b r e e d e r reactors a t t i m e
T,
i n y e a r s , a f t e r 195.
This function i s an attempt
t o r e p r e s e n t growth i n MSR g e n e r a t i n g c a p a c i t y p r e d i c t e d by t h e Systems A n a l y s i s Task Force f o r a power economy i n which gas-cooled f a s t b r e e d e r r e a c t o r s and plutonium-fueled m o l t e n - s a l t c o n v e r t e r r e a c t o r s c o n s t i t u t e a. l a r g e f r a c t i o n of t h e g e n e r a t i n g c a p a c i t y . 5
The MSBR dernand f o r n a t u r a l
r e s o u r c e s i n t h e y e a r 2000 a s a r e s u l t of t h i s growth f u n c t i o n i s compared w i t h t h e e s t i m a t e d world demand f o r t h e s e m a t e r i a l s i n Table %..*
.... ....>;;
Except f o r t h e two elements
5.
thorium and hafnium, t h e MSBR demand f o r
Table
Year
4.
Estimated
New Capacity
Growth Hastellay-N
of M§BR Installed Electrical and Carrier Salt to the
Installed
Year
Capacity 2000
and Demand
for
Fue Saltb (10 3 tons)
Capacity
[lQ3 m(e)1
[IQ3 W(e)1
1986
5
5
5-6
5.6
1.2
1.2
1990
16
58
18.1
63.2
4.0
14.1
1995
24
a64
26.7
176 -3
6.6
43.6
2000
30
301
33 -6
323 -7â&#x20AC;&#x2122;
P-1
91.6
1000 W(e) years*
installed
capacity
aIncludes placement b
1.12 x 103 tons of of reactor vessel
Per year
Hastelloy-N head every
Includes 225 tons of salt inventory ThFl plus replacement of 8.8 tons/yr opetating at a 0.8 load factor.
per four
Cumulative
Per year
of nominal composition 72-16-12 mole of fuel salt per 1000 M(e) installed
Cumulative
plus
re-
$ LiF-BeF2capacity
G
11
... ..... ..-
... . .... . .(ii
Tabhe
5.
Range of Year 2 0 Estimated World Primary Demand f o r MSBR M a t e r i a l s
Element
Fuel Salt
Li Be
Ti%
Haste 1Poy -N
USBM Estimatedb World Primary Demand (tsns/year )
4
1.5-2.1 x 10
1.6-3.0 x i o3 (1.2-8.1 x noS)C
P
7.0-9.3 x 106
Ni
1.1-1.6 x PO 6 2.2-3.0 x EQ 5
No 6r
Pe
Other
MSBR Demanda (tons/year )
MSBR Demand World Demand
3.4-4.8$ w3$ d lC9$
0.04-0.06% 0 16 -026% e
1.5 -2.0$
2.7-5.6 x 106 8
0.04% -lo-4$
Pin
0 002%
Ti
0 .osg$
Nb
0.12 -0.26%
H .E
2145%
B .i I
B
0.7-1.1x
b
io
6.3 -10~ 3 % 0.1-0-2%
a
Roy C. Robertson,, O W L Reactor Division, p e r s o n a l communication, e s t i mates 30 new MSBRs i n s t a l l e d i n t h e y e a r 2000.
b c
U.S. Bureau of Mines, Mineral F a c t s and Problems, 1970 ed.
Low f o r e c a s t assumes t h e absence of n u c l e a r r e a c t o r s o p e r a t i n g on t h e thorium f u e l c y c l e . High f o r e c a s t a n t i c i p a t e s a n expanding n u c l e a r economy based on t h e thorium c y c l e .
d K a t i o i s based on high range of f o r e c a s t w o r l d primary demand.
.. .... .....:...%.
....:.xw
12
m a t e r i a l s c o n s t i t u t e s o n l y a small f r a c t i o n of t h e e s t i m a t e d world demand.
The f a c t t h a t NSBRs would account f o r
49% of
t h e world consump-
t i o n of thorium i s simply t h e r e s u l t of t h e assumption t h a t MSBRs would r e p r e s e n t a l a r g e f r a c t i o n of t h e e l e c t r i c a l g e n e r a t i n g c a p a c i t y i n t h e y e a r 2000.
The r e l a t i v e l y l a r g e f r a c t i o n of t h e world demand f o r h a f -
nium t h a t would r e s u l t from t h e assumed MSR economy r e f l e c t s t h e f a c t t h a t t h e world demand f o r hafnium i s v e r y small a t p r e s e n t expected t o grow r a p i d l y .
and i s n o t
Hafnium i s o b t a i n e d i n q u a n t i t i e s f a r ex-
ceeding world demand from o r e s from which zirconium i s recovered.
It i s
a n t i c i p a t e d t h a t MSBR requirements would not, of themselves, p l a c e a s e v e r e s t r a i n on t h e world c a p a c i t y t o produce any of t h e raw m a t e r i a l s shown i n Table
5.
The cumulative world demand f o r c e r t a i n MSBR m a t e r i a l s d u r i n g t h e r e s t of t h i s c e n t u r y i s p r e d i c t e d t o be q u i t e l a r g e .
Table
6 compares
t h e cumulative requirements f o r n a t u r a l r e s o u r c e s n e c e s s a r y t o s u s t a i n t h e assumed MSBR economy, and t o s a t i s f y t h e a n t i c i p a t e d range of t h e world primary demand.
