Finding the Balance: Climate Change, Carbon Cycling and the Amazon The Amazon region holds great interest to climate scientists, because large amounts of CO2 enter and exit the atmosphere here, with strong impacts on the climate system. Now researchers in the ASICA project aim to gain a more precise understanding of the extent of CO2 uptake by the Amazon rainforest, as Professor Wouter Peters explains The Amazonian region
has been affected by a number of serious droughts since the turn of the century, which affected the amount of CO2 that the rainforest removed from the atmosphere. Normally, the Amazon region acts as a net sink of carbon, as Professor Wouter Peters explains. “In normal years the Amazon rainforest takes up a lot of CO2 through photosynthesis, as it’s an extremely large, green area with a lot of plants, yet it also releases a lot of CO2 mainly through wildfires. Overall, it removes a little bit of CO2 from the atmosphere,” he outlines. However, the region experienced serious droughts in both 2005 and 2010, and 2015 as well, which proved highly disruptive in these terms. “In 2010 we saw that the influence of the drought on vegetation was really turning the Amazon from what is normally a sink of CO2 to being a source of CO2,” says Professor Peters. This holds significant implications in terms of our understanding of the climate and how it is likely to evolve in future. While it is thought the Amazon region has been acting as a carbon sink for a fairly long period, the records in this area only extend back around 10- 15 years; now researchers in the ASICA project are gathering more atmospheric data. “We’re collecting air samples from light aircraft flying over the area,” explains Professor Peters, ASICA’s Principal Investigator. These samples are quite wellmixed. “Motion in the atmosphere has brought signals from the surface into a very deep layer of the atmosphere,” says Professor Peters. “So we’re not just measuring at the leaf, or over the head of the individual tree – we’re really sampling a very large area. We call this the integrating capacity of aircraft measurements.”
measurements, to measure different processes going on inside trees and leaves,” he says. The challenge is to build a deeper understanding of what’s happening on those scales and connect it with the wider picture in the Amazon as a whole. “The idea is that the behaviour of this one large area, of a million square kilometres, is in the end what drives CO2 in terms of climate. This is the climate signal that we need to understand and to simulate,” continues Professor Peters. This is a complex challenge, even in areas
challenging work. “There’s not a lot of CO2 in this air to begin with. In this programme we specifically try to measure the stable isotopes of CO2 – 13C, 17O and 18O – which are much, much less abundant,” says Professor Peters. These isotopes are also very tricky to handle. They’re a little heavier than normal CO2, which means that they tend to stick to things, so Professor Peters says a lot of care is required when collecting the samples. “You have to be really careful when collecting this
In normal years the Amazon rainforest takes up a lot of CO2 through photosynthesis, as it’s an extremely large, green area with a lot of plants, yet it also releases a lot of CO2. Overall, it removes a little bit of CO2 from the atmosphere where there are well-established atmospheric monitoring networks. ASICA is playing a pioneering role in this respect, with light aircraft used in the project to gather samples at different altitudes, up to around 6,000 metres. “There is a micro-computer on the aircraft, which we have programmed in the lab to fill twelve flasks at different levels in the atmosphere,” outlines Professor Peters. The pilot follows a pre-programmed schedule, gathering samples from different altitudes, which are then sent to a laboratory in Brazil for measurement and analysis; this is technically
air to make sure that you don’t come into contact with certain surfaces like liquid water, and that you don’t have pressure gradients,” he explains. It is also important to consider the overall composition of the air samples when looking to measure stable isotopes. “One of the biggest challenges we’ve been able to solve in this programme is getting rid of water vapour, which is very abundant in the tropical atmosphere. It completely destroys the signature of the oxygen isotopes that we’re interested in, the 17O and 18O isotopes in the CO2 molecule,” continues Professor Peters.
The exchange of CO₂ and its stable isotopes during uptake by leafs. When passing through small openings called ‘stomata’ the ratio of 13C, 18O, and 17O in CO₂ change by a measurable amount. ASICA aims to measure and use this signal to estimate photosynthesis over the rain forest.
Data gathering The data itself is being gathered from four sites across the Amazon region. This data is complemented by ground-based measurements, from which Professor Peters and his colleagues in the project can then look to build a more complete picture. “People on the ground are looking at specific eco-systems, or plots of trees. They’ve been monitoring them over long periods and doing very intricate
40
EU Research