3.1 Entropy — A Quantitative Treatment Warm Up In the chapter on Entropy Change versus Enthalpy Change) we dealt with the impact of ΔS and ΔH on spontaneity. we also know that heat flows from a region of high energy to a region of low energy. This might lead to the conclusion that spontaneous change must be exothermic. 1. Consider the following change occurring at room temperature:
time ice cube (crystal structure)
puddle of water (no organized structure)
(a) Is this change spontaneous (did it occur without outside intervention)? _______ (b) Is this process endothermic or exothermic? ________________ (c) What is the sign of ΔH? _______ 2. Consider the change at a molecular level: Order
Disorder
ΔS > 0
ice
water
(a) What is the sign for ΔS? _______ (b) Is this process enthalpy driven or entropy driven? ______________ Explain. ____________________________________________________________________________________________ ___________________________________________________________________________________________________
The First Law of Thermodynamics
Energy is conserved — never created or destroyed. When energy is released by an exothermic change, the potential energy stored in chemical bonds is converted to kinetic energy, which is the energy of motion of atoms and molecules. As the kinetic energy of the atoms and molecules in the system and the surroundings increases, the temperature rises. Sometimes we speak of exothermic changes as “giving off heat.” Heat is the energy transferred between a system and its surroundings. When thermodynamicists say that a reaction is spontaneous, they mean that the reaction will occur
Spontaneous Change without any outside intervention. They do not mean the reaction occurs rapidly. We studied the rate or speed of a reaction in Unit 1: Reaction Kinetics. In contrast, a non-spontaneous event can continue only as long as it receives some sort of outside assistance. All non-spontaneous events occur at the expense of spontaneous ones. They can occur only when some spontaneous change occurs first.
182 Chapter 3 Thermodynamics
© Edvantage Interactive 2018