Again,
except f o r thorium and hafnium,
t h e MSBR
cumulative demand i s expected t o r e p r e s e n t o n l y a small f r a c t i o n of t h e world demand.
However, t h e world demand f o r f l u o r i n e , beryllium, and
bismuth i s expected t o exceed t h e known world r e s e r v e s of t h e s e m a t e r i a l s , and t h e world demand f o r s e v e r a l o t h e r m a t e r i a l s ( n o t a b l y 830, Nn, Ni,
and L i ) i s expected t o s e v e r e l y d e p l e t e world reserves.
c a s e s of f l u o r i n e and bismuth, anticipated world resources
5*Q
-
In the
t h e cumulative demand may even exceed t h e
DISCUSSION OF RESULTS
A survey h a s been made of t h e r e s e r v e s o f , and f u t u r e demand f o r , n a t u r a l r e s o u r c e s of p a r t i c u l a r importance t o t h e MSBR program.
These
d a t a have been compared w i t h m a t e r i a l requirements n e c e s s a r y t o s u s t a i n a growing MSBR power economy. beryllium, bfsmuth, sand MSBRs,
It was found t h a t s u f f i c i e n t r e s e r v e s of
and thorium a r e a v a i l a b l e t o b u i l d o n l y a few thou-
even i f all t h e r e s e r v e s of t h e s e m a t e r i a l s a r e committed t o
KSBR c o n s t r u c t i o n .
Also, r e s e r v e s of f l u o r s p a r ore, t h e p r i n c i p a l raw u ..... .,
.<.
t::j: g “.:,
Table
Element
Fuel
Salt
6.
Period
MSBR 1985 -2000 Cumulative Demand (tons)
%i Be Th F
7.3 2.1
x 10 x lQlc5
4.0
x 1Q4
4.2
x 10
Ni
2.5 x 10: 3-Y x ‘04 2.3 x 10 6.5 x 10 3
MO
Cr Fe Mn Ti Nb Bf Other
"U-Se bRatiio
Bi B Bureau based
1968-2000
of Mines, on high
World
Primary
World 1968-2000 a Cumtulati-ve Demand (tons)
Demand for
MSBR Demand World Demand ($1
%BW Materials
Cumulative World Demand World Reserves ($1
Cumulative World Demand World Resources World Reserves ($1
36-44 250-360 4.5-16 500 -600
1.9-2.‘( a.7-6.3 180 -210
2.7-3.3 3.0-4.3 2.3-8.4 1.2-1.4
x 10; x 104 x 10 x lo8
2-3 5-7 4gb 0.03-0.04
6.5 x lo2 1.6 x 103 3.2 x 10~ 3.2 x 10’
2.4-2ey 4.2-5.0 o.y-l-1 1.7-2.1 3.9-4.6 1.9-4.4 2.7-4.0 1.9-2-y
x x x x x x x x
0.8-1.~ 0.8-0.9 0 2 Cl0 :e <IO -5 0.04-0.08 ~1.08-0.12 11-17
17-21 53 -63 1.2-2.9 2.7-4.0 0.6-0.9
3 -4 2-3
5.2 x 10; 1*5 x 10
1.4-1.8 1.4-1.8
x 10~ x 107
2.9-3*7 0.08-0.1
140 -180 20-25
78 -100
Mineral range
Estimated
Facts
of forecast
and Problems, world
10; 108 lOlO 108 ‘cl6 10 105 10 3
1970 ed.
cumulative
demand.
?I; 1;; 11-14
+
m a t e r i a l f o r recovery of f l u o r i n e , a r e being r a p i d l y d e p l e t e d by non-
MSBR a p p l i c a t i o n s .
The following s e c t i o n s summarize United S t a t e s
Bureau of Mines i n f o r m a t i o n on r e s e r v e s , mining technology, a p p l i c a t i o n s , and p o t e n t i a l r e s o u r c e s of t h e s e f o u r m a t e r i a l s .
-
5 1 Beryllium Beryllium o c c u r s a t an average c o n c e n t r a t i o n of about
6 parts
per
m i l l i o n i n t h e e a r t h ' s c r u s t , and i s an e s s e n t i a l c o n s t i t u e n t i n some
40 m i n e r a l s .
Beryl, b e r t r a n d i t e ,
phenacite, b a r y l f t e , and c h r y s o b e r y l
a r e t h e most common b e r y l l i u m m i n e r a l s , b u t b e r y l (gBeO*Al 0
2 3
t h e s o l e c o m e r c i a l s o u r c e of b e r y l l i u m .
When pure,
beryl contains
1476 b e r y l l i u m oxide o r about 5% b e r y l l i u m m e t a l .
about
~6si0,) i s
Commercial b e r y l
is hand s o r t e d t o o b t a i n c r y s t a l s and lumps of b e r y l c o n t a i n i n g about 11%BeB, o r
4% b e r y l l i u m .
The w o r l d D s p r i n c i p a l commercial s o u r c e s of b e r y l a r e heterogeneous g r a n i t e pegmatites, where t h e m i n e r a l o c c u r s i n r i c h zones, u s u a l l y cont a i n i n g o n l y a few thousand t o n s of p e g m a t i t e rock.
O c c a s i o n a l l y peg-
m a t i t e s a r e mined f o r b e r y l alone, but more o f t e n b e r y l i s recovered a s a byproduct of f e l d s p a r , mica, and o t h e r m i n e r a l s .
