BUILDING STRUCTURE EVELYN SINUGROHO INDIVIDUAL

Page 1

Individual components Lim Choon Wah

1

2

4

5

4A

3

6

4B

7

5A

8

9

10

7C 19700

2000

600 1200 1300

500

1200 900

1500

3600

600 1800

1500

3000

1800

I

1700

H 700

G

1800

Ff F

1650

Void

3200

D

1300

17200

550

Ee

E

C/3-5

C3 2500

C

C-B / 4

B 2000

B4

B / 4-5

D-A/5

B-A/ 4

A A4

A/ 4-5

A5

Structural First Floor Plan I had assigned to a. To analysis minimum 6 beams (each beam must subject to different types of load, i.e. UDL from one or more than one slabs, beam with point load(s) or combination of UDL and PL) 1) C-B/4 is UDL type C

B

3) B-A / 4 is UDL type B

5) C / 3-5 is combination type

A

5

6 C4

2) B / 4-5 is UDL type 4

5

4) A / 4-5 is UDL type 4

6) D-A / 5 combination type

5

5

7 5C 5B

b. To analysis minimum 4 columns by using tributary method (from roof to foundation level) 1) C3 2) B4 3) A4

4) A5

Roof Floor

Roof Floor

Roof Floor

Roof Floor

First Floor

First Floor

First Floor

First Floor

Ground Floor

Ground Floor

Ground Floor

Ground Floor

Evelyn Sinugroho 0318217


Beam Analysis Calculation First Floor Beam, C-B/4 1) Carry Self Weight- Dead Load 2) Slab Dead Load & Live Load > C-B / 4-5 3) Brick Wall - Dead Load

-Total Dead Load Diagram C

B 2.50m

8.55kN/m -Dead load on Brick Wall Brick Wall Weight = Wall height x thickness x density Brick Wall Load

= 8.55kN/m

3kN/m -Dead load on Slab C-B / 4-5 (two way slab) Load is transferred to beam C-B / 4-5 in a triangular form. Convert the triangle load into UDL Dead Load from Slab C-B / 4-5 = Dead load on slab x (Lx/2) x 32

DL from Slab C-B/4-5

2 3

= 3kN/m 1.08kN/m

-Dead load on Concrete Beam Beam Self Weight = Beam size x concrete density

Beam Self Weight

= 1.08kN/m 12.63kN/m

-Total Dead load Total for beam C-B / 4-5 = 8.55kN/m + 3kN/m + 1.08kN/m = 12.63kN/m

Total Dead load

-Total Live Load Diagram C

B 2.50m

1.25kN/m

LL from Slab C-B/ 4-5

-Live load on Slab C-B / 4-5 (two way slab) Load is transferred to beam C-B / 4-5 in a triangular form. Convert the triangle load into UDL Live Load Load from Slab C-B / 4-5 = Live load on slab x (Lx/2) 2 3

= 1.25kN/m

Evelyn Sinugroho 0318217


-Total Ultimate Load Diagram B

C 2.50m

17.68kN/m -Total Ultimate Dead load Apply factor of 1.4 to dead load Total Ultimate Dead Load

Ultimate Dead load for beam C-B / 4 = 12.63kN/m x 1.4 = 17.68kN/m 2.0kN/m

-Total Ultimate Live load Apply factor of 1.6 to live load Ultimate Live load for beam C-B / 4 = 1.25kN/m x 1.6 = 2.0kN/m

Total Ultimate Live Load

19.68kN/m -Total Ultimate load Combining the ultimate dead load and ultimate live load Total Ultimate Load

Evelyn Sinugroho 0318217

Ultimate load for beam C-B / 4 = 17.68kN/m + 2.0kN/m = 19.68kN/m


-Total Live Load Diagram

C

B

19.68kN/m

2.50m

19.68kN/m

Load Diagram C

B 2.50m

RBy = 24.6kN

RCy = 24.6kN

= -2.50m(RBy) + 19.68kN/m(2.50m)(2.50m/2) +2.5mRBy = 61.50kN/m RBy = 24.6kN

= RCy + RBy - 19.68kN/m(2.5m) -RCy = -24.6kN RCy= 24.6kN

Shear Force Diagram At point C there is a 24.6kN force acting upwards (+ve)

24.6kN

(+) 0kN

0kN

C

0kN (-)

B

-24.6kN 2.50m

At middle of the beam there were no point load. so UDL was converted to PL only for calculation of reaction forces. 19.68kN/m x 1.25 = 24.6kN 24.6kN - 24.6kN = 0kN At point B there is a 24.6kN force acting downwards (-ve) 0kN-24.6kN = -24.6kN

15.38kN-M

Bending Moment Diagram At point C there is only a line so no area = 0kN (+)

0kN-m

0kN C

B 2.50m

Evelyn Sinugroho 0318217

At middle of the beam = Area of triangle between C and middle = 24.6kN(1.25m)(0.5) = 15.38kN-m At point B, = Area of triangle (+ve) + area of triangle (-ve) = 15.38kN + -24.6kN(1.25m)(0.5) = 0kN-m


