The stunning Atoms for Peace galaxy was given its nickname due to its superficial resemblance to an atomic nucleus, surrounded by the loops of orbiting electrons. “Atoms for Peace” was the title of a speech given by President Eisenhower in 1953, in an attempt to rebrand nuclear power as a tool for working toward global peace. Somewhat ironically this galaxy has had anything but a peaceful past — it was formed in a catastrophic merger between two smaller galaxies nearly 1 Gyr ago. Massive star clusters were formed in the merger. Credit: NASA & ESA, Acknowledgement: Judy Schmidt (Geckzilla)
Understanding the connection between galaxies and globular clusters Globular clusters can be found around almost all galaxies, yet questions remain about their formation and evolution and how they relate to their host galaxies. Recently, it has been found that the stars within globular clusters show chemical anomalies, not found in stars outside clusters. We spoke to Professor Nate Bastian about the Multi-Pops project’s work in studying globular clusters, which could lead to new insights into how galaxies are assembled A type of
star cluster, globular clusters can often be observed in the night sky, and continued study of them could lead to new insights into the formation of galaxies. For around the past ten years, Professor Nate Bastian and his colleagues have been studying the formation and evolution of these clusters in nearby galaxies. “That includes the Milky Way, but also galaxies where we cannot resolve individual clusters into their constituent stars. In the local universe we can see, in detail, things like how they’re forming, how their properties depend on the local conditions, and how long they live,” he says. Globular clusters are formed fairly rapidly by astronomical standards, over a period of around one or two million years, the result of dense gases being brought together in large molecular clouds. “The star clusters that are formed could be very low-mass objects – they might have just a few hundred stars within them – or they could host 10 million stars, which would be a big globular cluster. The size of the cluster depends on the cloud properties themselves,” explains Professor Bastian.
86
E-MOSAICS Researchers in the Multi-Pops project, along with LJMU colleague Dr. Rob Crain and Dr. Diederik Kruijssen and his group in Heidelberg, now aim to use the information that has been gained about globular clusters to build a deeper understanding of their formation
that are forming today are essentially the same as the clusters that formed in the early universe,” says Professor Bastian. This is by no means fully established as fact in the field, yet the results of research so far broadly bear out the initial assumption. “With E-MOSAICS, we have found that we are able to broadly
With E-MOSAICS, it is now possible to trace back the globular clusters to the extreme conditions under which they formed, and to see how globular cluster populations are shaped by the growth of their host galaxies and evolution. “We’ve taken what we’ve learned from these earlier studies, and used it to guide the development of a new suite of simulations called E-MOSAICS (Modelling Star Cluster Population Assembly in Cosmological Simulations within EAGLE). These simulations incorporate Kruijssen’s ‘MOSAICS’ model of cluster formation and evolution into the EAGLE simulations of galaxy formation, in whose development Crain played a leading role. The big leap of understanding is that the clusters
reproduce the globular cluster populations that we see today, more than 9 billion years after their formation,” continues Professor Bastian. The simulations show that the peak of globular cluster formation occurred between 10 and 11.5 billion years ago, which was also the peak time at which stars formed in the universe, indicating that the formation of globular clusters is related to the formation of stars. “Our model suggests that globular clusters are not in fact particularly special,
EU Research