Pegmatite d e p o s i t s
a r e mined by d r i l l i n g o r b l a s t i n g , t h e n hand-cobbing t h e b l a s t e d rock, a procedure by which b a r r e n rock i s broken o f f w i t h hand hammers and d i s c a r d e d , and t h e v a l u a b l e m i n e r a l s , i n c l u d i n g b e r y l , recovered. Beryl, f e l d s p a r , and some o t h e r p e g m a t i t e m i n e r a l s have d e n s i t i e s s o n e a r l y t h e same t h a t i t i s d i f f i c u l t t o s e p a r a t e b e r y l by mechanical means.
Thus, all commercial b e r y l i s hand-cobbed,
t h a n one i n c h i n s i z e a r e n o t u s u a l l y recovered.
and c r y s t a l s l e s s
It i s e s t i m a t e d t h a t
o n l y o n e - t h i r d of t h e b e r y l i n an average d e p o s i t i s recovered by t h e hand methods now i n u s e . The United S t a t e s primary demand f o r b e r y l l i u m i n
tons; and t h e r e s t - o f - t h e - w o r l d
demand was 150 t o n s .
1968 was 328
The range sf t h e
United S t a t e s demand f o r b e r y l l i u m i n t h e y e a r 2000 i s expected t o be to
1740 tons,
and the range of rest-of-the-world
2000 i s p r e d i c t e d t o be 400 t o 1300 t o n s .
l%gO
primary dema~d.i n t h e y e a r
Beryllium i s used, p r i n c i p a l l y
....... ....... ~...
I
i n t h e form of beryllium-copper a l l o y s , i n switchgear, welding a p p a r a t u s , computer equipment,
and r a d i o and t e l e v i s i o n equipment.
Few d a t a
a r e a v a i l a b l e on world b e r y l l i u m r e s e r v e s , which a r e roughly e s t i m a t e d t o be 12,000 t o n s .
Domestic r e s e r v e s of pegmatite o r e s c o n t a i n i n g . a t
l e a s t I$ b e r y l a r e only about 400 t o n s .
However, t h e r e a r e some g0,OOO
t o n s o f b e r y l l i u m contained i n lower-grade pegmatite o r e s found i n North Carolina, and 27,000 t o n s of c o n t a i n e d b e r y l l i u m i n b e r t r a n d i t e d e p o s i t s i n Utah.
I n t h i s country, a t t e n t i o n i s being g i v e n t o r e c o v e r i n g b e r y l -
lium from t h e s e l a t t e r d e p o s i t s .
It is e s t i m a t e d t h a t 15,000 t o n s of
t h e b e r y l l i u m i n b e r t r a n d i t e a t Spor Mountain, Utah,could be recovered a t no change i n o r e p r i c e , and t h a t an a d d i t i o n a l 25,000 t o n s could be recovered a t a
increase i n ore price.
The c o s t of t h e o r e i s a
small p a r t of t h e c o s t of t h e metal, so t h a t t h e p r i c e of t h e m e t a l i s a c t u a l l y expected t o d e c r e a s e about 20% by t h e y e a r 2000 a s t h e r e s u l t
of improved e x t r a c t i v e technology and from economies of s c a l e .
The c o s t
of t h e f l u o r i d e , which i s i n t e r m e d i a t e between t h e c o s t of t h e c o n t a i n e d b e r y l l i u m i n t h e o r e and t h e c o s t of t h e r e f i n e d metal, should show no l a r g e p r i c e increase during t h i s period.
5*2
Fluorine
>,
he p r i n c i p a l f l u o r i n e - c o n t a i n i n g m i n e r a l s a r e f l u o r s p a r ( C ~2P c r y o l i t e (Na A1F6), and phosphate rock. F l u o r s p a r , t h e p r i n c i p a l f l u s -
3
r i n e mineral, i s mined i n this c o u n t r y and abroad, w i t h domestic r e -
5.4 m i l l i o n t o n s of c o n t a i n e d f l u o r i n e and r e s t - o f - t h e world r e s o u r c e s of 33.4 m i l l i o n t o n s . The o n l y known n a t u r a l c r y o l i t e d e p o s i t a t I v i g t u t , Greenland, was exhausted i n 1963, but s t o c k p i l e d o r e i s a v a i l a b l e t o supply needs f o r 15 t o 20 y e a r s . F l u o r i n e compounds may s o u r c e s of about
be recovered from phosphate rock, but,because of t h e high c o s t of recove r i n g t h e f l u o r i n e , most of t h i s m a t e r i a l is n e u t r a l i z e d and d i s c a r d e d . T h i r t y - f i v e p e r c e n t o f t h e f l u o r i n e consumed i n
1968 was
form of HF t o manufacture f l u o r o c a r b o n compounds.
used i n t h e
Thirty-three percent
of t h e fluoi-ine consumed was i n t h e form of f l u o r s p a r f o r u s e a s a f l u x i n t h e s t e e l i n d u s t r y , where from .. ...i...y.,.y..,
3 t o 12
l b of f l u o r s p a r i s r e q u i r e d
p e r t o n o f s t e e l produced, depending on t h e p r o c e s s .
Fluorine, i n t h e
form of c r y o l i t e ,
i s used by t h e aluminum i n d u s t r y t o d i s s o l v e alumina T h i s use accounted â&#x201A;Ź o r 18 p e r c e n t of t h e
for electrolysis.
r i n e demand.
