QuantumPuzzle

Page 1

Ultra-low temperatures to understand quantum criticality The recent discovery of a new energy scale which vanishes at the quantum critical point of a heavy fermion material calls for entirely new theoretical approaches, and for advanced experimental studies of matter at extremely low temperatures. Professor Silke BühlerPaschen of the QuantumPuzzle project explains how her research will advance the field At absolute zero in temperature matter can reach a highly exotic state where the system itself is uncertain about the next stage in its development, and undergoes strong collective quantum fluctuations as a result. These fluctuations are described by quantum criticality, an area that forms the primary research focus of the QuantumPuzzle project, an ERC-backed initiative based at the Institute of Solid State Physics at Vienna University of Technology. “We aim to advance the field of quantum criticality in strongly correlated electron systems, which are characterized by low-lying and frequently competing energy scales,” says Professor Silke Bühler-Paschen, the project’s Principal Investigator. The recent discovery of a new energy scale, which vanishes at the quantum critical point of a heavy fermion material, cannot be explained by the standard theory of quantum phase transitions; therefore entirely new experimental and theoretical approaches are needed to advance the field, a goal which QuantumPuzzle is working towards. The five-year project started in 2009 and is run by an international team of more than 10 Post-Docs and PhD students, supported by experienced scientists at Vienna University of Technology and from abroad. QuantumPuzzle’s primary focus is on pursuing experiments into the nature of the new low-lying energy scale that has been identified; the project is looking mainly at heavy fermion compounds, the properties of which have made it an attractive field of investigation for numerous groups worldwide. “The physical 62

properties of heavy fermion compounds are governed by very low energy scales,” explains Professor Bühler-Paschen. “This allows researchers to deliberately induce changes between different ground states by varying external parameters such as pressure or magnetic field. This has led to impressive progress being made in the field in recent years.”

Experimental challenges “In order to study zero-temperature phase transitions – called quantum phase transitions – other, non-thermal parameters are needed in addition to low temperatures,” explains Professor BühlerPaschen. “Physical properties must then be studied as a function of at least two parameters. In QuantumPuzzle we are working on several experiments that have

not been used before to characterize quantum criticality. For instance, in the newly founded Vienna Micro-Kelvin Laboratory, which is equipped with a powerful nuclear de-magnetization cryostat, samples shall be cooled down to the micro-Kelvin regime, which is about two orders of magnitude lower than used in most state-of-the-art dilution refrigerators.” The project is using several other highly sophisticated techniques to characterize quantum criticality, which could lead to significant advances in the field. For instance, microwave experiments shall be used to study the dynamic behaviour near the quantum critical point, which Professor Bühler-Paschen believes will reveal the microscopic meaning of the mysterious new energy scale. “Such experiments are extremely challenging. In order to keep the sample at very low temperatures during a measurement, only very low excitations (e.g., electrical currents) may be used,” she explains. “The tiny measurement signals (e.g., electrical voltages) must then be detected to a very high level of precision.”

Quantum critical behaviour in different materials Across the new energy scale (red line) conduction electrons and spins get successively entangled, leading to full screening of the spins at high fields. At zero temperature, at the quantum critical point, the crossover is abrupt and is experimentally seen as a jump in the Fermi volume

Studying quantum critical behaviour usually goes hand in hand with identifying the types of systems in which it occurs. As such Professor Bühler-Paschen says it is important to study various different materials, and ultimately even different classes of materials, to gain an accurate picture. “Quantum critical behaviour has

EU Research


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.