Beam Analysis Calculation First Floor Beam, B-A/4 1) Carry Self Weight- Dead Load 2) Slab Dead Load & Live Load > B-A / 4-5 3) Brick Wall - Dead Load

-Total Dead Load Diagram B

A 2.00m

8.55kN/m -Dead load on Brick Wall Brick Wall Weight = Wall height x thickness x density Brick Wall Load

= 8.55kN/m

2.4kN/m -Dead load on Slab B-A/4-5 (two way slab) Load is transferred to beam B-A / 4-5 in a triangular form. Convert the triangle load into UDL Dead Load from Slab B-A / 4-5 = Dead load on slab x (Lx/2) x 23

DL from Slab B-A/4-5

2 3

= 2.4kN/m 1.08kN/m

-Dead load on Concrete Beam Beam Self Weight = Beam size x concrete density

Beam Self Weight

= 1.08kN/m 12.03kN/m

-Total Dead load Total for beam B-A / 4-5 = 8.55kN/m + 2.4kN/m + 1.08kN/m = 12.03kN/m

Total Dead load

-Total Live Load Diagram B

A 2.00m

1.00kN/m

LL from Slab B-A/ 4-5

-Live load on Slab B-A/ 4-5 (two way slab) Load is transferred to beam B-A / 4-5 in a triangular form. Convert the triangle load into UDL Live Load Load from Slab B-A / 4-5 = Live load on slab x (Lx/2) 2 3

= 1.00kN/m

Evelyn Sinugroho 0318217


-Total Ultimate Load Diagram B

A 2.00m

16.84kN/m -Total Ultimate Dead load Apply factor of 1.4 to dead load Total Ultimate Dead Load

Ultimate Dead load for beam B-A / 4 = 12.03kN/m x 1.4 = 16.84kN/m 1.6kN/m

-Total Ultimate Live load Apply factor of 1.6 to live load Ultimate Live load for beam B-A / 4 = 1.00kN/m x 1.6 = 1.6kN/m

Total Ultimate Live Load

18.44kN/m -Total Ultimate load Combining the ultimate dead load and ultimate live load Total Ultimate Load

Evelyn Sinugroho 0318217

Ultimate load for beam B-A / 4 = 16.84kN/m + 1.6kN/m = 18.44kN/m


-Total Live Load Diagram

B

A

18.44kN/m

2.00m

18.44kN/m

Load Diagram B

A 2.00m

RAy = 18.44kN

RBy = 18.44kN

= -2.00m(RAy) + 18.44kN/m(2.00m)(2.00m/2) +2.00mRAy = 36.88kN/m RAy = 18.44kN

= RBy + RAy - 18.44kN/m(2.0m) -RBy = -18.44kN RBy= 18.44kN

Shear Force Diagram At point C there is a 18.44kN force acting upwards (+ve)

18.44kN

(+) 0kN

0kN

B

0kN (-)

A

-18.44kN 2.00m

At middle of the beam there were no point load. so UDL was converted to PL only for calculation of reaction forces. 18.44kN/m x 1.00 = 18.44kN 18.44kN - 18.44kN = 0kN At point A there is a 18.44kN force acting downwards (-ve) 0kN-18.44kN = -18.44kN

9.22kN-M

Bending Moment Diagram At point B there is only a line so no area = 0kN (+)

0kN-m

0kN B

A 2.00m

Evelyn Sinugroho 0318217

At middle of the beam = Area of triangle between B and middle = 18.44kN(1.00m)(0.5) = 9.22kN-m At point A, = Area of triangle (+ve) + area of triangle (-ve) = 9.22kN + -18.44kN(1.00m)(0.5) = 0kN-m


Beam Analysis Calculation First Floor Beam, B/4-5 1) Carry Self Weight- Dead Load 2) Slab Dead Load & Live Load > C-B / 4-5 > B-A / 4-5 3) Brick Wall - Dead Load

-Total Dead Load Diagram 4

5 3.00m

4.5kN/m -Dead load on Slab C-B /4-5 (two way slab) Load is transferred to beam B / 4-5 in a trapezium form. Convert the Trapezium load into UDL Dead Load from Slab C-B / 4-5 = Dead load on slab x (Lx/2)

DL from Slab C-B/4-5

= 4.5kN/m 3.6kN/m -Dead load on Slab B-A / 4-5 (two way slab) Load is transferred to beam B / 4-5 in a trapezium form. Convert the trapezium load into UDL Dead Load from Slab B-A / 4-5 = Dead load on slab x (Lx/2)

DL from Slab B-A/4-5

= 3.6kN/m

1.08kN/m

-Dead load on Concrete Beam Beam Self Weight = Beam size x concrete density

Beam Self Weight

= 1.08kN/m 17.73kN/m

Total Dead load

Evelyn Sinugroho 0318217

-Total Dead load Total for beam B / 4-5 = 4.5kN/m + 3.6kN/m + 1.08kN/m = 9.18kN/m