The domestic demand f o r f l u o r i n e was
and i s expected t o r i s e t o 2 * 1 t o Rest-of-the-world
2.7 m i l l i o n
demand f o r f l u o r i n e i n
1968 fluq-
646,000 t o n s i n 1968
t o n s by t h e y e a r 2000.
1968 was 1.2 m i l l i o n t o n s and
i s expected t o r i s e t o 5.0 t o 6.6 m i l l i o n t o n s .
Domestic r e s o u r c e s s f
f l u o r i n e a r e expected t o be d e p l e t e d i n 25 y e a r s , and r e s t - o f - t h e - w o r l d r e s o u r c e s a r e expected t o be exhausted i n l e s s t h a n 20 y e a r s e
&wearer,
i t i s b e l i e v e d t h a t t e c h n o l o g i c a l advances i n e x p l o r i n g f o r f l u o r s p a r
d e p o s i t s w i l l be made s o t h a t a s u f f i c i e n t supply of f l u o r s p a r w i l l be a v a i l a b l e t o meet t h e demand through t h e y e a r 2006 a t an i n c r e a s e i n o r e c o s t o f about
33%.
Bismuth i s a r e l a t i v e l y r a r e element, o c c u r r i n g i n t h e e a r t h ? s
It i s found i n
c r u s t a t a c o n c e n t r a t i o n of about O e l p a r t p e r m i l l i o n .
>
>,
t h e m i n e r a l s bisrnite ( B i 0 and b i s m u t h i n i t e ( B i S which o c c u r i n 2 3 2 3 low c o n c e n t r a t i o n i n o r e s throughout t h e world. A s a r e s u l t of t h e low c o n c e n t r a t i o n of bismuth i n most o r e s g d e p o s i t s a r e n o t mined f o r t h e bismuth c o n t e n t a l o n e .
Most bismuth i s recovered a s a byprsduct of t h e
mining and p r o c e s s i n g of o t h e r m i n e r a l s c o n t a i n i n g s m a l l amounts of b i s muth.
The technology of bismuth e x t r a c t i o n and r e f i n i n g i s w e l l e s t a b -
l i s h e d i n connection w i t h l e a d - r e f i n i n g p l a n t s .
The bismuth i n l e a d
ores, concentrates,and f l u e dust i s c o l l e c t e d i n t h e lead bullion, which it i s recovered.
from
About 50$ of t h e bismuth consumed i s used a s am
a l l o y i n g m a t e r i a l i n f u s i b l e a l l o y s , s p e c i a l t y aluminum, and m a l l e a b l e
iron and s t e e l .
Another
40$ of
p h a r m a c e u t i c a l s and cosmetics.
t h e bismuth csnsumption i s f o r u s e i n The United S t a t e s and r e s t - o f - t h e - w o r l d
primary demands f o r bismuth i n t h e y e a r respectively.
1968 were 1100 and
2700 tons,
The range of t h e U.S. primary demand f o r bismuth i n t h e
y e a r 2000 i s expected t o be 1400 t o 2300 t o n s .
The r e s t - o f - t h e - w o r l d
requirements f o r t h e y e a r 2000 a r e expected t o grow t o
5400 t o
5300 t o n s .
GJorld r e s e r v e s o f bismuth a r e e s t i m a t e d t o be 100,800 tons, a q u a n t i t y which i s i n s u f f i c i e n t t o s a t i s f y t h e cumulative world demand far bismuth
t o t h e y e a r 2000.
P o t e n t i a l bismuth r e s o u r c e s i n t h e U.Se and f i f t e e n
f o r e i g n c o u n t r i e s surveyed by t h e Bureau of Mines t o t a l 82,000 t a n s . I n o r d e r t o meet t h e cumulative world demand f o r bismuth through t h e y e a r 2000,
i t i s necessary t h a t new base m e t a l o r e r e s e r v e s (from which
bismuth i s o b t a i n e d a s a byproduct) be developed. bismuth from l e a d o r e s t o t a l l 4 , O O O t o n s .
Domestic r e s e r v e s of
P o t e n t i a l domestic bismuth
r e s o u r c e s of $000 t o n s a r e a s s o c i a t e d w i t h marginal l e a d o r e s , and a d d i t i o n a l r e s o u r c e s t o t a l i n g 14,000 t o n s a r e a s s o c i a t e d w i t h o t h e r b a s e The production of bismuth i s c l o s e l y r e l a t e d t o t h e demand
metal ores.
f o r lead, so t h a t i t i s n e c e s s a r y f o r t h e demand f o r l e a d t o i n c r e a s e i n o r d e r t h a t a d d i t i o n a l l e a d and a s s o c i a t e d bismuth r e s o u r c e s be d e v e l oped.
S i n c e 20$ of t h e l e a d demand i n t h e y e a r
I968 was f o r u s e a s
t e t r a e t h y l l e a d in g a s o l i n e , t h e t r e n d toward low-lead g a s o l i n e may r e t a r d t h e development o f bismuth r e s o u r c e s .
I n t h i s case, bismuth demand
would have t o be met by developing r e s o u r c e s a s s o c i a t e d w i t h copper and
zinc ores.
5.4
Thorium
Thorium i s a widely d i s t r i b u t e d element, having an abundance of BO t o 20 p a r t s p e r m i l l i o n i n t h e e a r t h ' s c r u s t .
