Fkh[L_i_ed ( \eh Fh[iXoef_W$ 7ff Z[i_]d ceYakfi Xo Fkcf d :_n_jWb
'
IfbWi^ iYh[[d
(
9WbYkbWjeh
+
?d\e l_[m
,
H[ikbji l_[m
)
-
:eYkc[dji
L_Z[e l_[m
*
I_d]b[ ZeYkc[dj l_[m
Pu r e Vi s i o n ®2f o rPr e s b y o p i a . Ap pdes i gnmoc kupsb yPu mp ú nDi x i t a l
1 Sp l a s hs c r e e n
2 Ca l c u l a t o r
3 Do c u me n t s
Ba c k
1 . Ca l c u l a t es p e c t r a l r e fl e c t i o n
Doc ume nt s
Ri ghtEy e 0. 00/0. 00x1 80
Do c u me n t #1
>
Do c u me n t #2
>
Do c u me n t #3
>
Do c u me n t #4
>
Do c u me n t #5
>
Do c u me n t #6
>
Do c u me n t #7
>
Ri ghtEy e 0. 00/0. 00x1 80
Do c u me n t #8
>
Lef tEy e 0. 00/0. 00x1 80
Do c u me n t #9
>
Do c u me n t #1 0
>
Lef tEy e 0. 00/0. 00x1 80 Addi t i on 0. 00 Domi nantEy e
l e f t
r i ght
CAL CULATELENS
Pu r e Vi s i o n ®2f o rPr e s b y o p i a 2. Re s u l t
Re di fineNe a rVi s i on
Ca l c ul a t e
5 I n f ov i e w
4 Si n g l ed o c u me n t v i e w
Re di fineDi s t anc eVi s i on
Doc s
I nf o
6 Vi s i o nr e fi n a t i o nc h o i c e s
Ca l c ul a t e
Doc s
I nf o
T i t l edoc ume ntnumbe r1 L o r e mi p s u md o l o rs i t a me t , c o n s e c t e t u ra d i p i s c i n ge l i t . Pr a e s e n t f e r me n t u mma s s at r i s t i q u ea l i q u e t t r i s t i q u e . I n t e r d u m e t ma l e s u a d af a me sa ca n t ei p s u mp r i mi si nf a u c i b u s . Du i s r u t r u mi p s u mo r n a r eu r n ac o n g u e , v e l f r i n g i l l al i b e r op r e t i u m. Ut p o r t an o nl a c u sq u i se u i s mo d . Ma u r i so r n a r ei mp e r d i e t j u s t o c o n s e q u a t mo l l i s . S u s p e n d i s s et e mp u sp u r u su t v o l u t p a t p o r t a . Nu l l as i t a me t l o r e mt u r p i s . I n t e g e rma t t i sd u i e g e t n i s i a d i p i s c i n g , n e cv e n e n a t i sn i s l i mp e r d i e t . Al i q u a mt e mp o rv i t a es e mq u i s t i n c i d u n t . Et i a ml i g u l ae r o s , u l t r i c i e ss e dn e q u ea c , p l a c e r a t mo l e s t i e q u a m. Pr o i ni dt i n c i d u n t mi . Cu r a b i t u rg r a v i d ai p s u me l i t , e g e t e u i s mo do r c i c o n s e q u a t a t . P e l l e n t e s q u ev e l u l l a mc o r p e rl i g u l a . Ut s o d a l e ss e mv e l l a c u sv a r i u si mp e r d i e t . S e ds e dma g n af e l i s . Cu r a b i t u rp o s u e r ee g e s t a sma s s ao r n a r et e mp o r . Qu i s q u en i b h l e o , t i n c i d u n t s i t a me t u l l a mc o r p e rs e d , t e mp u sn o ne r o s . Vi v a mu sp o s u e r ec o mmo d ol i g u l a , e t p u l v i n a rn u n c . Ma e c e n a sp e l l e n t e s q u el e c t u st o r t o r , q u i se u i s mo de s t f e u g i a t e g e t .