-Total Live Load Diagram 4

5 3.00m

1.88kN/m

-Live load on Slab C-B / 4-5 (two way slab) Load is transferred to beam B / 4-5 in a trapezium form. Convert the trapezium load into UDL Live Load Load from Slab C-B / 4-5 = Live load on slab x (Lx/2)

LL from Slab C-B/4-5

= 1.88kN/m 1.5kN/m

-Live load on Slab B-A / 4-5 (two way slab) Load is transferred to beam B / 4.5 in a trapezium form. Convert the trapezium load into UDL Live Load from Slab B-A / 4-5 = Live load on slab x (Lx/2)

LL from Slab B-A/4-5

= 1.5kN/m

3.38kN/m -Total Live load Total for beam B / 4-5 = 1.88kN/m + 1.50kN/m = 3.38kN/m

Total Live load

-Total Ultimate Load Diagram 4

5 3.00m

24.82kN/m -Total Ultimate Dead load Apply factor of 1.4 to dead load Total Ultimate Dead Load

Ultimate Dead load for beam B / 4-5 = 9.18kN/m x 1.4 = 12.85kN/m 5.41kN/m

-Total Ultimate Live load Apply factor of 1.6 to live load Ultimate Live load for beam B / 4-5 = 3.38kN/m x 1.6 = 5.41kN/m

Total Ultimate Live Load

30.23kN/m -Total Ultimate load Combining the ultimate dead load and ultimate live load Total Ultimate Load

Evelyn Sinugroho 0318217

Ultimate load for beam B / 4-5 = 12.85kN/m + 5.41kN/m = 18.26kN/m


-Total Live Load Diagram

4

5

18.26kN/m

3.00m

18.26kN/m

Load Diagram 4

5 3.00m

R5y = 27.39kN

R4y = 27.39kN

= -3.0m(R5y) + 18.26kN/m(3.00m)(3.00m/2) +3.0mR5y = 82.17kN/m R5y = 27.39kN

= R4y + R5y - 18.26kN/m(3.0m) -R4y = -27.39kN R4y = 27.39kN

Shear Force Diagram At point 4 there is a 27.39kN force acting upwards (+ve)

27.39kN

(+) 0kN

0kN

4

0kN (-)

5

-27.39kN 3.00m

At middle of the beam there were no point load. so UDL was converted to PL only for calculation of reaction forces. 18.26kN/m x 1.50 = 27.39kN 27.39kN - 27.39kN = 0kN At point 5 there is a 27.39kN force acting downwards (-ve) 0kN-27.39kN = -27.39kN

27.39kN-M

Bending Moment Diagram At point 4 there is only a line so no area = 0kN (+)

0kN-m

0kN 4

5 3.00m

Evelyn Sinugroho 0318217

At middle of the beam = Area of triangle between 4 and middle =27.39kN(1.50m)(0.5) =20.54kN-m At point 5, = Area of triangle (+ve) + area of triangle (-ve) = 20.54kN + -27.39kN(1.50m)(0.5) = 0kN-m


Beam Analysis Calculation First Floor Beam, A/4-5 1) Carry Self Weight- Dead Load 2) Slab Dead Load & Live Load > B-A / 4-5 3) Brick Wall - Dead Load

-Total Dead Load Diagram 4

5 3.00m

8.55kN/m -Dead load on Brick Wall Brick Wall Weight = Wall height x thickness x density Brick Wall Load

= 8.55kN/m 3.6kN/m -Dead load on Slab B-A / 4-5 (two way slab) Load is transferred to beam A/ 4-5 in a trapezium form. Convert the trapezium load into UDL Dead Load from Slab B-A / 4-5 = Dead load on slab x (Lx/2)

DL from Slab B-A/4-5

= 3.6kN/m

1.08kN/m -Dead load on Concrete Beam Beam Self Weight = Beam size x concrete density

Beam Self Weight

= 1.08kN/m 17.73kN/m -Total Dead load Total for beam A / 4-5 = 8.55kN/m + 3.6kN/m + 1.08kN/m = 13.23kN/m

Total Dead load

-Total Live Load Diagram 4

5 3.00m

1.50kN/m

LL from Slab B-A/4-5

-Live load on Slab B-A / 4-5 (two way slab) Load is transferred to beam B / 4-5 in a trapezium form. Convert the trapezium load into UDL Live Load from Slab B-A / 4-5 = Live load on slab x (Lx/2) = 1.5kN/m

Evelyn Sinugroho 0318217


-Total Ultimate Load Diagram 4

5 3.00m

18.52kN/m -Total Ultimate Dead load Apply factor of 1.4 to dead load Total Ultimate Dead Load

Ultimate Dead load for beam A / 4-5 = 13.23kN/m x 1.4 = 18.52kN/m 2.4kN/m

-Total Ultimate Live load Apply factor of 1.6 to live load Ultimate Live load for beam A / 4-5 = 1.5kN/m x 1.6 = 2.4kN/m

Total Ultimate Live Load

20.92kN/m -Total Ultimate load Combining the ultimate dead load and ultimate live load Total Ultimate Load