It i s found i n t h e form
of t h e m i n e r a l s t h o r i a n i t e , Tho2, and t h o r i t e , ThSiOlt, and may be a s s o c i a t e d w i t h v a r y i n g amounts of UO
2
and UO
3'
Monazite, an important
thorium-bearing mineral, i s a r a r e - e a r t h phosphate which may a l s o cont a i n up t o
18$ Tho2.
Monazite d e p o s i t s a r e found i n I n d i a , B r a z i l ,
A u s t r a l i a , Ceylon, Indonesia, Malagasy Republic, Malaysia, t h e Republic of South A f r i c a , Canada, and t h e United S t a t e s .
Pasnsazite i s g e n e r a l l y
recovered from r i v e r and beach sands by p l a c e r mining methods.
The men-
a z i t e i s c o n c e n t r a t e d , c h e m i c a l l y processed t o s e p a r a t e t h e r a r e e a r t h s , and p u r i f i e d by s o l v e n t e x t r a c t i o n .
The p r i n c i p a l u s e s of thorium a r e
i n t h e manufacture o f incandescent g a s mantles, t h e paoduction of magnesium-thorium a l l o y s , o t h e r m e t a l l u r g i c a l a p p l i c a t i o n s , and a s a c a t a l y s t i n t h e petroleum and chemical i n d u s t r i e s . thorium i n ......
... .> ..& ......
1968 t o t a l e d 200 t o n s .
t h e 23*Th-237hT
World primary demand f o r
Should n u c l e a r r e a c t o r s o p e r a t i n g a n
f u e l c y c l e prove s u c c e s s f u l , t h e h i g h range of t h e w o r l d
thorium demand f o r t h e y e a r 2080 i s p r e d i c t e d t o be 8100 t o n s , and t h e cumulative demand f o r t h e p e r i o d 1968-2000 i s expected t o be 84,000 t o n s . World r e s e r v e s of thorium a t $10 p e r pound of ThQ a r e 590,000 tons, and 2 world r e s o u r c e s a t t h i s p r i c e a r e p r e d i c t e d t o b e almost one m i l l i o n tons.
Although it i s a p p a r e n t t h a t inexpensive thorium o r e s w i l l be a v a i l -
a b l e w e l l i n t o t h e n e x t century, even l a r g e r q u a n t i t i e s of thorium w i l l be available a t higher prices.
Table 9 s u m a r i z e s t h e magnitudes of t h e
thorium r e s o u r c e s i n t h e United S t a t e s a s a f u n c t i o n of t h e c o s t sf ThQ 2â&#x20AC;&#x2122; mibe d a t a on t h e amount of ore a v a i l a b l e i n f o r e i g n c o u n t r i e s a t h i g h e r i t i s b e l i e v e d t h a t analogous q u a n t i t i e s would
prices arenot available,
be r e c o v e r a b l e a t i n c r e a s e d p r i c e s .
Table
7.
Domestic Thorium Resources a s a F u n c t i o n s f P r i c e of ThQ
8
2
P r i c e Range p e r Pound of Tho2
Reasonably Assured Re source s (tons 1
($1
under 10
l o -30 30 -100
Estimated T o t a l Ressurces (tons)
100,000
400,000
100,000
200,660
3 5y 000,000
7,000,000
BOO -500
l,00Oy 000,000
3 000
080 000
as
Feb. 20 and 213
f
1963.
6 0 e
CQNCEUS IONS AND RECOMMENDATPONS
The elements beryllium, bismuth, and f l u o r i n e have been i d e n t i f i e d
a s m a t e r i a l s whose m i n e r a l r e s e r v e s a r e i n s u f f i c i e n t t o s a t i s f y t h e g r e d i c t e d w o r l d demand f o r t h e s e elements by t h e y e a r 2000, t h u s c r e a t i n g an economic s i t u a t i o n which might n o t f a v o r t h e growth s f a n NSBR power economy. promising.
Of t h e s e t h r e e elements, t h e o u t l o o k f o r b e r y l l i u m i s most The domestic demand f o r b e r y l l i u m i s met,
a t p r e s e n t , almost
.......... ..
_..<+l
e n t i r e l y by imports of b e r y l , which i s mined from pegmatite o r e s by p r i m i t i v e , hand s o r t i n g methods.
While t h i s c o u n t r y does n o t have l a r g e
r e s o u r c e s of hand-cobbable beryl,
t h e m i n e r a l b e r t r a n d i t e i s found i n
l a r g e q u a n t i t F e s i n t h e w e s t e r n p a r t of t h e United S t a t e s .
Unlike b e r y l ,
ba-trz.Adi:e o c c u r s i n d e p o s i t s a s s o c i a t e d w i t h m i n e r a l s whose d e n s i t i e s d i f f e r s u f f i c i e n t l y from b e r t r a n d i t e t h a t m i n e r a l b e n e f i c i a t i o n t e c h n i ques a r e f e a s i b l e .
I f t h e w e s t e r n U. S . b e r t r a n d i t e d e p o s i t s a r e d e v e l -
oped s u c c e s s f u l l y , t h e demand f o r b e r y l l i u m through t h e y e a r 2000 can be met w i t h no i n c r e a s e i n t h e c o s t o f b e r y l l i u m m e t a l o r b e r y l l i u m f luoride. The element f l u o r i n e , i n t h e form of f l u o r s p a r and c r y o l i t e , i s used e x t e n s i v e l y i n t h e s t e e l and aluminum i n d u s t r i e s .
