ICP Research Report 2021 English

Page 35

Research Report 2021

Institute of Computational Physics

Experimental Validation of an Electro-Thermal Small-Signal Model for Large-Area Perovskite Solar Cells To improve defect detection in perovskite solar cells, we apply an oscillating small-signal voltage to the devices and measure the temperature response with an infrared camera. A comparison with simulations helps to determine the origin of the defects and allows to quantify them. Contributors: Partner(s): Funding: Duration:

E. Comi, E. Knapp, B. Ruhstaller Fluxim AG, Empa, Solaronix S.A. Master’s Thesis, Innosuisse 2020–2021

Perovskite thin-film solar cells have attracted a lot of attention in recent years due to rapidly increasing efficiencies. The upscaling of this technology from small laboratory cells to large-area devices without compromising efficiency and stability, however, is still a challenge to be solved for successful commercialization. Printing perovskite modules entirely by screen printing is an important step towards industrialisation, which is why we are carrying out an electro-thermal analysis of screen-printed carbon-based hole transporter-free perovskite dual cells with various interconnection widths. For this purpose, we used the FEM (Finite Element Method) software Laoss that supports the upscaling process from small- to largearea devices by solving for the potential and temperature distribution in 2D top and bottom electrode domains, which are coupled by a vertical 1D coupling law. In this master’s thesis we presented electrical and thermal DC and AC simulations of dual cells and a reference cell without an interconnection and compared the simulation results with measurements.

The software can not only perform electrical and thermal steady-state simulations but also determine the influence of non-ideal electrodes in the frequency domain. Therefore, we also introduced the small-signal dark lock-in thermography (SS-DLIT) method to measure and simulate electro-thermal effects in perovskite solar cells in the dark with high accuracy thanks to the use of a small, periodic voltage modulation at a chosen offset voltage. This adapted DLIT method can be simulated with the thermal AC module in Laoss and allows the investigation and quantification of various defects, such as shunts or the interconnection quality of perovskite solar cell modules. Figure 1 shows the amplitude of a SS-DLIT simulation of a perovskite dual cell with built-in shunts on the left. The SS-DLIT measurement is shown for comparison in right the image.

Figure 1: Simulated SS-DLIT amplitude image of a perovskite dual cell showing a temperature increase at the shunts and the interconnection. The SS-DLIT amplitude measurement is shown on the right, displaying two hot spots in the upper cell as well, which cause losses during operation.

Zurich University of Applied Sciences

30

www.zhaw.ch


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

A.6 ICP Spin-Off Companies

3min
pages 57-59

A.5 Teaching

3min
pages 55-56

A.2 Scientific Publications

7min
pages 50-52

5 Computational Physics and Artificial Intelligence

3min
pages 47-48

4.5 Artificial Intelligence (AI) Heat Pump Controller

2min
page 46

Measurement Technology for Decentralized Energy Systems

3min
page 45

Portable Device for Early Diagnosis of Lymphedema

2min
page 43

Design and Development of Artificial Skin Models for Tactile Sensing Applications

3min
page 44

Detecting Nanoparticles in Complex Environments

2min
page 42

Hardware-Software Integration and Validation of a Compact THz System

2min
page 40

All-Organic Gap-Free Terahertz Photonics

2min
page 39

Silicon Solar Cell Parameter Estimation by a Convolutional Neural Network Trained on Simulated Data

2min
page 34

Investigating Charge Transport in Organic Semiconductors with Electrochemical Methods and Modelling

2min
page 38

Dynamics of Charge Transfer States in Organic Semiconductor Devices: A Combined Experimental and Simulation-Based Approach (CTDyn

2min
page 36

New Tools for Characterizing Quantum-Dot Displays

2min
page 37

3 Organic Electronics and Photovoltaics

1min
page 33

Experimental Validation of an Electro-Thermal Small-Signal Model for Large-Area Perovskite Solar Cells

2min
page 35

3-D model of Water and Heat Transport in PEMFCs during Evaporative Cooling and Humidification

2min
page 30

A New Thermodynamical Framework for Improved Aqueous Flow Battery Modelling

2min
page 31
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.