Evelyn Sinugroho 0318217

Ultimate load for beam A / 4-5 = 18.52kN/m + 2.4kN/m = 20.92kN/m


-Total Live Load Diagram

4

5

20.92kN/m

3.00m

20.92kN/m

Load Diagram 4

5 3.00m

R5y = 31.38kN

R4y = 31.38kN

= -3.0m(R5y) + 20.92kN/m(3.00m)(3.00m/2) +3.0mR5y = 94.14kN/m R5y = 31.38kN

= R4y + R5y - 20.92kN/m(3.0m) -R4y = -31.38kN R4y = 31.38kN

Shear Force Diagram At point 4 there is a 31.38kN force acting upwards (+ve)

31.38kN

(+) 0kN

0kN

4

0kN (-)

5

-31.38kN 3.00m

At middle of the beam there were no point load. so UDL was converted to PL only for calculation of reaction forces. 20.92kN/m x 1.50 = 31.38kN 31.38kN - 31.38kN = 0kN At point 5 there is a 31.38kN force acting downwards (-ve) 0kN-31.38kN = -31.38kN

23.54kN-M

Bending Moment Diagram At point 4 there is only a line so no area = 0kN (+)

0kN-m

0kN 4

5 3.00m

Evelyn Sinugroho 0318217

At middle of the beam = Area of triangle between 4 and middle = 31.38kN(1.50m)(0.5) =23.54kN-m At point 5, = Area of triangle (+ve) + area of triangle (-ve) = 23.54kN + -31.38kN(1.50m)(0.5) = 0kN-m


Beam Analysis Calculation First Floor Beam, C / 3-5 1) Carry Self Weight- Dead Load 2) Slab Dead Load & Live Load > D-C / 3-5 > C-B / 4-5 3) Brick Wall - Dead Load

-Total Dead Load Diagram 4

3

5 3.0m

1.2m

8.55kN/m -Dead load on Brick Wall Brick Wall Weight = Wall height x thickness x density Brick Wall Load = 8.55kN/m 5.76kN/m

-Dead load on Slab D-C / 3-5 (two way slab) Load is transferred to beam C / 3-5 in a trapezium form. Convert the trapezium load into UDL Dead Load from Slab D-C/ 3-5 = Dead load on slab x (Lx/2)

DL from Slab D-C / 3-5 = 5.76kN/m

4.5kN/m

DL from Slab C-B / 4-5

-Dead load on Slab C-B / 4-5 (two way slab) Load is transferred to beam C / 3-5 in a trapezium form. Convert the trapezium load into UDL Dead Load from Slab C-B / 4-5 = Dead load on slab x (Lx/2) =4.5kN/m

1.08kN/m -Dead load on Concrete Beam Beam Self Weight = Beam size x concrete density

= 1.08kN/m

Beam Self Weight

15.39kN/m

Total Dead load

Evelyn Sinugroho 0318217

19.89kN/m

-Total Dead load Total for 3-4 = 8.55kN/m + 5.76kN/m + 1.08kN/m = 15.39kN/m Total for 4-5 = 8.55kN/m + 5.76kN/m + 4.5kN/m + 1.08kN/m = 19.89kN/m


-Total Live Load Diagram 3

5

4 1.2m

3.0m

2.4kN/m

-Live load on Slab D-C / 3-5 (two way slab) Load is transferred to beam C / 3-5 in a trapezium form. Convert the trapezium load into UDL Live Load from Slab D-C/ 3-5 = Live load on slab x (Lx/2)

LL from Slab D-C / 3-5

= 2.4kN/m

1.88kN/m -Live load on Slab C-B / 4-5 (two way slab) Load is transferred to beam C / 3-5 in a Trapezium form. Convert the trapezium load into UDL Live Load from Slab C-B / 4-5 = Live load on slab x (Lx/2)

LL from Slab C-B / 4-5

= 1.88kN/m

2.4kN/m

4.28kN/m

-Total Live load Total for 3-4 = 2.4kN/m + 0kN/m = 2.4kN/m Total for 4-5 = 2.4kN/m + 1.88kN/m = 4.28kN/m

Total Live load

-Total Ultimate Load Diagram 3

5

4 1.2m

21.55kN/m

3.0m

27.85kN/m

Total Ultimate Dead Load

-Total Ultimate Dead load Apply factor of 1.4 to dead load Ultimate Dead load for 3-4 = 15.39N/m x 1.4 = 21.55kN/m Ultimate Dead load for 4-5 = 19.89kN/m x 1.4 = 27.85kN/m

-Total Ultimate Live load Apply factor of 1.6 to live load 6.85kN/m 3.84kN/m Total Ultimate Live Load

34.7kN/m

Ultimate Live load for 3-4 = 2.4kN/m x 1.6 = 3.84kN/m Ultimate Live load for 4-5 = 4.28kN/m x 1.6 = 6.85kN/m