Fluorine is
mined i n t h e form s f f l u o r s p a r , a m i n e r a l whose mining technology i s a l r e a d y w e l l developed and h i g h l y mechanized,
s o t h a t g r e a t e r produc-
t i o n v i a improved mining technology i s u n l i k e l y .
The U. S. Bureau of
Mines b e l i e v e s t h a t t e c h n o l o g i c a l advances i n e x p l o r i n g f o r f l u o r s p a r d e p o s i t s and recovery of f l u o r i n e from phosphate rock w i l l r e s u l t i n an adequate supply of f l u o r s p a r t o t h e y e a r 2000 a t about a i n price.
33s i n c r e a s e
The r e s o u r c e s of f l u o r i n e c o n t a i n e d i n phosphate rock d e -
%
p o s i t s i n t h i s c o u n t r y a l o n e a r e e s t i m a t e d a t 2.8 x 10 t i t y which f a r exceeds t h e r e s o u r c e s of f l u o r s p a r .
tons, a quan-
A s t h e p r i c e of
f l u o r s p a r increases, i t i s - l i k e l y t h a t more e f f i c i e n t u s e o f t h e minera l w i l l be made i n t h e s t e e l i n d u s t r y , where t h e q u a n t i t y of fluorspar
consumed p e r t o n of s t e e l v a r i e s from
3 t o 12 l b .
Within t h e MSR Pro-
gram, i t w i l l be n e c e s s a r y t o make e f f i c i e n t u s e of f l u o r i n e .
The
complete r e c y c l e of f l u o r i n e i n t h e uranium removal system o f t h e p r e s e n t f l o w s h e e t i s an example of t h e t y p e of improvements r e q u i r e d . C o n s i d e r a t i o n should a l s o be g i v e n t o d i s c a r d i n g a c h l o r i d e waste s a l t rather than a fluoride s a l t .
I n t h e y e a r 2000, replacement of d i s c a r d e d
s a l t w i l l account f s r 25% of t h e f l u o r i n e consumed by t h e MSR economy, based on t h e p r e s e n t f l o w s h e e t . l i f e of a r e a c t o r ,
Also, a t t h e end of t h e t h i r t y m y e a r
the c a r r i e r s a l t a s well as the f i s s i l e m a t e r h l
s h o u l d be recovered and seeyal.ed tQ o t h e r r e a c t o r s . by means of low-pressure d i s t i l l a t i o n ,
6 al.
--
been demonstrated by Hightower e t
Recovery i s p o s s i b l e
a p r o c e s s whose technology h a s
20
Bismuth r e s e r v e s a r e a l s o i n s u f f i c i e n t t o meet t h e world cumulat i v e demand f o r t h i s m e t a l through t h e y e a r 2000.
Bismuth supply i s
c l o s e l y l i n k e d t o and l i m i t e d by r e s o u r c e s and p r o d u c t i o n of lead and copper.
The supply v a r i e s , t h e r e f o r e , according t o t h e demand f o r
t h e s e metals, r a t h e r t h a n according t o t h e independent requirements f o r bismuth.
The r e l a t i v e l y l i m i t e d and i n e l a s t i c s u p p l y h a s prevented u s e
of bismuth f o r a p p l i c a t i o n s r e q u i r i n g s u b s t a n t i a l q u a n t i t i e s .
I n order
t o meet t h e demand f o r bismuth, more e f f e c t i v e recovery techniques,
in-
c r e a s e d secondary bismuth recovery, and development of new base m e t a l ores are required.
S u b s t i t u t i o n of a l t e r n a t e m a t e r i a l s f o r bismuth i n
pharmaceuticals and cosmetics may reduce demand somewhat.
A large frac-
t i o n of t h e bismuth i n v e n t o r y i n t h e MSBR p r o c e s s i n g p l a n t i s employed t o d i s s i p a t e t h e r a d i o a c t i v e decay h e a t from t h e r a r e - e a r t h f i s s i o n p r o d u c t s i n t h e m e t a l t r a n s f e r system.
The bismuth i n v e n t o r y n e c e s s a r y
t o o p e r a t e t h e m e t a l t r a n s f e r p r o c e s s could be s i g n i f i c a n t l y reduced i f a n o t h e r means i s used f o r d i s s i p a t i n g t h e f i s s i o n product decay h e a t . Bismuth and f l u o r i n e a p p e a r t o be t h e two elements i n t h e MSBR f u e l c y c l e which a r e most v u l n e r a b l e t o d e p l e t i o n of l o w - c o s t n a t u r a l resources.
P r e s e n t e s t i m a t e s by t h e U. S . Bureau of Mines a r e t h a t r e -
s e r v e s w i l l . be expanded t o meet t h e demand f o r t h e s e m a t e r i a l s through t h e y e a r 2QQ0. The a v a i l a b i l i t y of t h e s e materials beyond t h i s p o i n t a t p r i c e s near present c o s t s appears q u i t e uncertain.
Although b e r y l -
lium r e s e r v e s which can be recovered by t o d a y ' s hand mining t e c h n i q u e s a r e small, l a r g e r e s o u r c e s a r e known t o e x i s t , and i t i s expected t h a t mechanical mining t e c h n i q u e s can be developed t o r e c o v e r b e r y l l i u m from t h e s e o r e s a t no i n c r e a s e i n t h e c o s t of b e r y l l i u m f l u o r i d e o r b e r y l l i um m e t a l .