Ca l c ul a t e
Doc s
I nf o
7 Re s u l t sv i e w
8 Vi d e ov i e w Ba c k
Ba c k
Ba c k
I nf o
Lef tEy e 0. 00/0. 00x1 80
Pa t i e nti swe a r i ngt wohi ghADDl e ns e s
Ri ghtEy e 0. 00/0. 00x1 80
Nu l l af a c i l i s i . Pr o i nu t n i b hama g n ab i b e n d u mf a c i l i s i si n s e dq u a m. Mo r b i q u i sd a p i b u sl i g u l a , e t f a c i l i s i ss e m. Nu n ci do d i oa t l o r e mp h a r e t r at i n c i d u n t . Vi v a mu sa c c o n s e q u a t e r o s , u t g r a v i d al e o . Do n e cv i t a es a p i e nn o n v e l i t a l i q u e t a u c t o rn o nu t l i g u l a . S u s p e n d i s s ei mp e r d i e t c o n v a l l i se r o sat r i s t i q u e .
Ca l c ul a t e
Doc s
I nf o
Ca l c ul a t e
Doc s
I nf o
Ba c k
Doc s
Pa t i e nti swe a r i ngt wol ow ADDl e ns e s
I nf or ma t i on
Ca l c ul a t e
Sec ondOpt i on
I nf o
q u a m. Pr o i ni dt i n c i d u n t mi . Cu r a b i t u rg r a v i d ai p s u me l i t , e g e t e u i s mo do r c i c o n s e q u a t a t . P e l l e n t e s q u ev e l u l l a mc o r p e rl i g u l a . Ut s o d a l e ss e mv e l l a c u sv a r i u si mp e r d i e t . S e ds e dma g n af e l i s . Cu r a b i t u rp o s u e r ee g e s t a sma s s ao r n a r et e mp o r . Qu i s q u en i b h l e o , t i n c i d u n t s i t a me t u l l a mc o r p e rs e d , t e mp u sn o ne r o s . Vi v a mu sp o s u e r ec o mmo d ol i g u l a , e t p u l v i n a rn u n c . Ma e c e n a sp e l l e n t e s q u el e c t u st o r t o r , q u i se u i s mo de s t f e u g i a t e g e t .
Ri ghtEy e 0. 00/0. 00x1 80
I st h ep a t i e n t we a r i n gl o wo rhi ghADD l e n s e s ? Ch o o s et h eo n et h a t fi t sy o u rn e e d s :
L o r e mi p s u md o l o rs i t a me t , c o n s e c t e t u ra d i p i s c i n ge l i t . Pr a e s e n t f e r me n t u mma s s at r i s t i q u ea l i q u e t t r i s t i q u e . I n t e r d u m e t ma l e s u a d af a me sa ca n t ei p s u mp r i mi si nf a u c i b u s . Du i s r u t r u mi p s u mo r n a r eu r n ac o n g u e , v e l f r i n g i l l al i b e r op r e t i u m. Ut p o r t an o nl a c u sq u i se u i s mo d . Ma u r i so r n a r ei mp e r d i e t j u s t o c o n s e q u a t mo l l i s . S u s p e n d i s s et e mp u sp u r u su t v o l u t p a t p o r t a . Nu l l as i t a me t l o r e mt u r p i s . I n t e g e rma t t i sd u i e g e t n i s i a d i p i s c i n g , n e cv e n e n a t i sn i s l i mp e r d i e t . Al i q u a mt e mp o rv i t a es e mq u i s t i n c i d u n t .
Pu r e V i s i o n ®2 f o r P r e s b y o p i a Et i a ml i g u l ae r o s , u l t r i c i e ss e dn e q u ea c , p l a c e r a t mo l e s t i e
Lef tEy e 0. 00/0. 00x1 80 Doc s
L o r e mi p s u md o l o rs i t a me t , c o n s e c t e t u ra d i p i s c i n ge l i t . Pr a e s e n t f e r me n t u mma s s at r i s t i q u ea l i q u e t t r i s t i q u e . I n t e r d u m e t ma l e s u a d af a me sa ca n t ei p s u mp r i mi si nf a u c i b u s . Du i s r u t r u mi p s u mo r n a r eu r n ac o n g u e , v e l f r i n g i l l al i b e r op r e t i u m. Ut p o r t an o nl a c u sq u i se u i s mo d . Ma u r i so r n a r ei mp e r d i e t j u s t o c o n s e q u a t mo l l i s . S u s p e n d i s s et e mp u sp u r u su t v o l u t p a t p o r t a . Nu l l as i t a me t l o r e mt u r p i s . I n t e g e rma t t i sd u i e g e t n i s i a d i p i s c i n g , n e cv e n e n a t i sn i s l i mp e r d i e t . Al i q u a mt e mp o rv i t a es e mq u i s t i n c i d u n t .