-Total Ultimate load Combining the ultimate dead load and ultimate live load

25.39kN/m Total Ultimate Load

Evelyn Sinugroho 0318217

Ultimate Load for 3-4 = 21.55kN/m + 3.84kN/m = 25.39kN/m Ultimate Load for 4-5 = 27.85kN/m + 6.85kN/m = 34.7kN/m


-Total Live Load Diagram 3

5

4 24.6kN 34.7kN/m

Point Load 4 = RCy of C-B / 4 = 24.6kN

25.39kN/m

1.2m

3.0m

Load Diagram 24.6kN 34.7kN/m

25.39kN/m

3

4

5

1.2m

3.0m

R5y = 78.3kN

R3y = 80.86kN

80.86kN

+4.2mR5y R5y

= -4.2m(R5y) + [25.39kN/m(1.2m)(1.2m/2)]+ 24.6kN/m(1.2m) + [34.7kN/m(3.0m)(1.2+(3.0/2))] = 328.87kN/m =78.3kN

= R3y + R5y - 24.6kN 25.39kN/m(1.2m) - 34.7kN/m(3.0m) -R3y = -80.86kN R3y=80.86kN

Shear Force Diagram At point 3 there is a 80.86kN force acting upwards (+ve) 50.39kN

(+) 25.79kN 0kN 5

0kN 3

4

0kN

UDL was converted to PL only for calculation of reaction forces 25.39kN/m x 1.2 = 30.47kN 80.86kN - 30.47kN = 50.39kN At point 4 there is a 24.6kN force acting downwards (-ve) 50.39kN - 24.6kN = 25.79kN

(-)

At point 5 there is a 104.1kN (34.7kn/m x 3m) force acting downwards (-ve) 25.79kN - 104.1kN= -78.3kN 1.2m

0.74m

2.26m 3.0m

-78.3kN

Bending Moment Diagram At point 3 there is only a line so no area = 0kN-m 88kN-M

At point 4 = Area of trapezium between 3 and 4 (80.86+50.39)(1.2)(0.5)=78.75kN-m At point 4 = Area of triangle (24.6)(0.74)(0.5)=9.102kN-m 78.75kN-m +9.102kN-m =88kN-m

(+) 0kN-m

0kN-m 3

4 1.2m

Evelyn Sinugroho 0318217

5 3.0m

At point 5, = Area of left trapezoid (+ve) and triangle (+ve) + area of right triangle (-ve) -78.3kN(2.26m)(0.5) = -88kN-m 88kN-m - 88kN-m = 0


Beam Analysis Calculation First Floor Beam, D-A/ 5 1) Carry Self Weight- Dead Load 2) Slab Dead Load & Live Load > D-A / 5-7 > D-C / 3-5 > C-B / 4-5 > B-A / 4-5 3) Brick Wall - Dead Load

-Total Dead Load Diagram D

3.2m

A

B

C

2.5m

2.0m

8.55kN/m -Dead load on Brick Wall Brick Wall Weight = Wall height x thickness x density Brick Wall Load = 8.55kN/m 10.8kN/m

-Dead load on Slab A-D /5-7 (two way slab) Load is transferred to beam 5 / A-D in a trapezoid form. Convert the trapezoid load into UDL Dead Load from Slab A-D /5-7 = Dead load on slab x (Lx/2)

DL from Slab A-D / 5-7

= 10.8kN/m

3.84kN/m

-Dead load on Slab D-C /3-5 (two way slab) Load is transferred to beam 5 / A-D in a triangular form. Convert the triangle load into UDL Dead Load from Slab D-C/ 3-5 = Dead load on slab x (Lx/2) x 2/3

DL from Slab D-C/ 3-5

= 3.84kN/m

3.00kN/m -Dead load on Slab C-B / 4-5 (two way slab) Load is transferred to beam 5 / A-D in a triangular form. Convert the triangle load into UDL Dead Load from Slab C-B / 4-5 = Dead load on slab x (Lx/2) x 2/3 x 2/3 = 3.00kN/m

DL from Slab C-B / 4-5

2.4kN/m

DL from Slab B-A / 4-5

-Dead load on Slab B-A / 4-5 (two way slab) Load is transferred to beam D-A / 5 in a triangular form. Convert the triangular load into UDL Dead Load from Slab B-A / 4-5 = Dead load on slab x (Lx/2) x 2/3 = 2.4kN/m

1.08kN/m

-Dead load on Concrete Beam Beam Self Weight = Beam size x concrete density

= 1.08kN/m

Beam Self Weight

23.43kN/m 15.72kN/m Total Dead load

Evelyn Sinugroho 0318217

22.83kN/m

-Total Dead load Total for D-C = 10.8kN/m + 3.84kN/m + 1.08kN/m = 15.72kN/m Total for C-B = 8.55kN/m + 10.8kN/m + 3.00kN/m + 1.08kN/m = 23.43kN/m Total for B-A = 8.55kN/m + 10.8kN/m +2.4kN/m + 1.08kN/m = 22.83kN/m


