Multipurpose Schemes MHyLab
Mini-Hydraulics Laboratory CH-1354 Montcherand
Aline Choulot Lausanne, 30 June 2005
03/08/2005
1
Table of contents I.
Drinking-water SHP (Small Hydropower Plant) II. Wastewater SHP III. How to succeed a SHP project on water networks? IV. Looking for potentials
03/08/2005
2
Different types of SHP y On water streams y On water networks: y y y y
Drinking water Runoff water wastewater (row and treated) Irrigation water
Excess pressure of adduction water networks can be used to generate energy 03/08/2005
3
Advantages of the turbining on water networks y Existing infrastructures (pipes, water chamber, head water basin‌) y No supplementary negative impacts on environment y Limited investment for a SHP setting y Simpler administrative procedures 03/08/2005
4
I. Drinking-water SHP
03/08/2005
5
Drinking water turbining y To replace pressure-breakers y Without any impacts on water quality: y Turbine stations similar to pumping ones y Precautions: y Stainless steel y No contact between water / grease (no oil-control device, centrifugal seal on the shaft, ‌)
03/08/2005
6
Pumping station
Turbining station
Inlet valve
yes
yes
Discharge regulation device
no
yes
Runner linked to a rotating shaft
yes
yes
Shaft joints Casing and runner in contact with water Roller bearings greased for life Electrical machine Electrical boxes Medium voltage / high voltage transformer Usual building materials of the hydraulic machine Automatic by pass Water access 03/08/2005
yes yes
yes yes
yes
yes
yes (engine)
yes (generator)
yes
yes
Yes, if electrical power is higher than a few tens of kW
Yes, if electrical power is higher than a few tens of kW
Cast, black steel, stainless steel, bronze
Cast, black steel, stainless steel, bronze
no
yes
Disassembly necessary
Disassembly necessary
7
La Rasse SHP (1) (St-Maurice & Evionnaz, Valais, CH) Drinking-water SHP: 1 Pelton, vertical axis 2 nozzles First starting up: Gross head: Max. discharge: Max. electrical output: Annual production: Technical design: Constructor:
03/08/2005
1997 510 m 180 l/s 755 kW 2.1 GWh/year MHyLab GASA SA (CH)
8
La Rasse SHP (2) Economics ¾ Annual production: 2.1 GWh ¾ Total investment: CHF 1'380'000.(~ euros 920'000.-) ¾ Interest rate: 4% ¾ Pay back period: ¾ civil engineering: 40 years
Hydraulic bucket's profile designed by MHyLab
03/08/2005
¾ electro mechanics: 25 years ¾ Cost price: 0.04 CHF /kWh (~ 0.027 euro /kWh)
9
La Rasse SHP (3)
A contribution to air protection y Production: 2.1 GWh /year y Reduction of 25 tonnes of CO2 emissions considering the Swiss grid production (12 tonnes /GWh) y Reduction of 1'010 tonnes of CO2 emissions considering the European grid production (480 tonnes /GWh)
03/08/2005
10
La Zour SHP (Savièse, Valais, CH) Drinking-water SHP: 1 Pelton, vertical axis, 3 nozzles First starting up: Gross head: Max. discharge: Max. electrical output: Annual production: Technical design: Constructor: 03/08/2005
2004 217 m 300 l/s 465 kW 1.8 GWh/year MHyLab GASA SA (CH) 11
II. Wastewater SHP
03/08/2005
12
Screenig & decanting station
Wastewater turbining before the treatment station Wastewater treatment station
WWTP Wastewater treatment station
Wastewater turbining after the treatment station Turbining station
WWTP
Turbining station 03/08/2005
13
SHPs before and after the WWTP: Amman city, As Samra WWTP (Jordan) (1)
Project: Suez Group & Ondéon Degrémont (Fr) Engineering: MHyLab
General view of the process area 03/08/2005
14
As Samra SHPs (2) Row-water SHP:
Treated-water SHP:
2 Pelton, vertical axis 5 nozzles
2 Francis, vertical axis
First starting up: 2006 Gross head: 103 m Max. discharge: 2.5 m3/s Max. electrical output: 770 kW Annual production: 12.3 GWh/year
03/08/2005
First starting up: 2006 Gross head: 48 m Installation discharge: 4.6 m3/s Maximal electrical output: 752 kW Annual production: 8.6 GWh/year 15
SHP before wastewater treatment plant- Ch창ble SHP (CH) (1) y Wastewater from Verbier tourist station turbined before being treated. y With a screening station before the penstock inlet.