Et i a ml i g u l ae r o s , u l t r i c i e ss e dn e q u ea c , p l a c e r a t mo l e s t i e q u a m. Pr o i ni dt i n c i d u n t mi . Cu r a b i t u rg r a v i d ai p s u me l i t , e g e t e u i s mo do r c i c o n s e q u a t a t . P e l l e n t e s q u ev e l u l l a mc o r p e rl i g u l a . Ut s o d a l e ss e mv e l l a c u sv a r i u si mp e r d i e t . S e ds e dma g n af e l i s . Cu r a b i t u rp o s u e r ee g e s t a sma s s ao r n a r et e mp o r . Qu i s q u en i b h l e o , t i n c i d u n t s i t a me t u l l a mc o r p e rs e d , t e mp u sn o ne r o s . Vi v a mu sp o s u e r ec o mmo d ol i g u l a , e t p u l v i n a rn u n c . Ma e c e n a sp e l l e n t e s q u el e c t u st o r t o r , q u i se u i s mo de s t f e u g i a t e g e t .
Fi r s tOpt i on
Ca l c ul a t e
I nf or ma t i on
Fkh[L_i_ed ( \eh Fh[iXoef_W$ 7ff Z[i_]d ceYakfi Xo Fkcf d :_n_jWb
?d\e l_[m
,
H[ikbji l_[m
L_Z[e l_[m +
-
9WbYkbWjeh
8WYa
?d\ehcWj_ed Beh[c _fikc Zebeh i_j Wc[j" Yedi[Yj[jkh WZ_f_iY_d] [b_j$ FhW[i[dj \[hc[djkc cWiiW jh_ij_gk[ Wb_gk[j jh_ij_gk[$ ?dj[hZkc [j cWb[ikWZW \Wc[i WY Wdj[ _fikc fh_c_i _d \WkY_Xki$ :k_i hkjhkc _fikc ehdWh[ khdW Yed]k[" l[b \h_d]_bbW b_X[he fh[j_kc$ Kj fehjW ded bWYki gk_i [k_iceZ$ CWkh_i ehdWh[ _cf[hZ_[j `kije Yedi[gkWj cebb_i$ Ikif[dZ_ii[ j[cfki fkhki kj lebkjfWj fehjW$ DkbbW i_j Wc[j beh[c jkhf_i$ ?dj[][h cWjj_i Zk_ [][j d_i_ WZ_f_iY# _d]" d[Y l[d[dWj_i d_ib _cf[hZ_[j$ 7b_gkWc j[cfeh l_jW[ i[c gk_i _d]" d[Y j_dY_Zkdj$
:eYi
?d\e
;j_Wc b_]kbW [hei" kbjh_Y_[i i[Z d[gk[ WY" fbWY[hWj ceb[ij_[ gkWc$ Fhe_d _Z j_dY_Zkdj c_$ 9khWX_jkh ]hWl_ZW _fikc [b_j" [][j [k_iceZ ehY_ Yedi[gkWj Wj$ F[bb[dj[igk[ l[b kbbWcYehf[h b_]kbW$ Kj ieZWb[i i[c l[b bWYki lWh_ki _cf[hZ_[j$ I[Z i[Z cW]dW \[b_i$ 9khWX_jkh feik[h[ [][ijWi cWiiW ehdWh[ j[cfeh$ Gk_igk[ d_X^ b[e" j_dY_Zkdj i_j Wc[j kbbWcYehf[h i[Z" j[cfki ded [hei$ L_lW# cki feik[h[ YecceZe b_]kbW" [j fkbl_dWh dkdY$ CW[Y[dWi f[b# b[dj[igk[ b[Yjki jehjeh" gk_i [k_iceZ [ij \[k]_Wj [][j$
9WbYkbWj[
Õ V R (
I_d]b[ ZeYkc[dj l_[m * (
:eYkc[dji IfbWi^ iYh[[d
) '