-Total Live Load Diagram

D 3.2m

A

B

C 2.5m

-Live load on Slab D-A /5-7 (two way slab) Load is transferred to beam D-A / 5 in a trapezoid form. Convert the trapezoid load into UDL Live Load from Slab D-A /5-7 = Live load on slab x (Lx/2)

2.0m

4.5kN/m

LL from Slab D-A / 5-7

= 4.5kN/m

-Live load on Slab D-C /3-5 (two way slab) Load is transferred to beam D-A / 5 in a triangular form. Convert the triangle load into UDL Live Load from SlabD-C / 3-5 = Live load on slab x (Lx/2) x 2/3

1.6kN/m

LL from Slab D-C/ 3-5

= 1.6kN/m

-Live load on Slab C-B / 4-5 (two way slab) Load is transferred to beam D-A / 5 in a triangular form. Convert the triangle load into UDL Live Load from Slab C-B / 4-5 = Live load on slab x (Lx/2) x 2/3 x 2/3 = 1.25kN/m

1.25kN/m

LL from Slab C-B / 4-5

-Live load on Slab B-A / 4-5 (two way slab) Load is transferred to beam D-A / 5 in a triangular form. Convert the triangular load into UDL Live Load from Slab B-A / 4-5 = Live load on slab x (Lx/2) x 2/3

1.00kN/m

LL from Slab B-A / 4-5

= 1.00kN/m

6.1kN/m

5.75kN/m

-Total Live load Total for D-C = 4.5kN/m + 1.6kN/m = 6.1kN/m Total for C-B = 4.5kN/m + 1.25kN/m = 5.75kN/m Total for B-A = 4.5kN/m + 1.0kN/m = 5.5kN/m

5.5kN/m

Total Live load

-Total Ultimate Load Diagram

D 3.2m

22.01kN/m

A

B

C 2.5m

2.0m

32.80kN/m 31.96kN/m

Total Ultimate Dead Load

9.76kN/m

9.2kN/m

8.8kN/m

-Total Ultimate Dead load Apply factor of 1.4 to dead load Ultimate Dead load for D-C = 15.72N/m x 1.4 = 22.01kN/m Ultimate Dead load for C-B = 23.43kN/m x 1.4 = 32.80kN/m Ultimate Dead load for B-A = 22.83kN/m x1.4 = 31.96kN/m -Total Ultimate Live load Apply factor of 1.6 to live load Ultimate Live load for D-C = 6.1kN/m x 1.6 = 9.76kN/m Ultimate Live load for C-B = 5.75kN/m x 1.6 = 9.2kN/m Ultimate Live load for B-A = 5.5kN/m x1.6 = 8.8kN/m

Total Ultimate Live Load

31.77kN/m

42kN/m

40.76kN/m -Total Ultimate load Combining the ultimate dead load and ultimate live load

Total Ultimate Load

Evelyn Sinugroho 0318217

Ultimate Load for 5-5A = 22.01kN/m + 9.76kN/m = 31.77kN/m Ultimate Load for 5A-6 = 32.80kN/m + 9.2kN/m = 42kN/m Ultimate Load for 6-7 = 31.96kN/m + 8.8kN/m = 40.76kN/m


-Total Live Load Diagram D

A

B

C 78.3kN

27.39kN

3.2m

2.5m

2.0m

42.0kN/m

31.77kN/m

3.2m

40.76kN/m

2.5m

Point Load C = RDy of C / 3-5 = 78.3kN Point Load B = RDy of B / 4-5 = 27.39kN

2.0m

Load Diagram 78.3kN 42.0kN/m

31.77kN/m

D RDy = 205.56kN

27.39kN

C

40.76kN/m

B

3.2m

2.5m

2.0m

A RAy = 188.32kN

= -7.7m(RAy) +[31.77kN/m(3.2m)(3.2m/2)]+ 78.3kN(3.2m) + [42.0kN/m(2.5m)(3.2+(2.5/2))] + 27.39kN(5.7m) + [40.76kN/m(2.0m)(5.7m+(2.0/2))] 7.7mRAy= 1582.77kN/m RAy = 205.56kN

= RDy + RAy - 78.3kN - 27.39kN 31.77kN/m(3.2m) - 42.0kN/m(2.5m) 40.76kN/m(2.0m) - RDy = 205.56kN - 393.87kN -RDy= -188.32kN RDy= 188.32 kN 205.56kN

Shear Force Diagram At point D there is a 205.56kN force acting upwards (+ve) 103.39kN

(+) 25.6kN 0kN

0kN D

0kN

C

B

A

(-) -79.4kN

-188.32kN 1.89m 0.61m

Evelyn Sinugroho 0318217

2.5m

At point C there is a 78.3kN force acting downwards (-ve) 103.9kN - 78.3kN = 25.59kN UDL was converted to PL only for calculation of reaction forces 42.0kN/m x 2.5m = 105kN 25.6kN - 105kN = -79.41kN

-106.79kN

3.2m

UDL was converted to PL only for calculation of reaction forces 31.77kN/m x 3.2m = 101.664kN 205.56kN - 101.66kN = 103.89kN