03/08/2005
16
SHP before WWTP – Le Châble SHP (2) Row- wastewater SHP: 1 Pelton, horizontal axis, 2 nozzles First starting up: 1994 gross head: 447 m Max. discharge: 240 l/s Max. electrical output: 665 kW Annual production: 1.13 GWh/year
03/08/2005
17
SHP on treated wastewater la Douve I SHP (Leysin, Vaud, CH) (1) y Water aeration before being thrown out in the river. y Solution to the dilution problem: the treated wastewater outflow was going in a creek with a lowdischarge
03/08/2005
18
La Douve I SHP (2) (Leysin, Vaud, CH) Treated-water SHP: 1 Pelton, vertical axis, 2 nozzles First starting up: Capacity increase: Gross head: Max. discharge: Max. electrical output: Annual production: Technical design: Constructor:
03/08/2005
1989 2000 545 m 80 l/s 430 kW 2.15 GWh/year MHyLab GASA SA (CH)
19
Turbines on water networks designed with MHyLab's technique Cumulated electrical output from 1997 to 2004 (kW) 4'500
4'000
Electrical output (kW)
3'500
3'000
Switzerland: 19 installations = 9'800 kW Annual production = 18'000'000 kWh
2'500
2'000
1'500
1'000
500
0 1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
years
03/08/2005
20
III. How to succeed a SHP project on water networks
03/08/2005
21
Conditions to project's success y Good knowledge of the water networks: y Available discharges, hydrology? otherwise: daily measures on 12 months y Heads? y Existing infrastructures?
03/08/2005
y Adapted dimensioning of the penstock so as to limit head losses (penstock efficiency) y Appropriate choice of equipments thanks : y Construction simplicity y High & guaranteed efficiency y Max. reliability 22
Penstock dimensioning 20 % of diameter increase = 60 % of head losses decrease Penstock in a water network Small diameter for high head losses
Penstock for turbining
y Pressure that has to be reduced y Low cost y Setting of pressurebreakers
y Max. power for a high production y Optimal turbine operation (low pressure variation vs discharge) y High cost, but amortized by the production gain (technical & economic study)
03/08/2005
Big diameter for low head losses
23
Subsides • Site assessment: 2'000 CHF (~ 1'340 euros) for an at-least 3'000 CHF (~ 2'000 euros) study • Feasibility studies: 6'000 CHF (~ 4'000 euros) to 9'000 CHF (~ 6'000 euros) • Other example of subsides to communes: in 2005, for the 9 first answers: a site assessment of their water networks for free
03/08/2005
24
III. Looking for potentials
03/08/2005
25
MHyLab's inventory of potentials in Valais (CH) (2003)
62 studied sites y y y y
03/08/2005
55 on drinking water 5 on wastewater 2 combining drinking & treated waters 7 sites considered as variants
26
Electrical output
Electrical production
y y y y y
y y y y y
< 21 kW : 30 21 – 40 kW : 14 41 - 80 kW : 14 81 – 120 kW : 8 > 121 kW : 3
Total output : 3 MW with 2 MW with a cost lower than 0.12 CHF/kWh (0.08 euros/kWh)
03/08/2005
< 100 MWh : 101 – 300 MWh : 301 - 500 MWh : 501 – 800 MWh : > 801 MWh :
12 24 19 10 4
Total production : 14 GWh/an with 10 GWh with a cost lower than 0.12 CHF/kWh (0.08 euros/kWh)
27
Conclusions • Indigenous, renewable energy
• Positive impacts on environment
• Efficient available techniques, still improved so as notably to reduce cost