Reserves o f $10/lb t h o r i a a r e adequate t o supply an MSBR
economy well beyond t h e y e a r 2000, end l a r g e r e s o u r c e s of h i g h e r p r i c e d t h o r i a a r e a v a i l a b l e , so t h a t f e r t i l e m a t e r i a l w i l l n o t be i n s h o r t
supply i n the foreseeable future. A l a r g e f r a c t i o n of t h e world r e s e r v e s of elements Li, $loJ N i ,
Pan w i l l a l s o be consumed by t h e y e a r 2000.
and
I n a l l cases, t h e MSBR d e -
mand â&#x201A;Ź o r t h e s e m a t e r i a l s w i l l be a small f r a c t i o n of t h e world demand. I n c r e a s e s i n t h e c o s t s o f n i c k e l and molybdenum t h a t r e s u l t when t h e s e
.~,....~, ........ .
21
r e s e r v e s a r e d e p l e t e d w i l l have a g r e a t e r a d v e r s e e f f e c t on t h e MSBR program t h a n on competing r e a c t o r types, because of t h e r e l a t i v e l y h i g h c o n t e n t of t h e s e m a t e r i e l s i n Hastelloy-N and t h e u s e of mol-jbdenuw a s
a m a t e r i a l of c o n s t r u c t i o n i n t h e p r o c e s s i n g p l a n t . W ( e ) LMFBR power p l a n t would r e q u i r e about
I$
of t h e Mo i n a n MSBR.)
(A t y p i c a l 1000-
l5$ of t h e N i and l e s s
It i s p o s s i b l e , however,
than
t h a t r e s e r v e s of
t h e s e m a t e r i a l s w i l l be expanded s u f f i c i e n t l y r a p i d l y t h a t l a r g e i n c r e a s e s i n p r i c e w i l l not occur u n t i l w e l l beyond t h e y e a r 2000. C o n s i d e r a t i o n h a s been g i v e n t o t h e e f f e c t of l a r g e i n c r e a s e s i n t h e p r i c e of raw m a t e r i a l s on t h e f u e l c y c l e c o s t of power produced by
a n MSBW.
The i n v e n t o r y and replacement c h a r g e s for a number of m a t e r i -
a l s a r e g i v e n i n 'Table 8 â&#x201A;Ź o r a IQOQ-baW(e) MSBR a s p r e s e n t l y envisioned. Table
8.
I n y e n t o r y and Replacement Charges f o r ) M a t e r i a l s i n a ~ O O O - M W ( ~MSBR
Mat
b
5-1
0.2
0.010
Th
39 -2 8.6'
99.1
6.3
0 .ogo
F
0.5
162.9
2 -9
Q .ow5
Be
Iilastelloy-N
6
Bi
a
10.80~ 1120 17.4
LO
0.514
0
0.004
Assume i n v e n t o r y c h a r g e of 14% per annum and 0.8 p l a n t f a c t o r .
bCost of c o n t a i n e d b e r y l l i u m based on a c o s t of BeF of $7.50/lb. 2 C
Cost of c o n t a i n e d thorium based on a c o s t of ThF4 of $6.5o/Ib.
aaverage cast $20/lb
sf H ~ S ~ ~ I I Obased ~ - N on f i n i s h e d shapes c o a t i n g $8 t o
a
These d a t a show t h a t an i n c r e a s e i n t h e p r i c e of beryllium, f l u o r i n e , ...,.,.,.. ._.
... ......fl
bismuth by a n o r d e r of magnitude would i n c r e a s e t h e f u e l c y c l e
C Q S ~by
OK
22
I f t h e p r i c e of Tho r i s e s t o $gQ/lb, t h e i n 2 The c o s t c r e a s e i n f u e l c y c l e c o s t would a l s o be about 0.1 mill/kWhr.
at most 0.1 mill/kWhr.
of n a t u r a l l i t h i u m i s about $1/Lb which,
i s o t o p i c s e p a r a t i o n , i s q u i t e small.
compared t o t h e p r i c e of
An i n c r e a s e of an o r d e r of magni-
t u d e i n t h e c o s t of n a t u r a l l i t h i u m would r e s u l t i n an i n c r e a s e i n f u e l c y c l e c o s t of only 0.1 mill/kWfar.
The e a s e i s s i m i l a r w i t h the compo-
n e n t s of Hastelloy-N, which has a v a l u e o f about $E/Pb,
b u t which is
e s t i m a t e d t o co st $8 t o $20/lb when f a b r i c a t e d into f i n i s h e d shapes4
An i n c r e a s e of 100% i n t h e c o s t of n i c k e l , t h e major c o n s t i t u e n t of Hastelloy-N,
would r e s u l t i n an i n c r e a s e i n f u e l c y c l e c o s t of o n l y
0.05 mill/kWhr. I n summary, t h e r e i s no n a t u r a l r e s o u r c e i n such s h o r t supply t h a t it would r e n d e r t h e development of molten s a l t r e a c t o r s u n a t t r a c t i v e . World r e s e r v e s of some m a t e r i a l s r e q u i r e d f o r the MSR Program a r e being
d e p l e t e d , b u t new resources of these m a t e r i a l s must be developed i n o r d e r to s u p p l y a w i d e v a r i e t y of consumers-
Several areas a r e Fndi-
c a t e d where e f f i c i e n t r e c y c l e of m a t e r i a l s w i t h i n t h e P E R economy i s d e s i r a b l e , b u t such r e c y c l e i s probably i n t h e d i r e c t i o n of lower f u e l c y c l e c o s t s even a t p r e s e n t market c o n d i t i o n s , and w i l l be included i n
the MSR fuel. c y c l e for reasons o t h e r t h a n c o n s e r v a t i o n of n a t u r a l r e sources.