2.0m

At point B there is a 27.39kN force acting downwards (-ve) -79.4kN - 27.39kN = -106.79kN UDL was converted to PL only for calculation of reaction forces 40.76kN/m x 2.0m = 81.52kN -106.79kN - 81.52kN = -188.32kN


370.14kN-M

(+) 0kN-m D

C

0kN-m A

B 2.06m 0.44m

3.2m

2.5m

Bending Moment Diagram At point D there is only a line so no area = 0kN-m At point C = Area of right trapezoid between D & C (205.56+103.39)(3.2)(0.5)=362.33 kN-m

At point B = Area of 2 triangles between C & B 25.6kN(0.61m)(0.5) =7.81kN-m 79.4kN(1.89m)(0.5) = 75.03kN-m

At point A, = Area of right trapezoid (+ve) (188.32+106.79)(2)(0.5)=295.11 kN-m 362.33 + 7.81 =370.14 kN-m 75.03+295.11= 370.14 kN-m 370.14-370.14= 0 kN-m

Evelyn Sinugroho 0318217

2.0m


Column Analysis Calculation Tributary Area Method (Live Load Only) To determine 4 columns: D5 , D7C , F5 , F6 1

2

4

5

6

7

8

9

10

3 19700 600 2000

1200

3000

2400

3600

2400

1500

3000

I 1800

H 1700

G 2500

F

E D

17200

2200

1300

3200

GF C3

C 2500

GF B4

B 2000

A GF A4

GF A5

Ground Floor Plan (Showing Distribution of load from slab to column)

Column

Area

GF C3

(2.1m x 1.7m) + (0.9m x 1.19m) = 3.8m + 1.07m = 4.87m

GF B4

1.5m x 2.31m = 3.47 m

Live Load

4.87m

3.47m

GF A4

1.5m x 1.0m = 1.5m

1.5m

GFA5

[(3.31m x 1.5m) + (3m x 3.85m)] = 16.52m

16.52m

Evelyn Sinugroho 0318217


-Total Live Load Diagram 1

2

4

5

6

7

8

9

10

3 19700 600 2000

1200

3000

2400

3600

2400

1500

3000

I 1800

H 1700

G 2500

F 2200 17200

E D

1300

3200

FF C3

C 2500

FF B4

B 2000

A FF A4

FF A5

First Floor Plan (Showing Distribution of load from slab to column)

Column

Area

FF C3

(2.1m x 1.7m) + (0.9m x 1.19m) = 3.8m + 1.07m = 4.87m

FF B4

1.5m x 2.31m = 3.47 m

Live Load

4.87m

3.47m

FF A4

1.5m x 1.0m = 1.5m

1.5m

FFA5

[(3.31m x 1.5m) + (3m x 3.85m)] = 16.52m

16.52m

Evelyn Sinugroho 0318217


-Total Live Load Diagram

1

2

4

5

6

7

8

9

10

3 19700 600 2000

1200

3000

2400

3600

2400

1500

3000

I 1800

H 1700

G 2500

F

E D

17200

2200

1300

3200

RF C3

C 2500

RF B4

B 2000

A RF A4

RF A5

Roof Floor Plan (Showing Distribution of load from slab to column)

There were no live load on roof floor plan. Column

Area

RF C3

(2.1m x 1.7m) + (0.9m x 1.19m) = 3.8m + 1.07m = 4.87m

RF B4

1.5m x 2.31m = 3.47 m

Live Load

4.87m

3.47m

RF A4

1.5m x 1.0m = 1.5m

1.5m

RFA5

[(3.31m x 1.5m) + (3m x 3.85m)] = 16.52m

16.52m

Evelyn Sinugroho 0318217


Column Analysis Calculation Tributary Area Method Column C3

Determine the load acting on column C3 1

2

4

5

6

7

8

9

10

3

Dead Load

I

Roof Level Dead Load Slab Roof Beam Total

H G F E D

First Floor Dead Load Walls Slabs Beams Column Total

GF C3

C B A

Ground Floor Plan

1

2

4

5

6

7

8

9

10

3 I H G

Ground Floor Dead Load Walls Slabs Beams Column Total

4.87 4.56m x 1.08kN/m = 4.92kN 9.79kN

4.56m x 8.55kN/m = 38.99kN 4.56m x 1.08kN/m = 4.92kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 70.08kN

4.56m x 8.55kN/m = 38.99kN 4.56m x 1.08kN/m = 4.92kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 70.08kN