• A low grey-energy amortization
• Isolated production
• Financial opportunity for communes
• Simplified administrative procedures • Affordable equipments • Long life
• An interesting remaining potential in the industrialised countries as in the emerging ones
• Local construction 03/08/2005
28
Appendices
03/08/2005
29
Types d'exploitation y La collectivité est propriétaire et exploite la petite centrale y La collectivité est propriétaire de la petite centrale et confie son exploitation à un tiers. y Un tiers construit et exploite la centrale et la transmet à la collectivité après un certain temps y La collectivité accorde l'utilisation du droit d'eau à un tiers contre paiement d'une redevance 03/08/2005
30
Hydraulic profile
03/08/2005
31
III. Bases théoriques de la petite hydroélectricité et technique MHyLab
03/08/2005
32
MHyLab - Domaine de recherche sur les mini-turbines 1000.0
500.0 Pelton
100.0
Diagonale
10.0
Axiale
H (m)
50.0
5.0
Pico + TBCh
1.0 0.01 03/08/2005
0.05 0.10
0.50 1.00 TBCh Pico
5.00 10.00
Q (m3/s) 33
MHyLab - Domaine de recherche sur les mini-turbines 1000.0
Pelton: turbine Ă action, haute chute
500.0 Pelton
100.0
Diagonale
10.0
Axiale
H (m)
50.0
5.0
Pico + TBCh
1.0 0.01
03/08/2005
0.05 0.10
0.50 1.00 TBCh Pico
5.00 10.00
Q (m3/s)
34
MHyLab - Domaine de recherche sur les mini-turbines 1000.0
Kaplan: turbine Ă rĂŠaction, basse chute
500.0 Pelton
100.0
Diagonale
10.0
Axiale
H (m)
50.0
5.0
Pico + TBCh
1.0 0.01
03/08/2005
0.05 0.10
0.50 1.00 TBCh Pico
5.00 10.00
Q (m3/s) 35
MHyLab - Domaine de recherche sur les mini-turbines 1000.0
Kaplan: turbine Ă rĂŠaction, basse chute
500.0 Pelton
100.0
Diagonale
10.0
Axiale
H (m)
50.0
5.0
Pico + TBCh
1.0 0.01
03/08/2005
0.05 0.10
0.50 1.00 TBCh Pico
5.00 10.00
Q (m3/s) 36
Stand d'essais y Essais: y y y y
De rendement D'effort sur les pales D'emballement De cavitation
y Variantes: y y y y y y
03/08/2005
Nombre de pales Ouverture des pales Ouverture de distributeur Chute DĂŠbit Hauteur d'implantation (cavitation)
37
Projets de dĂŠveloppement Vanne-batardeau (tĂŞte d'eau)
Niveau amont constant
DZ = 2,0 m
Niveau minimum
DZ = 4,0 m
Niveau minimum
Turbine diagonale 03/08/2005
Pico turbine
PICO-TURBINE De = 300 mm 38
Puissance d'un aménagement
Puissance électrique : P = ρ ⋅ Q ⋅ gΔZ ⋅ ηglobal
Rendement : ηconduite η turbine ηgénératrice
03/08/2005
39
Turbine A8 modèle
03/08/2005
40
Turbine de St-Bueil Conduite D = 1'100
Vanne D = 1'100
Z3 - Niveau aval
2
1
Z2; p2; v2
Z1; p1; v1
De = 580
H3
Générateur N' = 1'000 t/min
Croquis de principe sans échelle. Pour le dimensionnement géométrique, voir le dessin IA-0015-0A
03/08/2005
41
Turbine de St-Bueil
03/08/2005
42
Turbines construites selon la technique MHyLab Puissances cumulées de 1997 à 2004 (kW) 10'000 9'000 8'000
Puissances (kW)
7'000 6'000
Suisse + étranger : 31 installations = 9'500 kW Production annuelle = 47'500'000 kWh
5'000 4'000 3'000 2'000 1'000 0 1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
Années
03/08/2005
43
Les différents types de turbines Turbines à réaction
Turbine Kaplan
03/08/2005
Turbine Bulbe
Turbines Francis
44
ϕ=0.380
Essai de cavitation
ψ=0.614 σ=0.50
Pale originale
03/08/2005
Pale modifiée
45
Impacts de la cavitation
03/08/2005
46