7.0
REFERENCES
1.
U.S. Bureau of Mines, Mineral P a c t s and Problems,
2.
U. S. Geological Survey,
1970
edition.
"Mine r a 1-Re source hp pra i s a
3.
P. R. Kasten and R.
C.
l i s h e d MSRP data, A p r i l
4. W. L.
Robertson, OlWL Reactor Division, unpub-
1969.
C a r t e r and E. L. Nicholson, Design and Cost Study of a Flus-
5.
P o t e n t i a l Nuclear Growth P a t t e r n s , WhSH-1098 (December 1970).
6.
J. R. Hightowex-, L. E. McNeese, B. A. Hannaford,and K. D. Cochran, JP., Low-Pressure D i s t i l l a t i o n o f a P o r t i o n of t h e F u e l C a r r i e r S a l t from t h e Molten S a l t Reactor Experimenf, ORNL-4577 (August 1971).
,..”..... .-.:. .” .... .
... ..wx<y ......
INTERNAL DISTRIBUTION
1. 2.
3.
4. 5. 6. 7-16.
17. 18. 19. 20. 21. 22.
23. 24.
25. 2627.
28. 29.
36. 31. 32.
33. 34. 35. 36. 39. 38. 353.
40. 41. 42.
43. 44. 45.
46. 49. 48.
â&#x20AC;&#x2DC;Cg.
J. L. Anderson F . Baee E. Bamberger 6. J . Barton E. F. Bauman S. E. ~ e a l l M. J. B ~ I I M. R. Bennett C. E. Bettis E. S. B e t t i s 8. E. Blanc0 F. F. Blankenship E. G. Bohlmann G. E. Boyd R. B. Briggs R. E. Brooksbank K - B. Brown W. L. C a r t e r P. L. C u l 1 e r J. R. D i s t e f a n s S. 3. D i t t o W. P. E a t h e r l y J. R. Engel D. E. Perguson L. M. F e r r i s 9. H Prye W. 0. Fulkerson W. K. Furlong H. E. G o e l l e r W e R * Grimes A. G. G r i n d e l l B. A . Nannaford P. N. Haubenreich J. R. Nightower P. R. a s t e n C. W. Kee S. S. K i r s l i s J. A . Lane R. 35. Lindauer M. I. Lundin C. C.
50. T. $. Lundy 51. H. G. Macpherson 52-
R. E . a E* H. A . L. E . J. R.
MacPherson McCoy McLain McNeese McWkerter $7- R e L e Moore 58. J. P. Nichols 59. E . L. N i ~ h Q l s o n 60. A. M. P e r r y 61. R. C. Robertson 62 M. W. Rosenthal 63 W. F. S e h a f f e r 64. Dunlap S c o t t 65 J * 61. S h a f f e r 66* M. J. Skinner 67 A . N. Smith 6a F e J. Smith 69 * B i n Ssod 70. R. A. S t r e h l s w 7-1 0. K. TalPent E. K. T a y l o r 72 Re E. Thoma D. B. Trauger 74. W. E . Unger 7-5* H. 0. Weeren 76 A . M. Weirnberg 77* 78 * J. Et. Weir 79 * 61. E. whatley 80. J. 6 . w h i t e 8%. K. If. Wiehner 82 W. M. W O Q ~ E 83 Gale Young 84. E. L. Youngblood 85 -86 C e n t r a l Research L i b r a r y 87-89. Document Reference S e c t i o n 90 -92. Laboratory Records Laboratory Records (LRD-RC) 93
53. 54. 55. 56.
H
e
e
4
n.
a
94. J. A . AccaFrri, C o n t i n e n t a l O i l Co., Ponca City, Oklahoma 74601 95. D o P o Cope, Atomic Energy Commission, BBT S i t e O f f i c e (Om) 96.
......
.. .. ...........,. .-.,>.v
97.
A . R. DeGrazia, USAEC, DRDT, Uashington, D.C. I). E l i a s , ImT, USAEC, Washington, D.C. 20545
20545
26
EXTERN~~L DISTRIBUTION ( c o n t i n u e d )
J. E. Fox, USAEC, DRDT, Washington, B.C.
20545
.
Norton Haberman, RDT, USAEC, Washington, D C. 20545 100. Kermit Eaughon, Atomic Energy Commission, R19T S i t e O f f i c e
99 =
1
181-102
T. W. McIntosh, Atomic Energy ComissFon, Washington, D.C. 20,545 103. J. Neff, USAEC, DRDT, Washington, D.C. 20545 Roth, AEC-QRQ 104 = H. 105 * Pg. Shaw, Atomic Energy Commission, Washington, D. C . 20545 106* W. L. S w I l e y , AEC-OR0 107. J. R. Trinko, Ebasco Services, Ibnc., 2 Rector S t r e e t , New York, N.Y. 10006 108 M. J. Whitman, USAEC, Washington, D.C. 20545 log -110 * D i v i s i o n of Technical Information Extension, ORO, AEC M
-
a