F

Total Dead Load E D

Apply 1.4 Factor

9.79kN + 70.08kN + 70.08kN = 149.95 kN 149.95kN x 1.4 = 209.93kN

FF C3

C B

Live Load

A

First Floor Plan

1

2

4

5

6

7

8

9

10

First Floor Live Load Slabs

4.87m

Ground Floor Live Load Slabs

4.87m

Total Live Load Apply 1.6 Factor

7.31kN + 7.31kN = 14.62kN 14.62kN x 1.6 =23.39kN

3 I H G F E D FF C3

C

Total Ultimate Dead load + Ultimate Live load 209.93kN + 23.39kN = 233.32kN

B A

Roof Floor Plan

So, ultimate load acting on column D5 is 233.32kN Evelyn Sinugroho 0318217


Column Analysis Calculation Tributary Area Method Column B4

Determine the load acting on column B4 1

2

4

5

6

7

8

9

10

3

Dead Load

I

Roof Level Dead Load Slab Roof Beam Total

H G F E D

First Floor Dead Load Walls Slabs Beams Column Total

C GF B4

B A

Ground Floor Plan

1

2

4

5

6

7

8

9

10

3 I H G

Ground Floor Dead Load Walls Slabs Beams Column Total

3.26m x 1.08kN/m = 3.52kN 6.99kN

1.91m x 8.55kN/m = 16.33kN 3.26m x 1.08kN/m = 3.52kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 40.98kN

1.91m x 8.55kN/m = 38.99kN 1.91m x 1.08kN/m = 2.06kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 62.18kN

F

Total Dead Load E D

Apply 1.4 Factor

6.99kN + 40.98kN + 62.18kN = 110.15 kN 110.15kN x 1.4 = 154.2kN

C FF B4

B

Live Load

A

First Floor Plan

1

2

4

5

6

7

8

9

10

First Floor Live Load Slabs

3.47m

3 I H

Ground Floor Live Load Slabs

3.47m

Total Live Load Apply 1.6 Factor

5.21kN + 5.21kN = 10.41kN 10.41kN x 1.6 =16.66kN

G F E D

C B

RF B4

A

Roof Floor Plan

Total Ultimate Dead load + Ultimate Live load 154.2kN + 16.66kN = 170.86kN So, ultimate load acting on column B4 is 170.86kN Evelyn Sinugroho 0318217


Column Analysis Calculation Tributary Area Method Column A4

Determine the load acting on column A4 1

2

4

5

6

7

8

9

10

3

Dead Load

I

Roof Level Dead Load Slab Roof Beam Total

H G F E D

First Floor Dead Load Walls Slabs Beams Column Total

C B GF A4

A

Ground Floor Plan

1

2

4

5

6

7

8

9

10

3 I H G

Ground Floor Dead Load Walls Slabs Beams Column Total

F

Total Dead Load E D

Apply 1.4 Factor

2.5m x 1.08kN/m = 2.7kN 4.2kN

2.5m x 8.55kN/m = 21.38kN 2.5m x 1.08kN/m = 2.7kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 38.12kN

2.5m x 8.55kN/m = 21.38kN 2.5m x 1.08kN/m = 2.7kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 38.12kN 4.2kN + 38.12kN + 38.12kN = 80.44 kN 80.44kN x 1.4 = 112.62kN

C B

Live Load

FF A4

A

First Floor Plan

1

2

4

5

6

7

8

9

10

First Floor Live Load Slabs 1.5m

3

Ground Floor Live Load Slabs

I H

1.5m

G

Total Live Load Apply 1.6 Factor

F

2.25kN + 2.25kN = 4.5kN 4.5kN x 1.6 =7.2kN

E D

Total Ultimate Dead load + Ultimate Live load 112.62kN + 7.2kN = 119.82kN

C B RF A4

A

Roof Floor Plan

So, ultimate load acting on column A4 is 119.82kN Evelyn Sinugroho 0318217


Column Analysis Calculation Tributary Area Method Column A5

Determine the load acting on column A4 1

2

4

5

6

7

8

9

10

3

Dead Load

I

Roof Level Dead Load Slab Roof Beam Total

H G F E D

First Floor Dead Load Walls Slabs Beams Column Total

C B A

GF A5

Ground Floor Plan

1

2

4

5

6

7

8

9

10

3 I H G

Ground Floor Dead Load Walls Slabs Beams Column Total

9.28m x 1.08kN/m = 10.02kN 26.54kN

7.85m x 8.55kN/m = 21.38kN 9.28m x 1.08kN/m = 10.02kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 99.5kN

4.2m x 8.55kN/m = 35.91kN 4.2m x 1.08kN/m = 4.54kN 0.3m x 0.4m x3m x 24kN/m3 = 8.64kN 108.56kN

F

Total Dead Load E D

Apply 1.4 Factor

26.54kN + 99.5kN + 108.56kN = 234.6 kN 234.6kN x 1.4 = 328.44kN

C B

Live Load

A

FF A5

First Floor Plan

1

2

4

5

6

7

8

9

10

First Floor Live Load Slabs

16.52m

Ground Floor Live Load Slabs

16.52m

Total Live Load Apply 1.6 Factor

24.78kN + 24.78kN = 49.56kN 49.56kN x 1.6 =79.30kN

3 I H G F E D

Total Ultimate Dead load + Ultimate Live load 328.44kN + 79.30kN = 407.74kN

C B A RF A5

Roof Floor Plan

So, ultimate load acting on column A4 is 407.74kN Evelyn Sinugroho 0318217


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.